JPS61114312A - Curved surface processing device - Google Patents
Curved surface processing deviceInfo
- Publication number
- JPS61114312A JPS61114312A JP23493484A JP23493484A JPS61114312A JP S61114312 A JPS61114312 A JP S61114312A JP 23493484 A JP23493484 A JP 23493484A JP 23493484 A JP23493484 A JP 23493484A JP S61114312 A JPS61114312 A JP S61114312A
- Authority
- JP
- Japan
- Prior art keywords
- curved surface
- memory
- cutter
- curve
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 claims description 2
- 230000002452 interceptive effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 12
- 238000013500 data storage Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002940 Newton-Raphson method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/41—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は三次元曲面の数値制御加工装置に係シ、特に他
の曲面とのカッター干渉を避けるための曲面部分領域加
工に好適な曲面加工装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a numerically controlled processing device for three-dimensional curved surfaces, and in particular to a curved surface processing device suitable for processing partial regions of curved surfaces to avoid cutter interference with other curved surfaces. Regarding.
曲面の部分領域を切削する方法としては、XY画面上閉
曲線を作り、この内部又は外部を切削するという方法が
知られている。しかしカッター干渉を正確に回避するた
めには、カッターオフセット面どうしの交線を切削範囲
とする必要があるため、前述の方法では正確な加工は期
待できなかった。A known method for cutting a partial region of a curved surface is to create a closed curve on the XY screen and cut the inside or outside of the closed curve. However, in order to accurately avoid cutter interference, it is necessary to set the intersection line of the cutter offset surfaces as the cutting range, so accurate machining could not be expected with the above-mentioned method.
本発明は、カッター干渉を回避したり、その他の加工上
の理由から曲面の部分領域を加工する必要があるとき、
カッターオフセット処理tSした曲面上に閉曲4Iヲ作
成し、その一方の側を指示するのみで簡単かつ精密に曲
面の部分領域を加工することのできる手段を提供するこ
とにある。When it is necessary to process a partial area of a curved surface to avoid cutter interference or for other processing reasons, the present invention can
To provide a means for creating a closed curve 4I on a curved surface subjected to cutter offset processing and easily and precisely processing a partial region of the curved surface by simply specifying one side thereof.
曲面を数値制御加工する場合、カッター干渉が重大な障
害になる。カッター干渉とはある曲面を切削する際に、
カッターが他の曲面と干渉を起す、言いかえれば他の曲
面に削シ込む現象を言う。これを回避するためKは、カ
ッターが切削面以外の曲面に接触したとき、カッターの
動きを停止しなければならない。Cutter interference is a serious problem when numerically controlling curved surfaces. What is cutter interference?When cutting a certain curved surface,
This refers to the phenomenon in which the cutter interferes with other curved surfaces, or in other words cuts into other curved surfaces. To avoid this, K must stop the movement of the cutter when it comes into contact with a curved surface other than the cutting surface.
カッターの位置を規定する点をカッターの駆動点と呼ぶ
。曳く使われるカッターについて駆動点Pを第1図に示
す。数値制御テープには、この駆動点の座標を出力する
。駆動点をカッターの先端P′にとる場合も多いが p
/はPよ#)Z値がRzだけ低い位置にあるだけなので
本質的な差異はない。カッターが曲面に接して動くとき
、カッターの駆動点の作る曲面がカッターオフセット面
である。曲面の式をS (u、 v ) = (5x
(u、 v)。The point that defines the position of the cutter is called the cutter drive point. The driving point P of a cutter commonly used for towing is shown in FIG. The coordinates of this driving point are output to the numerical control tape. In many cases, the driving point is set at the tip P' of the cutter, but p
/ is P (#) There is no essential difference because the Z value is only at a lower position by Rz. When the cutter moves in contact with a curved surface, the curved surface created by the drive point of the cutter is the cutter offset surface. The equation of the surface is S (u, v) = (5x
(u, v).
Sy (u、 v)、 St (u、 v) ) と
するとき、カッターオフセット面の式Sm (n、 v
)は、次式で与えられる。Sy (u, v), St (u, v)), the formula of cutter offset surface Sm (n, v
) is given by the following equation.
