[go: up one dir, main page]

JPS61115989A - Production of polymer film showing multiple optical response - Google Patents

Production of polymer film showing multiple optical response

Info

Publication number
JPS61115989A
JPS61115989A JP60227974A JP22797485A JPS61115989A JP S61115989 A JPS61115989 A JP S61115989A JP 60227974 A JP60227974 A JP 60227974A JP 22797485 A JP22797485 A JP 22797485A JP S61115989 A JPS61115989 A JP S61115989A
Authority
JP
Japan
Prior art keywords
coating
radiation
selectively
optical response
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60227974A
Other languages
Japanese (ja)
Inventor
リン・メリー・レスレウイツク
ジエイムス・アーサー・チユデイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armstrong World Industries Inc
Original Assignee
Armstrong World Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armstrong World Industries Inc filed Critical Armstrong World Industries Inc
Publication of JPS61115989A publication Critical patent/JPS61115989A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3866Poly(meth)acrylate derivatives containing steroid groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Liquid Crystal Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高分子液晶被膜、特に該被膜の種々の領域に
おりで異なる光学的応答を示す高分子液晶被膜に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to polymeric liquid crystal coatings, and more particularly to polymeric liquid crystal coatings that exhibit different optical responses in different regions of the coating.

従来の技術 液晶材料の研究は、最近文献に著しく多り報告されるよ
うになってきた。これら材料の多くの用途は光学表示装
置として見出されてきた。
BACKGROUND OF THE INVENTION Research on liquid crystal materials has recently become much more prevalent in the literature. Many uses for these materials have been found as optical displays.

最近1重合性部分からなるコレステリック液晶材料に関
する記事が科学文献に見られる。ソ連の文献に多くの記
事が見られ、液晶特性を有する溶液重合したコレステロ
ール誘導体を記載している。
Recently articles on cholesteric liquid crystal materials consisting of a single polymerizable moiety can be found in the scientific literature. Many articles can be found in the Soviet literature describing solution-polymerized cholesterol derivatives with liquid-crystalline properties.

しかしながら、特に興味のあるのは、特定の光学特性を
有するコレステリック液晶材料は光重合過程2介して実
質的に固定される性質を有して。光学的応答が温度に実
質的に依存しない被膜7生じ得るという最近の発見であ
る。
However, of particular interest is the fact that cholesteric liquid crystal materials with specific optical properties have the property of being substantially fixed through a photopolymerization process. It is a recent discovery that coatings 7 can be produced whose optical response is substantially independent of temperature.

1982年12月5日付けの米国特許第’+50.Oi
l!、!!号および関連する出願は53つの位置の側鎖
にアクリル酸塩部分ン有する込〈つかのコレステロール
誘導体Z記載している。これらの物質からなる組成物は
。スペクトルの赤外線から紫外線に渡って変わる光学的
性質?示し、その光学的性質は光重合によって固定され
ることが見出されたつさらに、1つ以上の光学応答から
なる被膜が1984年10月12日付けの米国特許出願
筒660.On号および第660.278号に記載され
ている。一実施態様におけるこれらの出願は、所望の光
学応答が得られるように温度を調節し1次に被膜の種々
の領域が第1の光重合照射光から遮蔽されるように被膜
を選択的にマスクする方法を記載している。
U.S. Patent No. '+50., dated December 5, 1982. Oi
l! ,! ! No. 5, and related applications describe several cholesterol derivatives Z containing an acrylate moiety in the side chain at 53 positions. Compositions consisting of these substances. Optical properties that change across the spectrum from infrared to ultraviolet? It has been found that the optical properties can be fixed by photopolymerization, and that coatings consisting of one or more optically responsive materials are disclosed in U.S. Pat. On and No. 660.278. In one embodiment, these applications first adjust the temperature to obtain the desired optical response and then selectively mask the coating so that different regions of the coating are shielded from the first photopolymerizing radiation. It describes how to do this.

