JPS61117190A - Crucible for preparing crystal - Google Patents
Crucible for preparing crystalInfo
- Publication number
- JPS61117190A JPS61117190A JP23827384A JP23827384A JPS61117190A JP S61117190 A JPS61117190 A JP S61117190A JP 23827384 A JP23827384 A JP 23827384A JP 23827384 A JP23827384 A JP 23827384A JP S61117190 A JPS61117190 A JP S61117190A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- crystal
- heat sink
- single crystal
- seed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000008646 thermal stress Effects 0.000 abstract description 2
- 239000003708 ampul Substances 0.000 abstract 2
- 239000007858 starting material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/002—Crucibles or containers for supporting the melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発、明は、化合物半導体の溶液成長法による単結晶製
造において用いる結晶製造用ルツボに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crucible for crystal production used in the production of single crystals of compound semiconductors by a solution growth method.
〔従来の技術ゴ
第5図は、従来の化合物半導体単結晶の溶液成長法の一
例である合成溶質拡散法に用いられる装置の断面概略図
である。第3図において、符号1は高温炉、2は低温炉
、3は炉芯管、4にfヒ合物半導体原料、5は原料溶液
、6はルツボ、7はアンブル、8はドライビングユニッ
ト、10は種結晶、11はヒートシンク、20は突起上
水す。この種の装置は基本的に、高温炉1及び低温P2
より放り、これらは相互に離して設けられている。[Conventional Technology] FIG. 5 is a schematic cross-sectional view of an apparatus used in a synthetic solute diffusion method, which is an example of a conventional compound semiconductor single crystal solution growth method. In FIG. 3, reference numeral 1 is a high temperature furnace, 2 is a low temperature furnace, 3 is a furnace core tube, 4 is an f-hybrid semiconductor raw material, 5 is a raw material solution, 6 is a crucible, 7 is an amble, 8 is a driving unit, 10 1 is a seed crystal, 11 is a heat sink, and 20 is a protrusion. This type of equipment basically consists of a high temperature furnace 1 and a low temperature P2
Generally speaking, these are spaced apart from each other.
この高温炉1及び低温炉2を通して炉芯管5が備えられ
ており、とのf芯管3内に、化合物半導体原料4を底部
に収納し、更に原料溶液5金入れ九ルツボ6を前記高温
炉1中に収納し次アンブル7が設けられている。ルツボ
6はアングル中の突起20により保持されている。更に
アンブル7はドライビングユニット8により上下移動が
可能となっている。K$4はリン等の蒸気圧の高い原料
であり、低温炉2で気化して原料溶液5゛の表面から溶
は込み、アンブル7が徐々に低温域に移動することによ
りルツボ6の底部より結晶が析出する。ルツボの底部に
は種結晶10が設置されておシ、ルツボ下部はヒートシ
ンク11どなっている。A furnace core tube 5 is provided through the high-temperature furnace 1 and the low-temperature furnace 2, and a compound semiconductor raw material 4 is stored in the bottom of the f-core tube 3, and a raw material solution 5 and a gold-containing crucible 6 are placed at the high temperature. It is housed in the furnace 1 and is provided with an amble 7. The crucible 6 is held by a protrusion 20 in the angle. Furthermore, the amble 7 can be moved up and down by a driving unit 8. K$4 is a raw material with high vapor pressure such as phosphorus, which is vaporized in the low temperature furnace 2 and melted from the surface of the raw material solution 5. As the amble 7 gradually moves to the low temperature region, it melts from the bottom of the crucible 6. Crystals precipitate. A seed crystal 10 is installed at the bottom of the crucible, and a heat sink 11 is provided at the bottom of the crucible.
従来、この種の装置を用いて単結晶成長を行うためには
第4図に示すようなルツボ構成により行っていた。第4
図において符号9はルツボパイプで王(石英が用いられ
、10は種結晶、11はヒートシンクで主にカーボンが
用いられ、12は成長した結晶、13に溶液である。種
結晶は同じ方位をもつ単結晶を再現性良く得るために、
またヒートシンクは結晶固化の際の潜熱を下部に放出し
、結晶成長界面の形状を安定させて単結晶成長を維持す
る九めに用いられる。Conventionally, in order to grow a single crystal using this type of apparatus, a crucible configuration as shown in FIG. 4 has been used. Fourth
In the figure, numeral 9 is a crucible pipe (quartz is used), 10 is a seed crystal, 11 is a heat sink mainly made of carbon, 12 is a grown crystal, and 13 is a solution.The seed crystal is a unit with the same orientation. In order to obtain crystals with good reproducibility,
The heat sink is also used to release latent heat during crystal solidification to the bottom, stabilize the shape of the crystal growth interface, and maintain single crystal growth.
