[go: up one dir, main page]

JPS61116835A - Sputtering target for lsi or very lsi electrode wiring material - Google Patents

Sputtering target for lsi or very lsi electrode wiring material

Info

Publication number
JPS61116835A
JPS61116835A JP23751684A JP23751684A JPS61116835A JP S61116835 A JPS61116835 A JP S61116835A JP 23751684 A JP23751684 A JP 23751684A JP 23751684 A JP23751684 A JP 23751684A JP S61116835 A JPS61116835 A JP S61116835A
Authority
JP
Japan
Prior art keywords
lsi
added
sputtering target
fine crystal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23751684A
Other languages
Japanese (ja)
Other versions
JPH0518453B2 (en
Inventor
Yoshiharu Nozawa
野沢 義晴
Yasushi Ishimaru
泰 石丸
Shigeki Miyamori
宮森 繁樹
Atsushi Fukuraku
福楽 惇
Masaharu Oshiro
大城 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP23751684A priority Critical patent/JPS61116835A/en
Publication of JPS61116835A publication Critical patent/JPS61116835A/en
Publication of JPH0518453B2 publication Critical patent/JPH0518453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain high purity and ultra-fine crystal grain by adding at least a kind of alloyed element of Mo, W, Ti, Ta, Zr or Pt and Si in the 0.1-8.5wt% to the base metal of said Mo, W, Ti, Ta, Zr or Pt. CONSTITUTION:When Si is added to Mo as an alloy element, as an example, and it is melted, Si exists within the alloy as a silicate, fine crystal organization in grain diameter of 0.5-1mm can be obtained. When it is used for sputtering target, dielectivity of sputtering is uniform and mechanical workability is also good. The similar effect can also be obtained by adding W (added as WSi) and Si to the base material Mo and then melting them. However, amount of addition of alloyed component is limited to 0.1-8.5wt%. If it is under 0.1wt%, it becomes difficult to obtain uniform fine crystal grain and mechanical working becomes also very difficult. Therefore, amount of addition should be set as small as possible and it is preferable to set the upper limit to 8.5wt%. In this case, initial discharge is stabilized and distribution of film thickness is also improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細結晶組織のLSI又は超L8I電極配線材
料用スノξツタリングターゲットに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a snow ξ tsuttering target for LSI or ultra-L8I electrode wiring material having a microcrystalline structure.

従来の技術 従来1例えばこの禅ス/eツタリングモリブデンターゲ
ットは高純度モリブデン粉末をプレス法によって製造さ
れているが、プレス法で製造されたモリブデン焼結体は
、モリブデン自体が活性であるため粉末表面が酸素等に
より汚染され易く、また焼結体中にガス成分を収蔵し、
ターゲットとして純度の低いものが得られる結果となっ
ていることが知られている。
Conventional technology Conventional 1 For example, this Zensu/e Tsuta ring molybdenum target is manufactured by pressing high-purity molybdenum powder, but the molybdenum sintered body manufactured by the pressing method is powdery because molybdenum itself is active. The surface is easily contaminated by oxygen, etc., and gas components are stored in the sintered body.
It is known that this results in a target with low purity.

従って、高純度のモリブデンを得るためには通常電子ビ
ーム熔解又は還元雰囲気中の熔解等が行われている。し
かしながら1周知の如く金属は高純度であればある程熔
製品の結晶粒は大きくなるものである。また結晶粒の大
きい溶製インゴットは鍛造等の爾後の加工が非常に困難
であることが一般的に知られている。
Therefore, in order to obtain molybdenum of high purity, electron beam melting or melting in a reducing atmosphere is usually performed. However, as is well known, the higher the purity of the metal, the larger the crystal grains of the molten product. Furthermore, it is generally known that subsequent processing such as forging is extremely difficult for ingots with large crystal grains.

発明が解決しようとする問題点 一方、現状では複雑な形状のターゲツト材が要求され、
結晶粒子が大きいとターゲツト材としての機械加工に当
っても結晶粒界から容易に割れる等の難点があり、また
、大きい結晶粒子のターゲットを用いてスノぐツタリン
グを実施した場合、結晶粒の異方性のために異なる特性
を有するス、oツタリング被膜が形成されることになシ
、被膜の辱さにも影−を与えることになることが知られ
ている。
Problems to be solved by the invention On the other hand, the current situation requires target materials with complex shapes.
If the crystal grains are large, there are problems such as easy cracking from the grain boundaries when machining as a target material, and when performing snog tsuttering using a target with large crystal grains, differences in the crystal grains may occur. It is known that due to the orientation, a stagnation film having different properties is formed, which also affects the quality of the film.

問頌点を解決するための手段 本発明者等は曲述の如き従来法の諸欠点を解決するため
に、高純度でしかも結晶粒子を微細化する方法を確立し
た。
Means for Solving the Problems The present inventors have established a method of achieving high purity and miniaturizing crystal grains in order to solve the various drawbacks of the conventional methods as described above.