その第1の光重合工程が照射を受ける領域における光学
応答を実質的に固定するが、未硬化のマスクド領域を残
し、それによって温度調節の際に。
The first photopolymerization step substantially fixes the optical response in the irradiated areas, but leaves masked areas uncured, thereby upon temperature adjustment.

その非重合領域が異なる光学応答を示す。そしてその構
造物の再照射時に、多光学応答が被膜の種々の領域にお
いて得られる被膜が提供される。
The non-polymerized regions exhibit different optical responses. A coating is then provided in which upon re-irradiation of the structure, multiple optical responses are obtained in different regions of the coating.

発明が解決しようとする問題点 前述の被膜は独特の性質を示すけれども、温度調節によ
って多光学応答を得ることは必ずしも望ましくない。
Problems to be Solved by the Invention Although the aforementioned coatings exhibit unique properties, it is not necessarily desirable to obtain multiple optical responses through temperature regulation.

問題点を解決するための手段 本発明は、上記に鑑みてなされたものであり。Means to solve problems The present invention has been made in view of the above.

温度調節をすることなく多光学応答が得られることを特
徴とする光重合液晶被膜を提供することを目的とする。
The object of the present invention is to provide a photopolymerizable liquid crystal film that is characterized by being able to obtain multiple optical responses without temperature control.

本発明のもう1つの目的は、多光学応答を提供し、かつ
5次元の光学応答を示す被膜を提供することである。
Another object of the present invention is to provide a coating that provides multi-optical response and exhibits a five-dimensional optical response.

本発明は1元重合過程において温度ビ変化させることな
く得られ、多光学応答を示す高分子コレステリンク液晶
被膜に関する。その被膜のいくつかの領域7他の領域と
異なる速度で選択的に光重合させることによって、示差
、固定光学応答2示す被膜が得られる。
The present invention relates to a polymeric cholesterin liquid crystal coating that is obtained without changing temperature during a one-component polymerization process and exhibits multiple optical responses. By selectively photopolymerizing some regions 7 of the coating at different rates than other regions, a coating exhibiting a differential, fixed optical response 2 is obtained.

一笑施態様における本発明は、光重合性のコレステリッ
ク液晶単量体物質からなる被膜乞提供し;該被膜の少な
くとも一部分が光学応答?示すように該一部分を選択的
に整列させ;前記被膜の所定の領域が他の領域とは異な
る速度で重合する条件下で該被膜に順次光重合用照射ビ
させて、硬化した被膜に示差(微分)固定光学応答?さ
せる工程からなる固定光学応答2有する高分子波膜の辺
造法に関する。
In one aspect, the present invention provides a coating comprising a photopolymerizable cholesteric liquid crystal monomer material; at least a portion of the coating is optically responsive. selectively aligning the portions as shown; and subjecting the coating to sequential photopolymerizing irradiation under conditions such that predetermined regions of the coating polymerize at a different rate than other regions, the cured coating exhibits differential ( Differential) Fixed optical response? The present invention relates to a method for forming a polymer wave film having a fixed optical response, which comprises a step of forming a polymer wave film having a fixed optical response.

第2の実施態様における本発明は示差、固定光学応答を
有する光重合コレステリック液晶被膜に関するものであ
って、該被膜は被膜の所定領域が他の領域とは異なる速
度で重合するような条件下で該被膜に順次光重合用照射
をさせることに得られる。
In a second embodiment, the invention relates to a photopolymerized cholesteric liquid crystal coating having a differential, fixed optical response, the coating being polymerized under conditions such that certain areas of the coating polymerize at a different rate than other areas. It is obtained by sequentially irradiating the coating for photopolymerization.

