JPS61116764A - Fuel cell system - Google Patents
Fuel cell systemInfo
- Publication number
- JPS61116764A JPS61116764A JP59237984A JP23798484A JPS61116764A JP S61116764 A JPS61116764 A JP S61116764A JP 59237984 A JP59237984 A JP 59237984A JP 23798484 A JP23798484 A JP 23798484A JP S61116764 A JPS61116764 A JP S61116764A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- differential pressure
- fuel
- fuel cell
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04432—Pressure differences, e.g. between anode and cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04104—Regulation of differential pressures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/0491—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04228—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04303—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は燃料ガス差圧および酸化ガス差圧が所定値以下
になったとき、または燃料ガス、酸化ガスの供給が停止
した場合に、燃料電池本体を破損することなく安全に運
転または停止させ得るようにした燃料電池装置に関する
ものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method for reducing fuel cell The present invention relates to a fuel cell device that can be operated or stopped safely without damaging the main body.
[発明の技術的背景]
燃料電池装置は、燃料のもつ化学的エネルギを直接電気
的エネルギに変換するものであって、電解質を挾んで1
対の多孔質電極を配置するとともに、一方の電極の背面
に水素などの燃料ガスを接触させ、他方の電極の背面に
酸素を含む酸化ガスを接触させて化学反応を生じさせ、
このとき発生する電気的エネルギを上記1対の多孔質電
極から取出すように構成されている。そして、電解質と
しては溶融塩、アルカリ溶液、酸性溶液などがあるが、
ここではリン酸を゛電解質とする燃料電池装置について
第2図により説明する。[Technical Background of the Invention] A fuel cell device directly converts the chemical energy of fuel into electrical energy.
A pair of porous electrodes are arranged, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode, and an oxidizing gas containing oxygen is brought into contact with the back surface of the other electrode to cause a chemical reaction.
The electrical energy generated at this time is extracted from the pair of porous electrodes. Electrolytes include molten salts, alkaline solutions, acidic solutions, etc.
Here, a fuel cell device using phosphoric acid as an electrolyte will be explained with reference to FIG.
第2図において、1は繊維質シートや鉱物質粉末にリン
酸を含浸させた電解質層である。また図中2はアノード
、3はカソードである。アノード2およびカソード3は
いずれも炭素質の多孔性の電極で、通常は電解質111
に接する面に触媒としての白金を塗布しである。さらに
、図中4は水素を含む燃料ガスFを流入させる燃料ガス
流入室、5は酸素を含む酸化ガス(通常は空気)八を流
入させる酸化ガス流入室である。In FIG. 2, 1 is an electrolyte layer made of a fibrous sheet or mineral powder impregnated with phosphoric acid. Further, in the figure, 2 is an anode, and 3 is a cathode. The anode 2 and cathode 3 are both carbonaceous porous electrodes, typically an electrolyte 111
Platinum as a catalyst is coated on the surface in contact with the metal. Furthermore, in the figure, 4 is a fuel gas inlet chamber into which a fuel gas F containing hydrogen is introduced, and 5 is an oxidizing gas inlet chamber into which an oxidizing gas (usually air) containing oxygen is introduced.
そこで、燃料ガス流入室4に流入した燃料ガスFの水素
は多孔性電極であるアノード2の空隙を通して触媒に接
触する。ここで水素は触媒の作用により水素イオ:ノと
電子に解離する。このときの反応式は。Therefore, the hydrogen of the fuel gas F that has flowed into the fuel gas inlet chamber 4 comes into contact with the catalyst through the pores of the anode 2, which is a porous electrode. Here, hydrogen is dissociated into hydrogen ions and electrons by the action of a catalyst. What is the reaction formula in this case?
H2−42H” + 28 =ll)で
ある。そして水素イオンは電解質層1に入り、超電圧に
よる作用と濃度拡散により、カソード3に向って泳動す
る。また水素イオンの解離によって分離した電子は外部
の電力負荷6を通って仕事をし、カソード3に流れ込む
。一方、前記酸化ガス流入室5に流入した酸化ガスA中
の酸素は多孔性電極であるカソード3の空隙を通して触
媒に接触し、アノード2側より泳動してきた水素イオン
および外部の電力負荷6を通りカソード3に戻ってきた
電子と共に、触媒の作用で次の反応を起す。H2-42H" + 28 = ll).Then, the hydrogen ions enter the electrolyte layer 1 and migrate toward the cathode 3 due to the action of the supervoltage and concentration diffusion. Furthermore, the electrons separated by the dissociation of the hydrogen ions are released to the outside. The oxygen in the oxidizing gas A that has flowed into the oxidizing gas inflow chamber 5 contacts the catalyst through the pores of the cathode 3, which is a porous electrode, and flows into the cathode 3. Together with the hydrogen ions migrating from the 2nd side and the electrons returning to the cathode 3 through the external power load 6, the next reaction occurs due to the action of the catalyst.