?、11の材質が異なるのはち密でかつ熱伝導性が良く
結晶汚染を起さない良質な材料がこれまでなかった次め
である。? , 11 are made of different materials because there has never been a high-quality material that is dense, has good thermal conductivity, and does not cause crystal contamination.
上記方法ではルツボパイプと種結晶、ヒートシンクはす
り合せによって固定している迄めに加工精度が悪いと種
結晶の浮上あるいは液漏れが起った。また、ヒートシン
ク材は高熱伝導性を必要とすることから主にカーボンが
用いられる。しかし、この材料は多孔質でガス分子を透
過させるため、使用中、吸着した不純物音吐き出して結
晶を汚染したり、蒸気圧の高い成分を含むai#晶及び
成長結晶の分解を阻止できないという問題点があった。In the above method, the crucible pipe, the seed crystal, and the heat sink are fixed by rubbing together, and if the machining accuracy is poor, the seed crystal floats or liquid leaks. Furthermore, since the heat sink material requires high thermal conductivity, carbon is mainly used. However, since this material is porous and allows gas molecules to permeate through it, there are problems in that during use, the adsorbed impurities emit noise, contaminating the crystal, and cannot prevent the decomposition of AI# crystals and growing crystals that contain components with high vapor pressure. There was a point.
他方、種結晶とヒートシンクの間にガラスを主成分とす
るち密な板状の材料を挿入して結晶の分解を抑える方法
がある。しかし、このような材料は熱伝導性が悪いため
にヒートシンクの効果を低下させるという問題点があっ
た。On the other hand, there is a method of inserting a dense plate-like material mainly made of glass between the seed crystal and the heat sink to suppress the decomposition of the crystal. However, such materials have a problem in that they have poor thermal conductivity, reducing the effectiveness of the heat sink.
そのまめ、前記のようなルツボを用い危装置構成では、
良質な単結晶が得られず、工業的にはほとんど使用し得
ないのが現状でめった。In particular, in a dangerous device configuration using a crucible as described above,
Currently, high-quality single crystals cannot be obtained, and it is almost impossible to use them industrially.
本発明の目的は、これらの欠点を、除去し、良質な単結
晶全工業的に得ることができる種結晶固定可能な結晶製
造用のルツボを提供することにある。An object of the present invention is to eliminate these drawbacks and to provide a crucible for producing crystals in which seed crystals can be fixed and which can produce high-quality single crystals on an industrial scale.
本発明↑概説すれば、本発明は結晶製造用ルツボに関す
る発明であって、アンブル中に化合物半導体結晶製造用
原料を封入し、該アンブルを任意の温度分布をもつ電気
炉生金移動させて単結晶を得る化合物半導体製造装置に
用いる結晶製造用ルツボにおいて、該ルツボがヒートシ
ンク部、溶液保持部からなp1溶液保持部の底部に種結
晶全固定する機構を有し、全体が同一の材料によって構
成されていることを特徴とする。Present invention ↑ To summarize, the present invention relates to a crucible for producing crystals, in which a raw material for producing compound semiconductor crystals is sealed in an amble, and the amble is transferred to raw metal in an electric furnace having an arbitrary temperature distribution. In a crystal manufacturing crucible used in a compound semiconductor manufacturing device for obtaining crystals, the crucible has a mechanism for completely fixing the seed crystal at the bottom of the P1 solution holding part including a heat sink part and a solution holding part, and the whole is made of the same material. It is characterized by being
本発明の特徴に溶液の保持、種結晶の固定及び潜熱放出
のためのヒートシンク用部材をすべて同一の材料によっ
て構成する点にある。このような材料として特に焼結窒
化アルミニウムが好適である。この材料はち密でかつ成
形しやすく、更に熱伝導率が大きいという特質をもって
いる。すなわち、窒化アルミニクムtルツボ材に用いれ
ば、第4図におけるルツボはすべて同一の材料で構成す
ることができる。また、加工性が良い友め各部品はネジ
込みにより結合できる上に熱伝導率の違いがないため使
用時に熱応力による破損はない。更に窒化アルミニウム
は融点が高く、ち密であるため結晶汚染の問題はなく高
純度結晶全育成することができる。A feature of the present invention is that the heat sink members for holding the solution, fixing the seed crystal, and releasing latent heat are all made of the same material. Sintered aluminum nitride is particularly suitable as such a material. This material is dense, easy to mold, and has high thermal conductivity. That is, if aluminum nitride is used as the crucible material, all the crucibles in FIG. 4 can be made of the same material. In addition, each part has good workability and can be connected by screwing, and there is no difference in thermal conductivity, so there is no damage due to thermal stress during use. Furthermore, since aluminum nitride has a high melting point and is dense, there is no problem of crystal contamination and high purity crystals can be grown entirely.