作用 本発明の実施に使用される単量体は、光重合性の側mi
x有し、可視スペクトル内で所望の光学応答を示すコレ
ステリック液晶物質である。望ましい単量体は前記の米
国特許出願第1150. Og l!号に開示されてい
るものであるが、これらの物質は単一の単量体、混合単
量体、単量体と他の重合性または非重合性、非中間物か
らなる混合体として使用できるものである。
Function The monomers used in the practice of this invention have photopolymerizable side mi
x and is a cholesteric liquid crystal material that exhibits a desired optical response within the visible spectrum. Preferred monomers are described in U.S. Patent Application No. 1150. Ogl! However, these substances can be used as single monomers, mixed monomers, or mixtures of monomers and other polymerizable or non-polymerizable, non-intermediate substances. It is something.

本発明?実施するために、光重合性コレステリック液晶
単量体と、光開始剤と、任意であるが他の単量体、中間
または非中間物質および/または非中間、非重合性希釈
剤からなる組成物が調装される。その組成物は次に被膜
として調製されて。
Invention? To carry out, a composition consisting of a photopolymerizable cholesteric liquid crystal monomer, a photoinitiator and optionally other monomers, intermediate or non-intermediate substances and/or a non-intermediate, non-polymerizable diluent. is prepared. The composition is then prepared as a coating.

該被膜が所望の光学応答を示すような温度にされる。次
にその被膜は、所定の領域が他の領域と異なる速度で硬
化するように光重合される。これは種々の方法で達成さ
れる。
The temperature is brought to such a level that the coating exhibits the desired optical response. The coating is then photopolymerized such that certain areas cure at a different rate than other areas. This can be accomplished in a variety of ways.

一例として、その表面の重合は1周知のように光重合反
応7示す傾向にある酸素の存在下で行われる。被膜を重
合用照射から選択的に遮蔽するネガ暑被膜の上に置くと
、遮蔽された領域では硬化は生じないが、マスクが被膜
ン照射から遮蔽しない領域で硬化が生じる。それにもか
かわらず。露出領域の表面は酸素抑制のために不完全に
硬化し。
As an example, polymerization of the surface is carried out in the presence of oxygen, which tends to exhibit photopolymerization reactions as is well known. When the coating is placed over a negative thermal coating that selectively shields the polymerizing radiation, no curing occurs in the shielded areas, but curing occurs in the areas that the mask does not shield from the coating radiation. Nevertheless. The surface in exposed areas will be incompletely cured due to oxygen suppression.

露出領域の内部は完全に硬化する。次に、マスクを除去
して窒素や他の不活性ガスで表向暑完全にフラッシング
すると、被膜の表面上に光学応答の差が見られる。予め
遮蔽した領域は1つの光学応答7示し、一方遮蔽しない
で酸素を抑制した領域は別の色を示す傾向にある。
The interior of the exposed area is completely cured. Next, when the mask is removed and the surface thoroughly flushed with nitrogen or other inert gas, a difference in optical response is seen on the surface of the coating. Pre-shielded regions tend to exhibit one optical response 7, while unshielded oxygen-suppressed regions exhibit a different color.

別の例として6表面を部分的遮蔽して不活性雰囲気下で
光重合用照射?すると、非遮蔽細切は完全に硬化する。
Another example is irradiation for photopolymerization under an inert atmosphere with 6 surfaces partially shielded? The unshielded morsels are then fully cured.

次に、マスクが除去されて、窒素と酸素の混合体が未硬
化のままの表面近傍に供給されると、この表面に光重合
用照射乞することによって異なる硬化速度がもたらされ
る。不活性雰囲気における最終硬化後に、最初の硬化領
域と後続の硬化領域との間にかなりの色の差が観察され
る。
The mask is then removed and a mixture of nitrogen and oxygen is applied near the uncured surface, which is subjected to photopolymerizing irradiation to produce different cure rates. After final curing in an inert atmosphere, a significant color difference is observed between the first and subsequent cured areas.