5t(u、v)=S(u、v)+&N(u、V)++
(R+−& )Nxy (u、 y)N(u、v)
:曲面の単位法線ベクトルNxy (u、 v) :
N(u、 v)をXY平面に射影し、これを単位化し
たベクトル
R1:カッター半径
R3:カツタースミR部半径(第1図参照)切削面を8
+1% これを切削する際にカッター干渉を起す曲面(
以後、干渉面と呼ぶ)をSlとする。第2図に示すよう
に、sow8tのカッターオフセット面5eat Sk
mの交線上にカッターの駆動点があるときは、カッター
は両面面に接する。5t(u,v)=S(u,v)+&N(u,V)++
(R+-&)Nxy (u, y)N(u,v)
: Unit normal vector of the curved surface Nxy (u, v) :
Project N (u, v) onto the XY plane and unitize it into a vector R1: Cutter radius R3: Cutter radius R (see Fig. 1) The cutting surface is 8
+1% Curved surface that causes cutter interference when cutting this (
(hereinafter referred to as an interference surface) is designated as Sl. As shown in Figure 2, the cutter offset surface 5eat Sk of sow8t
When the drive point of the cutter is on the intersection line of m, the cutter touches both surfaces.
したがってこの交線上においてカッターを停止させれば
、カッター干渉を避けることができる。一般に干渉面が
複数個存在する場合には、第3図(A)に示すように全
ての干渉面について交線を求める。そして対話的に交線
の切断、曲面上での延長を行い、第3図(B)に示すよ
うに干渉の起きない領域を囲む閉曲線を作る。もし閉曲
線にならないとき(部分人)は、曲面境界線の一部を加
えて閉曲線C(t)(部分B)を作る(第3図(人)。Therefore, by stopping the cutter on this intersection line, cutter interference can be avoided. Generally, when a plurality of interference surfaces exist, intersection lines are determined for all the interference surfaces as shown in FIG. 3(A). Then, by interactively cutting the intersection line and extending it on the curved surface, a closed curve surrounding the area where no interference occurs is created as shown in FIG. 3(B). If it does not become a closed curve (partial figure), add a part of the curved surface boundary line to create a closed curve C(t) (part B) (Figure 3 (person).
(B)参照)。以上がカッター干渉を回避する場合の閉
曲線C(t)の作成方法である。この他にも加工上の理
由から部分領域切削を必要とする場合があるが、閉曲線
を作る゛手順は上記の方法と同様である。つぎに閉曲線
が作成された後の処理について説明する。まず上記閉曲
線C(りを曲面のu、vパラメータ空間に値をとる二次
元曲線に変換する。(See (B)). The above is the method for creating the closed curve C(t) when cutter interference is avoided. There are other cases where partial area cutting is required for processing reasons, but the procedure for creating a closed curve is the same as the above method. Next, processing after the closed curve is created will be explained. First, the closed curve C(ri) is converted into a two-dimensional curve that takes values in the u, v parameter space of the curved surface.
すなわち曲線パラメータtを与えたときu、vが定まる
ような函数C,(t)、 C,(t)で曲線を表わす。That is, a curve is expressed by functions C,(t) and C,(t) such that u and v are determined when a curve parameter t is given.
このためKは三次元閉曲線から点P+を細かくサンプリ
ングし、
f(u= v)= l P + Son (u、 v
) p(11はベクトル長、S・01は切削面のカッタ
ーオフセット面を表わす)
を最小化するu、vをNewton −Ropliso
n法で求める。このu、vをvF+vlと記す。(u+
+Vj )を通る二次元のスプライン閉曲線、C’(t
) t−作れば、これが求めるものである。つぎに切削
域を指示する方法について説明する。スタイラスペ/、
タブレットなどの座標入力装置で指示する点は、グラフ
ィック画面上の点と対応している。グラフィック画面は
二次元であるから、この上の点は三次元世界座標系でみ
れば無限直線に対応する。For this reason, K finely samples the point P+ from the three-dimensional closed curve, f(u= v)= l P + Son (u, v
) p (11 represents the vector length, S・01 represents the cutter offset surface of the cutting surface)
Find it using the n method. These u and v are written as vF+vl. (u+
+Vj) is a two-dimensional spline closed curve, C'(t
) If you make t-this is what you want. Next, a method of specifying the cutting area will be explained. Stylus pen/,
Points specified with a coordinate input device such as a tablet correspond to points on the graphic screen. Since the graphic screen is two-dimensional, a point on it corresponds to an infinite straight line when viewed in the three-dimensional world coordinate system.