4H” +4e +02−+2820 −(2)かく
して水素は酸化されて水になり、同時に化学的エネルギ
は電気的エネルギに変換されて外部の電力負荷6に与え
られる。4H'' +4e +02-+2820 - (2) Thus, hydrogen is oxidized to water, and at the same time chemical energy is converted to electrical energy and provided to external power load 6.
このとき電気的エネルギの一部は電解質層1中で電池の
外部抵抗により消費される。したがって、電池の効率を
高めるためには水素イオンの泳動距離を短かくして抵抗
を小さくする必要があり、このため電解質層1はきわめ
て薄く形成されている。At this time, part of the electrical energy is consumed in the electrolyte layer 1 by the external resistance of the battery. Therefore, in order to increase the efficiency of the battery, it is necessary to shorten the migration distance of hydrogen ions and reduce the resistance, and for this reason, the electrolyte layer 1 is formed extremely thin.
また流入室4.5に流入する燃料ガスFおよび酸化ガス
Aは、濃度を高めて反応速度を高めるために通常、散気
圧に加圧されている。Further, the fuel gas F and the oxidizing gas A flowing into the inlet chamber 4.5 are normally pressurized to a diffused pressure in order to increase their concentration and increase the reaction rate.
ところで、前述のように電解質層1はきわめて薄く形成
されているので、アノード2側の燃料ガスFとカソード
3側の酸化ガスAとの差圧が大きいと燃料ガスFまたは
酸化ガスAが電解質層1に含浸されたりん酸の表面張力
に抗して、泡となって電解質層1をつき恢けてしまい、
局部燃焼を生ずるおそれがある。さらに装置の劣化や性
能低下をきたすおそれもある。そこで上記差圧はきわめ
て小さく、たとえば4001111MH20以内に抑え
る必要がある(一般には酸化ガスAの圧力が燃料ガスF
の圧力よりも高い)。By the way, as mentioned above, the electrolyte layer 1 is formed extremely thin, so if the pressure difference between the fuel gas F on the anode 2 side and the oxidant gas A on the cathode 3 side is large, the fuel gas F or the oxidant gas A will leak into the electrolyte layer. Resisting the surface tension of the phosphoric acid impregnated into the electrolyte layer 1, it becomes bubbles and permeates the electrolyte layer 1.
There is a risk of local combustion. Furthermore, there is a risk that the device may deteriorate or its performance may deteriorate. Therefore, the above pressure difference needs to be kept extremely small, for example, within 4001111MH20 (generally, the pressure of the oxidizing gas A is
pressure).
このため燃料ガスFと酸化ガスAとの差圧を制御するこ
とが行なわれている。すなわち第3図のように、燃料ガ
ス供給管11Fを通して燃料ガス供給部11f1より燃
料電池本体11内の燃料ガス反応部11「へ流入し、こ
の本体11内で反応した燃料ガスFは燃料ガス排出部1
1「2より燃料ガス排出管11F′を通して燃焼器12
へ送られ、残存の燃料成分を燃焼させて混合器13に入
る。一方、酸化ガス供給管11Aを通して酸化ガス供給
部1181より燃料電池本体11内の酸化ガス反応部1
1aへ流入し、この本体11内で反応した酸化ガスAは
酸化ガス排出部11aより酸化ガス排出管11A′を通
して直接混合器13に入る。かくして混合器13内で残
存燃料ガスFの圧力と酸化ガスAの圧力とは一致する。For this reason, the pressure difference between the fuel gas F and the oxidizing gas A is controlled. That is, as shown in FIG. 3, the fuel gas F flows from the fuel gas supply section 11f1 into the fuel gas reaction section 11'' in the fuel cell main body 11 through the fuel gas supply pipe 11F, and the fuel gas F reacted within the main body 11 is discharged as fuel gas. Part 1
1. Pass the fuel gas exhaust pipe 11F' from 2 to the combustor 12.
The remaining fuel components are combusted and enter the mixer 13. On the other hand, the oxidizing gas reaction section 1 in the fuel cell main body 11 is supplied from the oxidizing gas supply section 1181 through the oxidizing gas supply pipe 11A.
The oxidizing gas A that flows into the main body 11 and reacts in the main body 11 directly enters the mixer 13 from the oxidizing gas exhaust section 11a through the oxidizing gas exhaust pipe 11A'. Thus, the pressure of the residual fuel gas F and the pressure of the oxidizing gas A match in the mixer 13.