前記の方法を組み合わせて、2つの異なるマスクを使用
することによってろ次元的効果も生じうる。例えば、第
1のマスクを被膜(又はフィルム)の上において0次に
それを空気中で照射する。次にマスク乞除去して膜表面
全体ン空気中で照射する。第2のマスクをその被膜の上
に置いて、不活性雰囲気下で照射する。そして次に、こ
のマスク!除去して、その被膜全体ン不活性雰囲気下で
照射する。その結果、う次元的画像!示す膜が得られる
Combining the above methods, dimensional effects can also be produced by using two different masks. For example, a first mask is placed over the coating (or film) and irradiated in air to the zeroth order. Next, the mask is removed and the entire membrane surface is irradiated in air. A second mask is placed over the coating and irradiated under an inert atmosphere. And then this mask! The entire coating is removed and irradiated under an inert atmosphere. The result is a dimensional image! The membrane shown is obtained.

また、全体的に不活性雰囲気であるが1表面の−S分に
高強度の放射エネルギーを当て1表面の他の部分に低強
度の放射エネルギー2当てることによって、異なる硬化
速度が得られる。これらの異なる領域において異なる光
重合速度が達成されるから、得られる製品には異なる光
学応答が示される。
Different curing rates can also be obtained by applying high intensity radiant energy to the -S portion of one surface and applying 2 low intensity radiant energy to other parts of one surface, although in an overall inert atmosphere. Since different photopolymerization rates are achieved in these different regions, the resulting products exhibit different optical responses.

本発明は、説明のために(限定を意図しない)提供する
次の実施例を参照することによって、さらに明確に理解
できるであろう。
The invention may be more clearly understood by reference to the following examples, which are provided by way of illustration (and not limitation).

実施例 次の実施例において、米国特許出願第1+50.OH号
に記載されているアクリル酸塩誘導体VaおよびVeに
対応する化合物乞使用してJI+、 :f+i:体の膜
乞調製した。これらの化合物は次の構造?有する上式で
A=R1=(CH2)nである。化合物Vfiに対して
はn=10.そして化合物v e、に対してはn=5.
そして両方の化合物に対してy==Qである。
EXAMPLES In the following examples, U.S. Patent Application No. 1+50. Compounds corresponding to the acrylate derivatives Va and Ve described in the OH issue were used to prepare JI+:f+i:body membranes. Do these compounds have the following structures? In the above formula, A=R1=(CH2)n. For compound Vfi, n=10. and for compound ve, n=5.
and y==Q for both compounds.

例1 化合* V aおよびveの各kが47重量%と。Example 1 Compound *V Each k of a and ve is 47% by weight.

トリアクリル酸ペンタエリトリトール橋かけ希釈剤5重
量%と、ベンゾフェノン光開始剤2重量%と、商品名I
rgacure 651なる光開始剤1重量%からなる
組成物を調製した。Irgacure G 51ハ2 
、2−ジメトキシ−2−フェニル−アセトフェノ/であ
る。
5% by weight of pentaerythritol triacrylate crosslinking diluent, 2% by weight of benzophenone photoinitiator, and trade name I
A composition consisting of 1% by weight of rgacure 651 photoinitiator was prepared. Irgacure G 51ha2
, 2-dimethoxy-2-phenyl-acetopheno/.

その組成物y953℃(2007)で完全に溶融させ、
呈濡に放冷させた。そして室温でマイラー・フィルム上
にα0051cr!I(0,002in  )厚さに引
き伸した。非重合材料は90度(スペキュラ)の観察角
度で青緑色に見えた。
Its composition is completely melted at 953°C (2007),
It was left to cool until wet. And α0051cr on Mylar film at room temperature! Stretched to a thickness of I (0,002 in). The non-polymerized material appeared blue-green at a 90 degree (specular) viewing angle.