本発明者等は高純度モリブデンに高純度けい素をシリサ
イドの形で含有する材料を溶製したところ、高純度であ
りながら、微細結晶のMo−8+が得られ、しかも安定
したスパッタリングが行いうろことを知見した。更に、
モリブデン以外の基体金属とけい素との組み会せとして
は、基体金属としてタングステン、チタニウム、ジルコ
ニウム、タンタル又は白金があり、添加会合化元素とし
ては。
The present inventors melted a material containing high-purity silicon in the form of silicide in high-purity molybdenum, and were able to obtain Mo-8+ in the form of fine crystals despite its high purity. I discovered that. Furthermore,
Combinations of base metals other than molybdenum and silicon include tungsten, titanium, zirconium, tantalum, or platinum as the base metal, and as the additional association element.

前言−基体金属の7種及びけい素であることが実験の結
果確認された。
Preliminary statement - Seven types of base metals and silicon were confirmed as a result of experiments.

従って1本発明の要旨とするところは前記特許請求の範
囲に明記したとおりであるが1本発明の具体例を以下に
詳述する。
Therefore, the gist of the present invention is as specified in the claims, and specific examples of the present invention will be described in detail below.

例えば、モリブデン(Mo)へけい素(Si)を曾金元
紫として添加して溶製すると、けい素はシリケートとし
て曾金中に存在し、溶製されたモリブデン−けい素会金
は所望°の微細結晶組織を呈し。
For example, when molybdenum (Mo) is melted by adding silicon (Si) as Zenghenyuanzi, silicon exists in the Molybdenum as a silicate, and the melted molybdenum-silicon alloy has a desired degree of microcrystalline structure. presents.

スパッタリングターゲットとして使用した場せのスパッ
タリングの方向性が均質で、所望形状の機械加工性も秀
れている。
When used as a sputtering target, the sputtering direction is uniform and the machinability of desired shapes is excellent.

また、モリブデンを基体金属として、添加付金成分とし
てタングステン(タングステンシリケートとして添加)
及びけい素を添加し溶製したところ、微細結晶組織が得
られ、Mo−8iの堝せと同様の結果が得られた。
In addition, molybdenum is used as the base metal, and tungsten (added as tungsten silicate) is used as the additive component.
When silicon was added and melted, a fine crystal structure was obtained, and the same results as with Mo-8i were obtained.

前記合金化成分の添加量を0./ 、 J’、J’重景
チと限定する理由は次のとおりである。MO中へのSi
の固溶限が/ 100℃では約7重J[であるが。
The amount of the alloying component added is 0. The reason for limiting it to /, J', and J'jukei is as follows. Si into MO
The solid solubility limit of / at 100°C is about 7 times J.

1000℃以下になると急激に固溶度が減少する。When the temperature is below 1000°C, the solid solubility decreases rapidly.

従って、微量の8iを添加するだけで結晶粒微細化の効
果は十分期待できる。しかしながら、実M、1果による
と8i添加量をo、i重量%未満とすると均一に結晶粒
を微細化するのが難しく1粒径にばらつきが生起する。
Therefore, the effect of grain refinement can be expected to be sufficient just by adding a small amount of 8i. However, according to fruit M.1, if the amount of 8i added is less than 0.1% by weight, it is difficult to uniformly refine the crystal grains and variations occur in the grain size.

そのためSi添加量は0./重量係以上であることが必
要である。また、MoとSiの化せ物M o 3 S 
i及びMo3Si2が生成され PJ)械加工が非常に
困難となる。このためSiの添加量をできるだけ低くし
て結晶微細化の効果を得ることが必要である。その結果
Si添加量の上限はr3重景憾が好ましい。
Therefore, the amount of Si added is 0. /Must be above the weight limit. Also, a monster of Mo and Si, M o 3 S
i and Mo3Si2 are generated, making machining very difficult. Therefore, it is necessary to reduce the amount of Si added to obtain the effect of crystal refinement. As a result, the upper limit of the amount of Si added is preferably r3 heavy.

実施例 Mo粉末とSi粉末を重量比で?P:/の割付で混会し
、調質処理を行ないMo混合粉を調製した。
Example What is the weight ratio of Mo powder and Si powder? They were mixed in the ratio P: / and subjected to tempering treatment to prepare a Mo mixed powder.

この混合粉をプレス型にて底形した後精製溶解を行ない
結晶粒径の小さいMoインゴットを得ることができた。
This mixed powder was shaped into a bottom shape using a press mold, and then purified and melted to obtain a Mo ingot with a small crystal grain size.

このインゴットは容易に通常の機械加工を施すことがで
きた。
This ingot could easily be subjected to conventional machining.

従来方法と本発明によるMoインゴットの粒径は前者が
io、であるに対し、後者は0.j −/、と//10
以下に微細化することができた。
The grain size of the Mo ingots according to the conventional method and the present invention is io, while the latter is 0. j −/, and //10
We were able to refine the structure to the following.