したがってこの無限直線とカッターオフセット面との交
点計算を行なうことにより、指定点の曲面パラメータu
、v値を求めることができる。このu、v値をPo =
(uo + VQ )と記す。Poが二次元曲線C’
(t)の内部にあるか外部にあるかは、簡単に判定する
ことができる。具体的には、POから無限半直線を出し
、交点数を調べる方法や、P”0とc’(g上の点を結
ぶ直線の回転角を調べる方法が知られている。以上によ
って閉曲線の内部を切削域とするか、外部を切削域とす
るかが定まる。Therefore, by calculating the intersection between this infinite straight line and the cutter offset surface, the curved surface parameter u of the specified point
, v value can be determined. These u and v values are Po =
It is written as (uo + VQ). Po is a two-dimensional curve C'
It can be easily determined whether it is inside or outside (t). Specifically, it is known to draw an infinite half-line from PO and check the number of intersections, or to check the rotation angle of a straight line connecting points on P"0 and c'(g. It is determined whether the inside is to be the cutting area or the outside is to be the cutting area.
つぎに曲面上に作られるカッター径路から切削域内部に
存在する部分だけを取り出す方法について説明する。カ
ッター径路もC’(t)と同様、u、v空間に値をとる
曲線で表わす。カッター径路と閉曲線c’(t)との交
点を計算し、カッター径路を交点で分割する。分割され
たおのおののカッター径路について、切削域内部におる
か否かの判定を行う。Next, a method of extracting only the portion existing inside the cutting area from the cutter path made on the curved surface will be explained. Like C'(t), the cutter path is also represented by a curve that takes values in the u and v spaces. The intersection between the cutter path and the closed curve c'(t) is calculated, and the cutter path is divided at the intersection. For each divided cutter path, it is determined whether or not it is inside the cutting area.
そして切削域の内部に存在する部分についてのみ数値制
御指令を作る。以上が本発明の概要である。Numerical control commands are then created only for the portions that exist inside the cutting area. The above is an overview of the present invention.
以下、本発明の一実施例を第4図により説明する。1は
与えられた切削域の境界を表わす三次元閉曲線を記憶す
る曲線データ記憶メモリである。An embodiment of the present invention will be described below with reference to FIG. A curve data storage memory 1 stores a three-dimensional closed curve representing the boundary of a given cutting area.
ここでメモリ1に記憶されている曲線をC+(t)=(
CIll (t)、 c+y(t)、 C+−(t)
) (+ = 1 、 n )と表わす。2は、カ
ッターオフセットを施した曲面データを記憶する曲面デ
ータ記憶メモリである。ここでメモリ2に記憶されてい
る曲面を
S(u、 V)=(S、 (u、 vL s、 (u、
v)、 s、(u、 v))と表わす。3は、メモリ
1,20曲線1曲面を表示する部分である。4はメモリ
1の三次元曲線データをu、vに値をとる二次元曲線デ
ータに変換する曲線変換部分である。C+(t)を細か
くサンプリングした点(Pl )に対して
f (u、 v)= l PH−5(u、 v) l
”(11はベクトル長を表す)
を最小化するuI、vjをN ewton −1(op
hson法で求メ、(uj、 Vs )を通るスプライ
ン曲線を生成する処理を行う。5は変換部分4の部分で
生成される二次元曲線を記憶する曲線データ記憶メモリ
である。メモリ5に記憶される曲線をC’+ (t)=
(C+、(t)、 C+v (t) )と表わす。Here, the curve stored in memory 1 is C+(t)=(
CIll (t), c+y(t), C+-(t)
) (+ = 1, n). 2 is a curved surface data storage memory that stores curved surface data subjected to cutter offset. Here, the curved surface stored in memory 2 is expressed as S(u, V)=(S, (u, vL s, (u,
v), s, (u, v)). 3 is a portion for displaying one surface of the memory 1 and 20 curves. Reference numeral 4 denotes a curve conversion portion that converts the three-dimensional curve data in the memory 1 into two-dimensional curve data that takes values for u and v. For the point (Pl) that is a finely sampled value of C+(t), f (u, v) = l PH-5(u, v) l
”(11 represents the vector length) uI, vj that minimizes Newton −1(op
The hson method is used to generate a spline curve passing through (uj, Vs). Reference numeral 5 denotes a curve data storage memory for storing the two-dimensional curve generated in the conversion section 4. The curve stored in the memory 5 is C'+ (t)=
It is expressed as (C+, (t), C+v (t)).
6はタブレット、スタイラスペンと読み取ったグラフィ
ック画面上の位置を三次元の世界座標系の直線データに
変換する点変換部分である。画面は二次元的であるから
、画面上の点は、三次元世界座標系では無限直線に対応
する。7は、変換部分6から送られてくる直線データと
メモリ1に記憶されている曲面データの交点を曲面のu
、 v値で求める処理を行う交点計算部分である。6 is a point conversion part that converts the position on the graphic screen read by the tablet or stylus pen into linear data in the three-dimensional world coordinate system. Since the screen is two-dimensional, a point on the screen corresponds to an infinite straight line in the three-dimensional world coordinate system. 7 is the intersection point of the straight line data sent from the conversion part 6 and the curved surface data stored in the memory 1, as u of the curved surface.