以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.
なお、第1図及び第2図は、本発明の1実施の態様を示
すルツボ構成の断面図である。Note that FIGS. 1 and 2 are cross-sectional views of a crucible structure showing one embodiment of the present invention.
実施例1
第1図は本発明の単結晶成長用ルツボの1実施例である
。符号10は種結晶、12は成長した結晶、15は溶液
、14に窒化アルミニウムルツボ本体、15は窒化アル
ミニウム製内パイプである。内パイプ15は種結晶の浮
上を防ぐと共に、結晶育成後の取出し全容易にしている
。Example 1 FIG. 1 shows an example of the crucible for single crystal growth of the present invention. 10 is a seed crystal, 12 is a grown crystal, 15 is a solution, 14 is an aluminum nitride crucible body, and 15 is an inner pipe made of aluminum nitride. The inner pipe 15 prevents the seed crystal from floating and makes it easy to take out the crystal after it has been grown.
ルツボは直径10へ100箇、深さ100へ200瓢、
ヒートシンク長約150mでめり、アンブル内の突起2
0により最適位置に保持される。次に本発明の用いた単
結晶育gを、rnP結晶を例にとって説明する。ルツボ
以外の装置は第3図と同じである。The crucible is 100 pieces in diameter 10, 200 gourds in depth 100,
The heat sink length is about 150m and the protrusion inside the amble is 2.
0 keeps it in the optimal position. Next, the single crystal growth method used in the present invention will be explained using an rnP crystal as an example. The equipment other than the crucible is the same as in FIG. 3.
まず、ルツボ内径に近い厚さ4mのく111〉方位の種
結晶を入れ、内パイプによシ固定したこのように種結晶
を内パイプで固定するため本発明では種結晶の外径加工
精度は問題にはならない。次に100〜2001の工n
とその約20重t%の工n P結晶をルツボ中に装てん
した。First, a 111〉-oriented seed crystal with a thickness of 4 m close to the inner diameter of the crucible is inserted and fixed to the inner pipe.In this way, since the seed crystal is fixed with the inner pipe, the accuracy of the outer diameter machining of the seed crystal is It's not a problem. Next, 100-2001 engineering n
A crucible was loaded with about 20 wt % of N-P crystals.
InP結晶の装てんは種結晶が工n溶液中に溶は出すの
を防ぐためである。アンブルの底に50〜100tのP
を入れ、ルツボはアンブル内の突起によって保持する。The purpose of loading the InP crystal is to prevent the seed crystal from dissolving into the solution. 50-100t of P at the bottom of the amble
The crucible is held by a protrusion inside the amble.
アンブルij2 X 10″″6 トルの真空度で真空
封じした後、電気デの中に設置し、加熱した。@度の設
置条件はルツボ底部で950℃とし、その前後の温度勾
配ヲ50℃/c11Mにした。また、アンブル底部の温
度を450℃とし念。この温度ではアンブル内のP蒸気
圧は約2気圧である。P蒸気はIn液中に溶けIn−P
溶液と1に5、種結晶のところまで到達する。aiM晶
付近は上部液面ニジも温度が低く保たれている九め、P
濃度が飽和になり工nPとして種結晶上に方位をそろえ
て晶出した。更にアンブル’t 5 rpm程度で回転
しながら、10、、/日の速さで引下げたところ、(1
11>方向に伸び次長尺(約100m)の単結晶が得ら
れた。After sealing the ambule at a vacuum level of 2 x 10''6 torr, it was placed in an electric oven and heated. The installation conditions for the crucible were 950°C at the bottom of the crucible, and the temperature gradient before and after that was 50°C/c11M. Also, make sure that the temperature at the bottom of the amble is 450℃. At this temperature, the P vapor pressure in the amble is approximately 2 atmospheres. P vapor dissolves in In liquid and In-P
The solution and 1 to 5 reach the seed crystal. Near the aiM crystal, the temperature of the upper liquid level is also kept low at 9th P.