その引き伸した被膜は室内に入れ1表面の部分を選択的
に遮蔽するネガでカバーし、その室を窒素で部分的に7
ラツシングして、若干の残留酸素を残した。マスクした
被膜は次に150ジュールの紫外線エネルギー(すなわ
ち5ワット/m、  50秒間)乞かけて画像ン生じさ
せた。その画像は露出部分において、スペキュラ観察声
度で黄緑色であった。次に室をあけ、マスク乞除去し、
室乞再び閉鎖し、窒素で完全にフラッシングして全ての
酸素Z除去した。次に、その被膜全体に500ジユール
のエネルギー(すなわち、5ワツト/cd。
The stretched coating is placed in a chamber, where portions of the surface are covered with a selectively shielding negative, and the chamber is partially flushed with nitrogen.
Lashing left some residual oxygen. The masked coating was then imaged by applying 150 joules of ultraviolet energy (ie, 5 watts/m for 50 seconds). The image had a yellow-green color in the exposed area at specular observation intensity. Next, I opened the room, removed the mask,
The chamber was closed again and thoroughly flushed with nitrogen to remove all oxygen. Next, 500 Joules of energy (i.e., 5 Watts/cd) was applied to the entire coating.

60秒間)を与えて被膜を完全に重合させた。重合され
た被膜は、スペキュラ角度で見たとき黄緑色の画像?含
み、青緑色のバックグラウンドであった。
60 seconds) to allow complete polymerization of the coating. Is the polymerized film a yellow-green image when viewed at a specular angle? Contains a blue-green background.

例2 化合物VaおよびVe’a’それぞれ111125重量
%と、トリアクリル酸ペンタエリトリトール橋かけ希釈
剤5重量%と、  Irgacure 651 0.5
重量%からなる組成物を調製して0例1のように膜を調
製(青緑色の外観7有した)した。その膜はいくつかの
領域ン選択的に保護するネガでカバーし1次にマスクし
た膜に150ジニールの放射エネルギー(すなわち、5
ワツト/dで30秒間)を与えて1部分硬化膜を得た。
Example 2 Compounds Va and Ve'a' 111125% by weight each, 5% by weight pentaerythritol triacrylate crosslinking diluent, Irgacure 651 0.5
% by weight and a membrane was prepared as in Example 1 (with a blue-green appearance). The membrane was covered with a selectively protective negative in some areas and the first masked membrane was exposed to 150 dinyers of radiant energy (i.e., 5
Watt/d for 30 seconds) to obtain a partially cured film.

その膜は露出領域で黄緑色7有した。The membrane had a yellow-green color7 in the exposed areas.

次に、膜からネガを除去して、膜全体に空り中で50ジ
ユールの放射エネルギー(57ツ)/dで10秒間)を
与えた。第2の露光に続いて、その膜に第2のネガで膜
の異なる領域馨選択的に遮蔽し、その膜を窒素室に入れ
て、窒素で完全にフラッシングした。その膜に150ジ
ユールの放射エネルギー(5ワツ)/dで50秒間)ビ
与えて画像?得た。その画像は最終露光部分においてス
ペキュラ観察角度で青緑色であった。
The negative was then removed from the film and the entire film was exposed to 50 Joules of radiant energy (57 joules/d for 10 seconds) in air. Following the second exposure, the film was selectively masked in different areas of the film with a second negative, and the film was placed in a nitrogen chamber and thoroughly flushed with nitrogen. Apply 150 joules of radiant energy (5 W/d for 50 seconds) to the film and take an image? Obtained. The image was blue-green in the final exposure at specular viewing angles.

第2のネガを除去し、完全にフラッシングした窒素室内
で膜全体に300ジユールの放射エネルギー(5ワット
/aI−で60秒間)を与えて膜を完全に重合させた。
The second negative was removed and the entire film was subjected to 300 Joules of radiant energy (60 seconds at 5 Watts/al) in a fully flushed nitrogen chamber to fully polymerize the film.

90の観察角度で、第1の画像が第2の画像の上に現わ
れた。すなわちそれは5次元の効果ン有した。lj5の
観察角度では、第2の画像が第1の画像の上に現われた
。いずれの場合においても、第1の画像は淡黄緑色とし
て現われ、第2の画像は青緑色として覗われ、バックグ
ラウンドは暗黄緑色となった。
At a viewing angle of 90 degrees, the first image appeared on top of the second image. That is, it had a 5-dimensional effect. At a viewing angle of lj5, the second image appeared on top of the first image. In both cases, the first image appeared as a light yellow-green color, the second image appeared as a blue-green color, and the background became a dark yellow-green color.