なお図中14.15は燃料電池本体11内における燃料
ガスFおよび酸化ガスAに対する流路抵抗であり、図中
16は燃焼器12内における燃料ガスFに対する流路
抵抗である。また図中17.18は各排出管11F’、
11A’ にそれぞれ介挿された調節可能な流路抵抗で
、たとえば手動オリフィス等で構成される。Note that 14 and 15 in the figure are the flow path resistances to the fuel gas F and the oxidizing gas A in the fuel cell main body 11, and 16 in the figure is the flow path resistance to the fuel gas F in the combustor 12. In addition, 17.18 in the figure indicates each discharge pipe 11F',
11A' are each inserted with an adjustable flow path resistance, such as a manual orifice or the like.
燃料電池本体11内の流路抵抗14.15は小さいため
差圧制御を行なう際にあまり問題とはならないが、燃焼
器12内の流路抵抗16は大きいため流路抵抗17.1
8の調節によって燃料電池本体11内における燃料ガス
Fと酸化ガスAとの差圧を規定値内に抑えるようにして
いる。The flow path resistance 14.15 inside the fuel cell main body 11 is small, so it does not pose much of a problem when performing differential pressure control, but the flow path resistance 16 inside the combustor 12 is large, so the flow path resistance 17.1
8, the differential pressure between the fuel gas F and the oxidizing gas A within the fuel cell main body 11 is kept within a specified value.
また図中19.20は燃料ガス供給管11Fおよび酸化
ガス供給管11Aにそれぞれ接続された燃料ガス放出弁
、酸化ガス放出弁であって、これらは次のような機能を
有する。すなわち第3図に示す燃料電池装置では燃焼器
12における流路抵抗16が大きく、このため定格流量
での圧損が数千1MH20(たとえば3000am+
H20)にも達する。Reference numerals 19 and 20 in the figure denote a fuel gas release valve and an oxidant gas release valve connected to the fuel gas supply pipe 11F and the oxidant gas supply pipe 11A, respectively, and these have the following functions. That is, in the fuel cell device shown in FIG. 3, the flow path resistance 16 in the combustor 12 is large, and therefore the pressure drop at the rated flow rate is several thousand 1 MH20 (for example, 3000 am+
H20).
したがって、第4図に示すように燃料ガスF側と酸化ガ
スA側とを出力に比例して流量を制御することにより差
圧ΔPを規定値(たとえば400RH20)以内に抑え
るようにしているが、流量の制御を高精度に行なうこと
が困難であり、また流量と圧損との関係も、特に燃料ガ
ス側では燃焼器12を通るため二乗特性近似から外れて
しまう。Therefore, as shown in FIG. 4, by controlling the flow rates of the fuel gas F side and the oxidant gas A side in proportion to the output, the differential pressure ΔP is kept within a specified value (for example, 400RH20). It is difficult to control the flow rate with high precision, and the relationship between the flow rate and the pressure drop also deviates from the square-law characteristic approximation, especially on the fuel gas side because it passes through the combustor 12.
そこで燃料ガスFまたは酸化ガスAの流量制御だけでは
、特に過度特性等に応答できないことになる。よって、
差圧ΔPが急激に上昇したとき燃料ガス放出弁19また
は酸化ガス放出弁2oを操作して燃料ガスFまたは酸化
ガスAを放出することにより差圧ΔPの上昇を抑えるの
である。Therefore, controlling the flow rate of the fuel gas F or the oxidizing gas A alone cannot respond particularly to transient characteristics. Therefore,
When the differential pressure ΔP rises rapidly, the fuel gas release valve 19 or the oxidizing gas releasing valve 2o is operated to release the fuel gas F or the oxidizing gas A, thereby suppressing the rise in the differential pressure ΔP.
[背景技術の問題点]
上述のように従来の燃料電池装置では、燃料電池本体1
1内における燃料ガスFの圧力と酸化ガスAの圧力との
間に生じる差圧が増大したとき、燃料電池本体11のガ
ス供給側またはガス排出側に設けられた酸化ガス放出弁
2oまたは燃料ガス放出弁19を操作して高圧側ガスを
大気中に放出するようにしている。[Problems in the background art] As mentioned above, in the conventional fuel cell device, the fuel cell main body 1
When the differential pressure generated between the pressure of fuel gas F and the pressure of oxidant gas A in fuel cell main body 11 increases, the oxidizing gas release valve 2o provided on the gas supply side or gas discharge side of fuel cell main body 11 or the fuel gas A discharge valve 19 is operated to discharge the high-pressure side gas into the atmosphere.