When the concentration reached saturation, nP was crystallized on the seed crystal with the same orientation. Furthermore, while rotating at about 5 rpm, I pulled it down at a speed of 10,.../day.
A long (approximately 100 m) single crystal extending in the 11> direction was obtained.
実施例2
第2図は本発明の単結晶成長ルツボのfJX2の実施例
である。符号10は工nPs結晶、12は成長した工n
p単結晶、15はIn−p溶液、16t[1ftsアル
ミニクム製ルツボパイプ、17は電化アルミエクム製ヒ
ートシンク、18は16.17に加工し友ネジである。Example 2 FIG. 2 shows an example of the single crystal growth crucible fJX2 of the present invention. Reference numeral 10 denotes the crystal nPs, 12 the grown nPs crystal, and 12 the grown nPs crystal.
P single crystal, 15 is an In-P solution, 16t [1fts] crucible pipe made of aluminum, 17 is a heat sink made of electrified aluminum Ecum, and 18 is a friend screw machined into 16.17.
すなわち、16.17はネジによって結合している。実
施例1との違いは内パイプがいらないこと、また、種結
晶の外形寸法に幅をもたせることができることである。That is, 16 and 17 are connected by screws. The difference from Example 1 is that an inner pipe is not required and that the outer dimensions of the seed crystal can be varied.
結晶成長の結果については実施例1と同じであった。The results of crystal growth were the same as in Example 1.
以上説明し友ように、本発明のルツボは同一の材料で構
成でき、種結晶の浮上、液漏れ、ルツボの破損、種結晶
の分解の問題が解決できる。As explained above, the crucible of the present invention can be constructed of the same material, and the problems of seed crystal floating, liquid leakage, crucible damage, and seed crystal decomposition can be solved.
また、結晶汚染の問題はないことが明らかとなり、高純
度結晶が得られる。特に、窒化アルミニウムを用いた場
合、この材料は機械的強度があり、酸などの洗浄にも耐
えるので、繰返しルツボとして使用できる利点がある。Furthermore, it has been revealed that there is no problem of crystal contamination, and high purity crystals can be obtained. In particular, when aluminum nitride is used, this material has mechanical strength and can withstand cleaning with acids and the like, so it has the advantage of being able to be used repeatedly as a crucible.
本発明の結晶製造用ルツボは溶液成長法による単結晶成
長にあまねく適用できるものであるが、高純度結晶を必
要とする工nP 、 ()aAs、 GaP等の化合物
半導体結晶成長に最も適し次ルツボである。Although the crucible for producing crystals of the present invention can be widely applied to single crystal growth using the solution growth method, the next crucible is most suitable for the growth of compound semiconductor crystals such as nP, ()aAs, and GaP, which require high purity crystals. It is.