第1図は従来のMoインゴットの断面、第2図は本発明
インゴットの断面における結晶粒径を示す略図である。
FIG. 1 is a cross section of a conventional Mo ingot, and FIG. 2 is a schematic diagram showing crystal grain sizes in a cross section of an ingot of the present invention.

発明の効果 本発明インゴットによるスパッタリングの特性として下
Fの点が改善された。
Effects of the Invention The sputtering characteristics of the ingot of the present invention were improved in the point F below.

(a)  ブリ・スパッタリングの時間が短縮され。(a) The time for buri sputtering is shortened.

初期放電が安定した。Initial discharge stabilized.

(b)  膜厚分布が2〜3%改善された。(b) Film thickness distribution was improved by 2 to 3%.

【図面の簡単な説明】[Brief explanation of drawings]

1!/図は従来のMoインゴットの結晶粒、第2図は本
発明Moインゴットの結晶粒を示す略図である。
1! 2 is a schematic diagram showing the crystal grains of a conventional Mo ingot, and FIG. 2 is a schematic diagram showing the crystal grains of the Mo ingot of the present invention.

Claims (1)

【特許請求の範囲】[Claims] Mo、W、Ti、Ta、Zr又はPtからなる基体金属
に、Mo、W、Ti、Ta、Zr、Ptを及びSiの少
なくとも/種の合金化元素を0.1〜8.5重量%添加
してなる微細結晶組織のLSI又は超LSI電極配線材
料用スパッタリングターゲット。
Addition of 0.1 to 8.5% by weight of at least/some alloying elements of Mo, W, Ti, Ta, Zr, Pt and Si to a base metal consisting of Mo, W, Ti, Ta, Zr or Pt. A sputtering target for LSI or VLSI electrode wiring material having a microcrystalline structure.
JP23751684A 1984-11-13 1984-11-13 Sputtering target for lsi or very lsi electrode wiring material Granted JPS61116835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23751684A JPS61116835A (en) 1984-11-13 1984-11-13 Sputtering target for lsi or very lsi electrode wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23751684A JPS61116835A (en) 1984-11-13 1984-11-13 Sputtering target for lsi or very lsi electrode wiring material

Publications (2)

Publication Number Publication Date
JPS61116835A true JPS61116835A (en) 1986-06-04
JPH0518453B2 JPH0518453B2 (en) 1993-03-12

Family

ID=17016478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23751684A Granted JPS61116835A (en) 1984-11-13 1984-11-13 Sputtering target for lsi or very lsi electrode wiring material

Country Status (1)

Country Link
JP (1) JPS61116835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216966A (en) * 1987-03-06 1988-09-09 Toshiba Corp Target for sputtering
US4963240A (en) * 1987-03-30 1990-10-16 Kabushiki Kaisha Toshiba Sputtering alloy target and method of producing an alloy film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158864A (en) * 1984-08-30 1986-03-26 三菱マテリアル株式会社 Method for producing high melting point metal disilicide-based sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158864A (en) * 1984-08-30 1986-03-26 三菱マテリアル株式会社 Method for producing high melting point metal disilicide-based sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216966A (en) * 1987-03-06 1988-09-09 Toshiba Corp Target for sputtering
US4842706A (en) * 1987-03-06 1989-06-27 Kabushiki Kaisha Toshiba Sputtering target
JPH0371510B2 (en) * 1987-03-06 1991-11-13 Tokyo Shibaura Electric Co
US4963240A (en) * 1987-03-30 1990-10-16 Kabushiki Kaisha Toshiba Sputtering alloy target and method of producing an alloy film

Also Published As

Publication number Publication date
JPH0518453B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JP5969138B2 (en) Tantalum sputtering target
JP2003500546A (en) Copper sputter target assembly and method of manufacturing the same
JP2008063659A (en) Process for casting boron modified titanium alloy based parts, process for making wrought titanium alloy based parts, and titanium alloy
JP2001093862A (en) Electrode/wiring material for liquid crystal display and sputtering target
US4891059A (en) Phase redistribution processing
JPS61116835A (en) Sputtering target for lsi or very lsi electrode wiring material
JPH08100255A (en) Sputtering target material for forming thin film of thin film transistor
JPS6220847A (en) Metallic material having fine crystal grain and its production
JPS60228630A (en) Manufacture of titanium alloy
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH05345937A (en) Method for producing Ti-Fe-Al sintered titanium alloy
JPH0583623B2 (en)
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPH06280009A (en) Target for sputtering and its production
JP3878432B2 (en) High-purity ruthenium target and method for producing the target
JPS60228631A (en) Manufacture of titanium alloy
JPS60228632A (en) Manufacture of titanium alloy
JPH07258835A (en) W-Ti alloy target and manufacturing method thereof
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP2640511B2 (en) Method for producing titanium alloy containing ruthenium and nickel
JPH02166276A (en) Target made of refractory metal silicide and its production
JPH0551732A (en) Target for sputtering and production thereof
JPH06306514A (en) Production of sintered titanium alloy
JPH05255843A (en) High purity titanium target for sputtering
US3807995A (en) Metal composite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term