しかし乍この方法は、微少差圧の例えば200〜500
姻AQ程度ならば十分に有用であるが、それ以上に大き
な差圧が発生した場合には、放出量が限られていること
から対応が難しい。また何らかの理由により、燃料ガス
Fまたは酸化ガスAのいずれかまたは両方共にガスの供
給が停止したときには、過大な差圧の発生を避けること
はできない。そこでこの防止対策として、窒素等の不活
性ガスを差圧制御用ガスとして圧力の砥い方の系に供給
することによって差圧制御する方式が考えられているが
、この場合差圧は微少に制御されたとしても反応ガス堡
が希釈されるため、そのまま負荷を取りつづけるならば
燃料電池の電圧は急激に低下し、更には転極現象(反応
ガスが不足しているにもかかわらず強制的に出力を引き
出されるので、ガス流通の比較的悪い電池はもはや電池
としての機能を保持することが出来ず電解してリン酸が
濃縮される現象)を引き起し、燃料電池本体11は致命
的な損傷を受けてその再使用が不可能となることもある
。However, this method requires a slight pressure difference of, for example, 200 to 500
It is sufficiently useful if the pressure difference is around AQ, but if a larger differential pressure occurs, it is difficult to deal with it because the amount of discharge is limited. Furthermore, if the supply of either or both of the fuel gas F and the oxidizing gas A is stopped for some reason, the generation of an excessive pressure difference cannot be avoided. Therefore, as a preventive measure, a method has been considered in which differential pressure is controlled by supplying an inert gas such as nitrogen as a differential pressure control gas to the pressure grinding system, but in this case, the differential pressure is very small. Even if the control is carried out, the reactant gas chamber will be diluted, so if the load continues, the voltage of the fuel cell will drop rapidly, and polarity reversal phenomenon (forcibly caused even though there is insufficient reactant gas) will occur. Since the output is extracted from the fuel cell body 11, the battery with relatively poor gas flow is no longer able to maintain its function as a battery, causing electrolysis and phosphoric acid concentration (phenomenon), which can be fatal to the fuel cell body 11. In some cases, it may be damaged so much that it cannot be reused.
し発明の目的]
本発明は上記のような問題を解決するために成されたも
ので、その目的は差圧制御機能を向上させると共に、原
料ガスの供給が停止しても燃料電池本体を破壊すること
がなく安全性および信頼性を向上させることが可能な燃
料電池装置を提供することにある。[Object of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to improve the differential pressure control function and to prevent the fuel cell main body from being destroyed even if the supply of raw material gas is stopped. An object of the present invention is to provide a fuel cell device that can improve safety and reliability without causing any damage.
[発明の概要1
上記目的を達成するために本発明では燃料ガス供給部お
よび酸化ガス供給部にそれぞれ接続された不活性ガス供
給部を有し、かつそれぞれの不活性ガス供給部に不活性
ガス供給弁を設けると共に燃料電池本体を密閉容器内に
収容して当該容器内に不活性ガスを充填し、密閉容器内
の不活性ガス圧力を基準圧として燃料ガスおよび酸化ガ
スの各圧力と上記基準圧との差圧を差圧積出器により検
出する。そして、何らかの理由によって燃料ガス側及び
酸化ガス側の差圧が大きく低下した場合または各ガスの
供給が停止した場合に、上記各差圧検出器により検出さ
れた信号に基づき差圧制御器により各ガス系に接続され
た不活性ガス供給弁を開として不活性ガスを燃料電池本
体へ送入することによって、各ガス系の圧力の低下を防
止して危険差圧の解消を行なうと共に、不活性ガスを送
入することで燃料電池本体の出力の低下による転極現象
の防止を行なうために、燃料電池電圧を監視しながら一
定電圧に保持するために燃料電池本体の出力を制御する
出力制御器を備えることによって、燃料電池本体の破損
を防止するような構成としたことを特徴とする。[Summary of the Invention 1 To achieve the above object, the present invention has an inert gas supply section connected to a fuel gas supply section and an oxidizing gas supply section, and an inert gas supply section to each inert gas supply section. In addition to providing a supply valve, the fuel cell main body is housed in a sealed container, and the container is filled with an inert gas, and each pressure of the fuel gas and oxidizing gas and the above-mentioned standards are set using the inert gas pressure in the sealed container as a reference pressure. The differential pressure is detected by a differential pressure transmitter. If the differential pressure between the fuel gas side and the oxidizing gas side drops significantly for some reason, or if the supply of each gas is stopped, the differential pressure controller will control each gas based on the signals detected by the differential pressure detectors. By opening the inert gas supply valve connected to the gas system and supplying inert gas to the fuel cell main body, the pressure in each gas system is prevented from decreasing and dangerous pressure differentials are eliminated, and the inert gas is An output controller that monitors the fuel cell voltage and controls the output of the fuel cell to maintain it at a constant voltage in order to prevent polarity reversal caused by a decrease in the output of the fuel cell by supplying gas. The present invention is characterized in that it has a structure that prevents damage to the fuel cell main body.