本発明は1以上の記載および説明のみに限定されること
なく、特許請求の範囲のもくろむ全ての変化、改良全包
含する。
The present invention is not limited to one or more of the descriptions and illustrations, but includes all changes and modifications contemplated by the claims.

Claims (1)

【特許請求の範囲】 1、光重合性のコレステリツク液晶単量体材料からなる
被膜を提供する工程、 被整列部分が光学応答を示すように、前記被膜の少なく
とも一部分を選択的に整列させる工程、および 前記被膜の所定の領域が他の領域とは異なる速度で重合
され、それによつて硬化被膜が示差、固定光学応答を示
すような条件下で、前記被膜を順次光重合用照射にさら
す工程からなることを特徴とする固定光学応答を有する
高分子被膜の製造法。 2、前記の方法が、前記被膜の部分を前記の照射から選
択的に遮蔽しながら、前記被膜を光重合用照射に順次さ
らす工程からなり、かつ該光重合用照射にさらす工程が
被膜の表面に隣接する雰囲気の酸素含量を選択的に変え
ながら、実質的に一定の温度で実施することを特徴とす
る特許請求の範囲第1項に記載の発明。 3、前記の順序が、 (a)前記被膜に第1のマスクを提供して、該マスクド
被膜を酸素からなる雰囲気下で照射する。 (b)前記第1のマスクを除去して、前記被膜を酸素か
らなる雰囲気下で照射する、 (c)前記被膜に第2のマスクを提供して、該マスクド
被膜を不活性雰囲気下で照射する、そして (d)前記第2のマスクを除去して、前記被膜を不活性
雰囲気下で照射する工程からなることを特徴とする特許
請求の範囲第2項に記載の発明。 4、前記被膜が種々の強度の光重合用照射に選択的にさ
らされることを特徴とする特許請求の範囲第1項に記載
の発明。 5、コレステリツク液晶被膜の所定領域が他の領域と異
なる速度で重合されるような条件下で、該被膜を光重合
用照射に順次さらすことによつて得られた示差、固定光
学応答を有する光重合コレステリツク液晶被膜。 6、前記被膜が、該被膜の部分を前記照射から選択的に
遮蔽されながら光重合用照射に順次さらされ、該照射が
被膜の表面に隣接する雰囲気の酸素含量を選択的に変え
ながら実質的に一定の温度で行われたことを特徴とする
特許請求の範囲第5項に記載の発明。 7、前記被膜が3次元の画像からなることを特徴とする
特許請求の範囲第6項に記載の発明。 8、前記被膜が、被膜を種々の強度の光重合用照射に選
択的にさらすことによつて得られたことを特徴とする特
許請求の範囲第5項に記載の発明。
[Claims] 1. Providing a coating made of a photopolymerizable cholesteric liquid crystal monomer material; selectively aligning at least a portion of the coating such that the aligned portion exhibits an optical response; and exposing said coating to sequential photopolymerizing radiation under conditions such that predetermined areas of said coating are polymerized at a different rate than other areas such that the cured coating exhibits a differential, fixed optical response. A method for producing a polymer film having a fixed optical response, characterized in that: 2. The method comprises the steps of sequentially exposing the coating to photopolymerizing radiation while selectively shielding portions of the coating from the radiation, and the exposing to the photopolymerizing radiation covers a surface of the coating. 2. The invention as claimed in claim 1, wherein the method is carried out at a substantially constant temperature while selectively varying the oxygen content of the atmosphere adjacent to the atmosphere. 3. The above sequence comprises: (a) providing the coating with a first mask and irradiating the masked coating under an atmosphere comprising oxygen; (b) removing said first mask and irradiating said coating under an atmosphere comprising oxygen; (c) providing said coating with a second mask and irradiating said masked coating under an inert atmosphere. and (d) removing the second mask and irradiating the coating under an inert atmosphere. 4. The invention according to claim 1, wherein the coating is selectively exposed to photopolymerizing radiation of various intensities. 5. Light having a differential, fixed optical response obtained by sequentially exposing a cholesteric liquid crystal coating to photopolymerizing radiation under conditions such that certain areas of the coating are polymerized at a different rate than other areas. Polymerized cholesteric liquid crystal coating. 6. The coating is sequentially exposed to photopolymerizing radiation with portions of the coating selectively shielded from the radiation, the radiation selectively altering the oxygen content of the atmosphere adjacent the surface of the coating while substantially The invention according to claim 5, characterized in that the process is carried out at a constant temperature. 7. The invention as set forth in claim 6, wherein the film is composed of a three-dimensional image. 8. The invention according to claim 5, wherein the coating is obtained by selectively exposing the coating to photopolymerizing radiation of various intensities.
JP60227974A 1984-11-07 1985-10-15 Production of polymer film showing multiple optical response Pending JPS61115989A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66898284A 1984-11-07 1984-11-07
US668982 1984-11-07