【図面の簡単な説明】
第1図及び第2図は本発明の1実施例を示すルツボ構成
の断面図、第3図は従来の溶液成長法による結晶育成装
置の1例の断面概略図、第4図は従来の単結晶成長に用
いられた種結晶付のルツボ構成の断面図である。
1:高温炉、2:低温炉、3:炉芯管、4:化合物半導
体原料、5:原料溶液、6:ルツボ、7:アンブル、8
ニドライビングユニツト、9ニルツボパイプ、10:種
結晶、11:ヒートシンク、12:g長し次結晶、15
:溶液、14:窒化アルミニクムルツボ本体、15:内
パイプ、16:窒化アルミニクム製ルツボパイプ、17
:!化アルミニウム製ヒートシンク、18:ネジ部、2
0:突起[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 are cross-sectional views of a crucible structure showing one embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view of an example of a crystal growth apparatus using a conventional solution growth method. FIG. 4 is a cross-sectional view of a crucible structure with a seed crystal used for conventional single crystal growth. 1: High temperature furnace, 2: Low temperature furnace, 3: Furnace core tube, 4: Compound semiconductor raw material, 5: Raw material solution, 6: Crucible, 7: Amble, 8
ni driving unit, 9 niru pot pipe, 10: seed crystal, 11: heat sink, 12: g long crystal, 15
: Solution, 14: Aluminum nitride crucible body, 15: Inner pipe, 16: Aluminum nitride crucible pipe, 17
:! Aluminum heat sink, 18: Screw part, 2
0: Protrusion
Claims (1)
、該アンブルを任意の温度分布をもつ電気炉中を移動さ
せて単結晶を得る化合物半導体製造装置に用いる結晶製
造用ルツボにおいて、該ルツボがヒートシンク部、溶液
保持部からなり、溶液保持部の底部に種結晶を固定する
機構を有し、全体が同一の材料によって構成されている
ことを特徴とする結晶製造用ルツボ。 2、該ルツボ材料が、窒化アルミニウムである特許請求
の範囲第1項記載の結晶製造用ルツボ。[Scope of Claims] 1. A crystal manufacturing device used in a compound semiconductor manufacturing device in which a raw material for compound semiconductor crystal manufacturing is sealed in an amble and the amble is moved through an electric furnace with an arbitrary temperature distribution to obtain a single crystal. A crucible for crystal production, characterized in that the crucible comprises a heat sink part and a solution holding part, has a mechanism for fixing a seed crystal at the bottom of the solution holding part, and is entirely made of the same material. . 2. The crucible for producing crystals according to claim 1, wherein the crucible material is aluminum nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23827384A JPS61117190A (en) | 1984-11-14 | 1984-11-14 | Crucible for preparing crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23827384A JPS61117190A (en) | 1984-11-14 | 1984-11-14 | Crucible for preparing crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61117190A true JPS61117190A (en) | 1986-06-04 |
Family
ID=17027729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23827384A Pending JPS61117190A (en) | 1984-11-14 | 1984-11-14 | Crucible for preparing crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61117190A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234592A (en) * | 1988-07-22 | 1990-02-05 | Furukawa Electric Co Ltd:The | Growing method for compound semiconductor single crystal |
-
1984
- 1984-11-14 JP JP23827384A patent/JPS61117190A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0234592A (en) * | 1988-07-22 | 1990-02-05 | Furukawa Electric Co Ltd:The | Growing method for compound semiconductor single crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113322510B (en) | SiC single crystal growth device and liquid phase epitaxy SiC single crystal growth method | |
JPS61117190A (en) | Crucible for preparing crystal | |
US4764350A (en) | Method and apparatus for synthesizing a single crystal of indium phosphide | |
US4614672A (en) | Liquid phase epitaxy (LPE) of silicon carbide | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
TWI875366B (en) | A crystal growth apparatus with multiple deposition sites in and method using the same | |
JPS6021900A (en) | Apparatus for preparing compound semiconductor single crystal | |
JPS62119198A (en) | Device for rotating and pulling up single crystal provided with magnetic field impressing device | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
RU1431391C (en) | Process of growing monocrystals of cadmium telluride | |
JPS61136987A (en) | Vessel for growing single crystal | |
JPH05319973A (en) | Single crystal production unit | |
TW202523928A (en) | A crystal growth apparatus with multiple deposition sites in and method using the same | |
JPS6395192A (en) | Apparatus for producing compound semiconductor crystal | |
JPH05139884A (en) | Production of single crystal | |
JP3141442B2 (en) | Bridgman crystal growth ampoule | |
JPS58199796A (en) | Pulling device of crystal under sealing with liquid | |
JPH01249686A (en) | 3-V group compound semiconductor crystal manufacturing equipment | |
JPS627693A (en) | Device for growing compound semiconductor single crystal | |
JPS62158186A (en) | Method for manufacturing compound semiconductor single crystal | |
JPS60215597A (en) | Crucible for producing crystal | |
JPS6168394A (en) | Method for producing polycrystalline compound of Group 3-5 compound | |
JPS62212289A (en) | Method for producing single crystal and vessel therefor | |
JPH0572360B2 (en) | ||
JP2000128699A (en) | Method of growing II-VI compound semiconductor crystal |