[発明の実施例コ
以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明による燃料電池装置の構成例を示すもの
である。なお、第3図と同一部分には同一符号を付して
その説明を省略する。第1図において、燃料電池本体1
1を密閉容器30内に収容し、かつこの密閉容器30内
には窒素等の不活性ガスNを充填して、その圧力は一定
に保持されている。また、上記密閉容器30には不活性
ガス供給管3ONおよび不活性ガス排出管3ON′を接
続し、この不活性ガス排気管3ON’ には手動オリフ
ィス等からなる調整可能な流路抵抗、31を設けると共
に、不活性ガス供給管3ONには不活性ガスNの流入量
を制御する制御弁32を介挿している。[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of the configuration of a fuel cell device according to the present invention. Note that the same parts as in FIG. 3 are designated by the same reference numerals and their explanations will be omitted. In FIG. 1, the fuel cell main body 1
1 is housed in an airtight container 30, and the airtight container 30 is filled with an inert gas N such as nitrogen to maintain a constant pressure. Further, an inert gas supply pipe 3ON and an inert gas discharge pipe 3ON' are connected to the airtight container 30, and an adjustable flow path resistance 31 consisting of a manual orifice etc. is connected to the inert gas exhaust pipe 3ON'. In addition, a control valve 32 for controlling the inflow amount of the inert gas N is inserted into the inert gas supply pipe 3ON.
一方、前記燃料ガス供給管11Fと不活性ガス供給管3
ONとの間には燃料ガス側差圧計26Fを、また酸化ガ
ス供給管11Aと不活性ガス供給管3ONとの間には酸
化ガス側差圧計26Aをそれぞれ介挿している。そして
、前記燃料ガス排出管11F′の燃料ガス排出部11f
2と燃焼器12との間には燃料ガス放出弁28を、また
酸化ガス排出管11Aの、酸化ガス排出部11a2と混
合器13との間には酸化ガス放出弁29をそれ −ぞ
れ接続している。On the other hand, the fuel gas supply pipe 11F and the inert gas supply pipe 3
A fuel gas side differential pressure gauge 26F is inserted between the oxidizing gas supply pipe 11A and the inert gas supply pipe 3ON, and an oxidizing gas side differential pressure gauge 26A is inserted between the oxidizing gas supply pipe 11A and the inert gas supply pipe 3ON. Then, the fuel gas discharge part 11f of the fuel gas discharge pipe 11F'
2 and the combustor 12, and an oxidant gas release valve 29 between the oxidant gas discharge part 11a2 of the oxidant gas discharge pipe 11A and the mixer 13. are doing.
ざらに、前記燃料ガス供給部Fおよび酸化ガス供給部A
には夫々不活性ガス供給部33N1および33N2を接
続し、これら不活性ガス供給部33N1および33N2
にはそれぞれ不活性ガス供給弁33Fおよび33Aを設
けている。また、図中27は差圧制御器であり、上記各
差圧計26F。In general, the fuel gas supply section F and the oxidizing gas supply section A
are connected to inert gas supply parts 33N1 and 33N2, respectively, and these inert gas supply parts 33N1 and 33N2 are connected to
are provided with inert gas supply valves 33F and 33A, respectively. Moreover, 27 in the figure is a differential pressure controller, and each of the above-mentioned differential pressure gauges 26F.
26Aからの検出信号に基いて不活性ガス供給弁33F
、33Aを制御して、燃料ガスFと不活性ガスNとの差
圧ΔP1および酸化ガスAと不活性ガスNとの差圧ΔP
2を所定値以内に監視、制罪するものである。さらに、
図中34は上記燃料電池本体11からの出力を制御する
出力制御器であり、35は負荷を示している。ここで出
力制御器34は例えばインバータ、タイマー等により構
成され、上記差圧制御器27からの不活性ガス供給弁制
御信号によって起動され、かつこの起動から所定時間経
過しても上記差圧ΔPi、ΔP2が所定値以内にならな
いことを条件に動作して、上記燃料電池装置11から負
荷35へ供給する電力を制御するものである。Based on the detection signal from 26A, the inert gas supply valve 33F
, 33A to control the differential pressure ΔP1 between the fuel gas F and the inert gas N and the differential pressure ΔP between the oxidizing gas A and the inert gas N.