Publications (1)

Publication Number Publication Date
JPS61115989A true JPS61115989A (en) 1986-06-03

Family

ID=24684544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227974A Pending JPS61115989A (en) 1984-11-07 1985-10-15 Production of polymer film showing multiple optical response

Country Status (7)

Country Link
JP (1) JPS61115989A (en)
BE (1) BE903585A (en)
DE (1) DE3535547A1 (en)
FR (1) FR2572813A1 (en)
GB (1) GB2166755A (en)
LU (1) LU86151A1 (en)
NL (1) NL8502932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474543A (en) * 1987-09-16 1989-03-20 Toshiba Corp Resist pattern forming method
JPH0362337A (en) * 1989-07-29 1991-03-18 Canon Inc Information storage medium and its production
WO2003042731A1 (en) * 2001-11-12 2003-05-22 Dai Nippon Printing Co., Ltd. Method for making circularly-polarized light control optical device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8802832A (en) * 1988-02-29 1989-09-18 Philips Nv METHOD OF MANUFACTURING A LAYERED ELEMENT AND THE ELEMENT OBTAINED THEREFORE.
US5629055A (en) * 1994-02-14 1997-05-13 Pulp And Paper Research Institute Of Canada Solidified liquid crystals of cellulose with optically variable properties
DE4408171A1 (en) * 1994-03-11 1995-09-14 Basf Ag New polymerizable liquid crystalline compounds
DE4441651A1 (en) * 1994-11-23 1996-04-25 Basf Ag Polymerisable material for coating and printing substrates
DE4442614A1 (en) * 1994-11-30 1996-06-05 Basf Ag Chiral connections
DE19504913A1 (en) * 1995-02-15 1996-08-22 Basf Ag New chiral neumatic polyesters
US5658270A (en) * 1995-04-24 1997-08-19 Mcneil-Ppc, Inc. Body adhering sanitary protection products
DE19640619A1 (en) 1996-10-01 1998-04-02 Basf Ag Flat structures with cholesteric, liquid crystalline structure
DE19649056A1 (en) 1996-11-27 1998-05-28 Basf Ag Polymerizable oligomesogens
GB2321717A (en) 1997-01-31 1998-08-05 Sharp Kk Cholesteric optical filters
DE19704506A1 (en) 1997-02-06 1998-08-13 Basf Ag Chiral nematic polyester
DE19745647A1 (en) 1997-10-15 1999-04-22 Basf Ag Heat insulation covering for e.g. insulation and in automobile sector
JP3513494B2 (en) * 2001-03-28 2004-03-31 大日本印刷株式会社 Manufacturing method of circular polarization controlling optical element
NZ583960A (en) 2007-10-09 2012-09-28 Sicpa Holding Sa Security marking authentication device with a light source and a circular polarising filter
FR2928265B1 (en) * 2008-03-04 2011-01-21 Oreal PROCESSES FOR TREATING KERATINIC MATERIAL USING LIQUID CRYSTALS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131961A (en) * 1976-04-28 1977-11-05 Hitachi Ltd Method of fabricating curved surface bending molds
JPS58152088A (en) * 1982-02-18 1983-09-09 バイエル・アクチエンゲゼルシヤフト Method of controlling temperature responsibility of cholesteric liquid crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1255653A (en) * 1982-12-15 1989-06-13 Paul J. Shannon Liquid crystalline materials useful to prepare polymeric films
CA1214592A (en) * 1982-12-15 1986-11-25 Paul J. Shannon Polymeric liquid crystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131961A (en) * 1976-04-28 1977-11-05 Hitachi Ltd Method of fabricating curved surface bending molds
JPS58152088A (en) * 1982-02-18 1983-09-09 バイエル・アクチエンゲゼルシヤフト Method of controlling temperature responsibility of cholesteric liquid crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474543A (en) * 1987-09-16 1989-03-20 Toshiba Corp Resist pattern forming method
JPH0362337A (en) * 1989-07-29 1991-03-18 Canon Inc Information storage medium and its production
WO2003042731A1 (en) * 2001-11-12 2003-05-22 Dai Nippon Printing Co., Ltd. Method for making circularly-polarized light control optical device
US7011914B2 (en) 2001-11-12 2006-03-14 Dai Nippon Printing Co., Ltd. Method of producing circular polarization controlling optical element