2 within a predetermined value and suppress the crime. moreover,
In the figure, 34 is an output controller that controls the output from the fuel cell main body 11, and 35 is a load. Here, the output controller 34 is constituted by, for example, an inverter, a timer, etc., and is activated by the inert gas supply valve control signal from the differential pressure controller 27, and even if a predetermined period of time has elapsed from the activation, the differential pressure ΔPi, It operates on the condition that ΔP2 does not fall within a predetermined value, and controls the power supplied from the fuel cell device 11 to the load 35.
かかる構成の燃料電池装置において、燃料ガス側差圧計
26Fおよび酸化ガス側差圧計26Aにより検出される
差圧信号ΔPi、ΔP2の少なくとも一方が低下して所
定値を越えて危険差圧となった場合、この差圧を監視し
ている差圧制御器27は該当する少なくとも一方の不活
性ガス供給弁33F、33Aに弁開信号を与え、あらか
じめ密閉容器30内の不活性ガスN(基準圧)と同じ圧
力に保持された不活性ガスN′を、燃料ガス側不活性ガ
ス供給部33N!および酸化ガス側不活性ガス供給部3
3N2を通して燃料ガス供給部11Fおよび酸化ガス供
給部11Aへ送入する。In a fuel cell device having such a configuration, when at least one of the differential pressure signals ΔPi and ΔP2 detected by the fuel gas side differential pressure gauge 26F and the oxidizing gas side differential pressure gauge 26A decreases and exceeds a predetermined value to become a dangerous differential pressure. The differential pressure controller 27 that monitors this differential pressure gives a valve opening signal to at least one of the corresponding inert gas supply valves 33F and 33A, and sets the inert gas N (reference pressure) in the closed container 30 in advance. The inert gas N' maintained at the same pressure is supplied to the fuel gas side inert gas supply section 33N! and oxidizing gas side inert gas supply section 3
3N2 to the fuel gas supply section 11F and oxidizing gas supply section 11A.
そして、この状態で燃料ガス側差圧△P1または酸化ガ
ス側差圧ΔP2が所定値以内に入るまで、差圧制御器2
7は不活性ガス供給弁33F、33Aに弁開信号を与え
続ける。その結果、差圧ΔPi。In this state, the differential pressure controller 2
7 continues to give a valve opening signal to the inert gas supply valves 33F and 33A. As a result, the differential pressure ΔPi.
ΔP2が所定値以内に入れば、差圧制御器27は不活性
ガス供給弁33F、33Aに弁開信号を与えて不活性ガ
スN′の供給を停止する。かようにすることにより、燃
料電池本体11が危険差圧にさらされることを防止する
ことができる。If ΔP2 falls within a predetermined value, the differential pressure controller 27 gives a valve opening signal to the inert gas supply valves 33F and 33A to stop the supply of the inert gas N'. By doing so, it is possible to prevent the fuel cell main body 11 from being exposed to a dangerous differential pressure.
さて、このように不活性ガスN′が燃料電池本体11に
供給されて危険差圧が解消されることになるが、例えば
燃料ガスFおよび酸化ガスAの供給の少なくとも一方が
停止した場合、または燃料・ガス流量調整弁24および
酸化ガス流量調整弁25が故障等で、少なくとも一方が
閉またはそれに近い状態となった場合には、上記差圧Δ
Pi。Now, in this way, the inert gas N' is supplied to the fuel cell main body 11 to eliminate the dangerous differential pressure, but for example, if at least one of the supply of the fuel gas F and the oxidizing gas A is stopped, or If at least one of the fuel/gas flow rate adjustment valve 24 and the oxidant gas flow rate adjustment valve 25 becomes closed or close to it due to a failure, etc., the differential pressure Δ
Pi.
ΔP2が長時間に渡って所定値以内に回復しない。ΔP2 does not recover to within a predetermined value for a long time.
そうなると、燃料電池本体11には不活性ガスN′が多
量に送入されることにより、燃料ガスおよび酸化ガスが
希薄になってくる。そうすると、当然のことながら燃料
電池本体11の出力電圧36Vは低下しはじめる。この
出力電圧36Vおよび出力電流361は出力制御器34
で監視されており、この出力制御器34により負荷35
へ供給する出力電圧36Vの害を監視しながら出力電流
361を下げていく。このようにすることにより、燃料
電池本体11における前述した転極現雫を防止すること
ができる。よってその後に、通常の安全な停止手順によ
る運転停止を行なうことが可能となる。In this case, a large amount of inert gas N' is fed into the fuel cell main body 11, and the fuel gas and oxidizing gas become diluted. Then, as a matter of course, the output voltage 36V of the fuel cell main body 11 begins to decrease. This output voltage 36V and output current 361 are controlled by the output controller 34.
The load 35 is monitored by this output controller 34.
The output current 361 is lowered while monitoring the damage caused by the output voltage 36V supplied to the circuit. By doing so, it is possible to prevent the above-mentioned polarity change phenomenon in the fuel cell main body 11. Therefore, after that, it becomes possible to shut down the operation according to a normal safe shutdown procedure.
[発明の効果]
以上説明したように本発明によれば、差圧制御機能を向
上させると共に、原料ガスの供給が停止しても燃料電池
本体を破壊することがなく安全性および信頼性を向上さ
せることが可能な燃料電池装置が提供できる。[Effects of the Invention] As explained above, according to the present invention, the differential pressure control function is improved, and even if the supply of raw material gas is stopped, the fuel cell main body is not destroyed, thereby improving safety and reliability. It is possible to provide a fuel cell device that can
第1図は本発明の一実施例を示す系統図、第2図は燃料
電池装置の原理図、第3図は燃料電池装置の従来例を示
す系統図、第4図は流量と圧損との関係を燃料ガス側と
酸化ガス側について示すグラフ図である。
11・・・燃料電池本体、11f・・・燃料ガス反応部
、11f1・・・燃料ガス供給部、11f2・・・燃料
ガス排出部、11a・・・酸化ガス反応部、11a1・
・・酸化ガス供給部、11a2・・・酸化ガス供給部、
12・・・燃焼器、13・・・混合器、26.26F、
26A・・・差圧計、27・・・差圧制御器、28・・
・燃料ガス放出弁、29・・・酸化ガス放出弁、30・
・・密閉容器、F・・・燃料ガス、A・・・酸化ガス、
N・・・不活性ガス、33N1・・・燃料ガス側不活性
ガス供給部、33N2・・・酸化ガス側不活性ガス供給
部、33F・・・燃料ガス側不活性ガス供給弁、33A
・・・酸化ガス側不活性ガス供給弁、34・・・出力制
御器、36V・・・出力電圧、361・・・出力電流。Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a principle diagram of a fuel cell device, Fig. 3 is a system diagram showing a conventional example of a fuel cell device, and Fig. 4 is a diagram showing the relationship between flow rate and pressure drop. FIG. 3 is a graph diagram showing the relationship between the fuel gas side and the oxidizing gas side. 11... Fuel cell main body, 11f... Fuel gas reaction section, 11f1... Fuel gas supply section, 11f2... Fuel gas discharge section, 11a... Oxidizing gas reaction section, 11a1.
... Oxidizing gas supply section, 11a2... Oxidizing gas supply section,
12... Combustor, 13... Mixer, 26.26F,
26A...Differential pressure gauge, 27...Differential pressure controller, 28...
・Fuel gas release valve, 29... Oxidizing gas release valve, 30・
... airtight container, F... fuel gas, A... oxidizing gas,
N... Inert gas, 33N1... Fuel gas side inert gas supply section, 33N2... Oxidizing gas side inert gas supply section, 33F... Fuel gas side inert gas supply valve, 33A
... Oxidizing gas side inert gas supply valve, 34... Output controller, 36V... Output voltage, 361... Output current.
Claims (1)
ガス反応部並びに酸化ガス供給部および酸化ガス排出部
が接続された酸化ガス反応部を備えた燃料電池本体と、
この燃料電池本体を収容し内部に不活性ガスを充填した
密閉容器と、前記燃料ガス供給部または燃料ガス排出部
と前記密閉容器との間に接続されて燃料ガスと密閉容器
内の不活性ガスとの差圧を検出する燃料ガス側差圧計と
、前記酸化ガス供給部または酸化ガス排出部と前記密閉
容器との間に接続されて酸化ガスと密閉容器内の不活性
ガスとの差圧を検出する酸化ガス側差圧計と、前記燃料
ガス供給部および酸化ガス供給部に接続され不活性ガス
を供給する燃料ガスおよび酸化ガス側の各不活性ガス供
給部と、これら各不活性ガス供給部に設けられた燃料ガ
スおよび酸化ガス側の各不活性ガス供給弁と、前記各差
圧計の検出信号にもとづき前記各不活性ガス供給弁を制
御して前記各差圧を所定値以内に監視制御する差圧制御
器と、前記不活性ガス供給弁の制御から所定時間経過し
ても前記差圧が所定値以内にならないことを条件に動作
して前記燃料電池本体から負荷へ供給する電力を所定値
に制御する出力制御器とを具備して成ることを特徴とす
る燃料電池装置。a fuel cell main body comprising a fuel gas reaction section to which a fuel gas supply section and a fuel gas discharge section are connected; and an oxidation gas reaction section to which an oxidation gas supply section and an oxidation gas discharge section are connected;
An airtight container that houses the fuel cell main body and is filled with an inert gas, and is connected between the fuel gas supply section or the fuel gas discharge section and the airtight container to supply the fuel gas and the inert gas inside the airtight container. and a fuel gas side differential pressure gauge connected between the oxidizing gas supply section or the oxidizing gas discharge section and the sealed container to detect the differential pressure between the oxidizing gas and the inert gas in the sealed container. An oxidizing gas side differential pressure gauge to be detected, each inert gas supplying section on the fuel gas and oxidizing gas side connected to the fuel gas supply section and the oxidizing gas supply section and supplying inert gas, and each of these inert gas supply sections Each inert gas supply valve on the fuel gas and oxidizing