Also Published As

Publication number Publication date
GB8527316D0 (en) 1985-12-11
NL8502932A (en) 1986-06-02
FR2572813A1 (en) 1986-05-09
BE903585A (en) 1986-05-05
GB2166755A (en) 1986-05-14
DE3535547A1 (en) 1986-05-07
LU86151A1 (en) 1986-03-24

Similar Documents

Publication Publication Date Title
JPS61115989A (en) Production of polymer film showing multiple optical response
EP0525477B1 (en) Oriented photopolymers and process of preparing same
JP3099126B2 (en) Method for producing photopolymerizable composition
KR100203791B1 (en) Photopolymerizable composition for color filter and color filter prepared therefrom
EP0188232B1 (en) Radiation curable liquid resin composition
KR890014180A (en) Photocuring coating manufacturing process
DE2902412A1 (en) PHOTOPOLYMERIZABLE ELASTOMER MIXTURE
DE19726051A1 (en) Process and broadening of cholesteric reflection bands of photopolymerizable cholesteric liquid crystals and optical elements produced by this process
EP3677408B1 (en) Three-dimensional structure manufacturing method and three-dimensional structure
US4201441A (en) Hologram and method of production thereof
DE69019889T2 (en) Optical component.
EP0258719A2 (en) Two-layer system
DE69501986T2 (en) Flexographic printing plates made of photo-curable elastomer compositions
US3827957A (en) Photopolymerizable pigmented vehicles containing chlorosulfonated or alpha-haloalkylated polynuclear ketone initiators
ES8800449A1 (en) Image-forming process.
JPS606941A (en) Manufacture of printing plate
JPH04345608A (en) Material for color filter and its cured product
JP4132709B2 (en) Polymerizable composition
DE4002682A1 (en) METHOD FOR COATING SUBSTRATES WITH UV-RADIATING COATING AGENTS
CN107608179B (en) Color resistance material for color film substrate and preparation method of color resistance pattern of color film substrate
CN113388357A (en) Deep-curable UV (ultraviolet) blackening adhesive
DE68926358T2 (en) Photosensitive material and phase hologram
JPH09178932A (en) Colored photosensitive resin composition and color filter
US5153260A (en) Resin compositions for light control sheets, and light control sheets prepared from said compositions
JPH01198615A (en) Photosensitive resin composition