gas side provided in and a differential pressure controller that operates on the condition that the differential pressure does not fall within a predetermined value even after a predetermined period of time has elapsed from the control of the inert gas supply valve to supply a predetermined amount of power from the fuel cell main body to the load. 1. A fuel cell device comprising: an output controller for controlling the output value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237984A JPS61116764A (en) | 1984-11-12 | 1984-11-12 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237984A JPS61116764A (en) | 1984-11-12 | 1984-11-12 | Fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61116764A true JPS61116764A (en) | 1986-06-04 |
Family
ID=17023387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59237984A Pending JPS61116764A (en) | 1984-11-12 | 1984-11-12 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116764A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005251483A (en) * | 2004-03-02 | 2005-09-15 | Toyota Motor Corp | Fuel cell system |
JP2006269337A (en) * | 2005-03-25 | 2006-10-05 | Nissan Motor Co Ltd | Fuel cell system |
JP2007502003A (en) * | 2003-08-08 | 2007-02-01 | ゼネラル・モーターズ・コーポレーション | Method and apparatus for exhaust purification of fuel cells |
JP2007218346A (en) * | 2006-02-16 | 2007-08-30 | Aisin Seiki Co Ltd | Torque fluctuation absorber |
EP2487740A1 (en) * | 2009-10-07 | 2012-08-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for stopping fuel cell system |
-
1984
- 1984-11-12 JP JP59237984A patent/JPS61116764A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007502003A (en) * | 2003-08-08 | 2007-02-01 | ゼネラル・モーターズ・コーポレーション | Method and apparatus for exhaust purification of fuel cells |
JP2005251483A (en) * | 2004-03-02 | 2005-09-15 | Toyota Motor Corp | Fuel cell system |
JP2006269337A (en) * | 2005-03-25 | 2006-10-05 | Nissan Motor Co Ltd | Fuel cell system |
JP2007218346A (en) * | 2006-02-16 | 2007-08-30 | Aisin Seiki Co Ltd | Torque fluctuation absorber |
EP2487740A1 (en) * | 2009-10-07 | 2012-08-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for stopping fuel cell system |
EP2487740A4 (en) * | 2009-10-07 | 2013-12-18 | Toyota Motor Co Ltd | FUEL CELL SYSTEM AND METHOD FOR STOPPING THE FUEL CELL SYSTEM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102714325B (en) | Fuel cell and the method making fuel cell shut down | |
US20100035098A1 (en) | Using chemical shorting to control electrode corrosion during the startup or shutdown of a fuel cell | |
CN112414633B (en) | Method and system for detecting membrane electrode string leakage in fuel cell vehicle operation process | |
JPH06223850A (en) | Operation protecting system for solid high polymer electrolyte fuel cell | |
US20110117468A1 (en) | Pressure relief system for a fuel cell system having a pressurized fuel flow | |
JPH0763020B2 (en) | Fuel cell start / stop device | |
JPS61116764A (en) | Fuel cell system | |
JP2752987B2 (en) | Phosphoric acid fuel cell power plant | |
JP2005063724A (en) | Fuel cell system | |
JPH01128362A (en) | How to operate a fuel cell | |
JP4772470B2 (en) | Fuel cell system | |
JPH01200567A (en) | Fuel cell power generation system | |
JP2007109529A (en) | Method of controlling fuel cell power generation system | |
JPS61116765A (en) | Fuel cell system | |
JPS62259356A (en) | Fuel cell device | |
KR20220149084A (en) | Water electrolysis system and control method thereof | |
JPH0837014A (en) | Phosphoric acid type fuel cell power plant and method of maintaining the same | |
JP5513760B2 (en) | Method for stopping operation of fuel cell system | |
JP2007053020A (en) | Method of controlling fuel cell, its control device, and vehicle loaded with its control device | |
JPH07249424A (en) | Phosphoric acid fuel cell power generating plant | |
JPS63202860A (en) | Fuel cell system | |
JPS62216175A (en) | Fuel cell device | |
JPS59123167A (en) | Fuel cell system | |
JPS607065A (en) | Fuel cell system | |
JPH06111840A (en) | Fuel cell |