, This is the intersection calculation part that performs the process of calculating by the v value.
S(u、 v) =p、+(Pl−P、 )
tをNewton −Raphson 法で解き、u、
vを得る。S(u, v) = p, +(Pl-P, )
Solving t using the Newton-Raphson method, u,
get v.
交点が複数個求まったときは、画面上で一番手前のもの
を選ぶようにしておく。8は交点計算部分7で求めたu
、v表現の点がメモリ5に記憶されている閉曲線の内部
にあるか外部にちるかを判定する内外判定部分である。If you find multiple intersections, select the one closest to you on the screen. 8 is u obtained in intersection calculation part 7
, v is an inside/outside determination part that determines whether the point of the representation is inside or outside the closed curve stored in the memory 5.
判定は第5図に示すように交点計算部分7で求めた点Q
o と閉曲線上にとったサンプリング点(Q両川4.を
結ぶ直線5図(A)は点Qoが閉曲線内部にある場合を
示す。又、第5図(B)は点Qoが閉曲線外部にある場
合を示す。θく180°ならばPoは閉曲線の外部、θ
〉180°ならば内部にあると判定する。9は判定部分
8の判定結果を記憶するメモリである。閉曲線の内部に
あるときは′″0@、外部にあるときは@1″を、閉曲
線の番号iK対応してn個記憶する。10はカッター径
路を生成するために必要な切削データを記憶しである切
削データ記憶メモリである。本実施例においては、切削
データはキーボードによって入力されるものとし1、カ
ッター径路を曲面のu、v方向のいずれの方向に作るか
の区別と、カッター径路のピッチを記憶しているものと
する。、11はメモリ1oに記憶された条件に従いカッ
ター径路を一本ずつ生成するカッター径路生成部分であ
る。12はメモリ5に記憶されている二次元閉曲線と、
カッター径路の交点を求める交点計算部分である。13
は交点でカッター径路を分割するカッター径路分割部分
。The determination is made using the point Q obtained in the intersection calculation section 7 as shown in Figure 5.
Figure 5 (A) shows the case where the point Qo is inside the closed curve. Figure 5 (B) shows the case where the point Qo is outside the closed curve. The case is shown.If θ is 180°, Po is outside the closed curve, θ
>180°, it is determined that the object is inside. Reference numeral 9 denotes a memory that stores the judgment results of the judgment section 8. When it is inside the closed curve, n pieces of ``0@'' are stored, and when it is outside, it is @1'', corresponding to the number iK of the closed curve. Reference numeral 10 denotes a cutting data storage memory that stores cutting data necessary to generate a cutter path. In this embodiment, cutting data is input using a keyboard 1, and it is assumed that the distinction between whether the cutter path is created in the u or v direction of the curved surface and the pitch of the cutter path are memorized. . , 11 is a cutter path generation section that generates cutter paths one by one according to the conditions stored in the memory 1o. 12 is a two-dimensional closed curve stored in the memory 5;
This is the intersection calculation part for finding the intersection of the cutter paths. 13
is the cutter path dividing portion that divides the cutter path at the intersection point.
14は、分割されたカッター径路の中点を求める中点計
算部分である。15は、中点計算部分14で求めた中点
がメモlJ5に記憶されている閉曲線C’+ (t)の
内部に6るか外部にあるかを判定した結果得られるn個
の数列と、すでにメモリ9に記憶されているn個の数列
の比較を行う比較部分である。16は、メモリ2の曲面
データと、カッター径路分割部分13で分割されたカッ
ター径路から数値制御指令を生成するNC指令生成部分
である。Reference numeral 14 denotes a midpoint calculation part for calculating the midpoint of the divided cutter path. 15 is a sequence of n numbers obtained as a result of determining whether the midpoint obtained in the midpoint calculation part 14 is inside or outside the closed curve C'+ (t) stored in the memory lJ5, This is a comparison section that compares n number sequences already stored in the memory 9. Reference numeral 16 denotes an NC command generating section that generates a numerical control command from the curved surface data in the memory 2 and the cutter path divided by the cutter path dividing section 13.
ここでNC指令生成部分16は、比較部分15で数列を
比較した結果、一致した場合のみ動作するものとする。Here, it is assumed that the NC command generation section 16 operates only when the comparison section 15 compares the numerical sequences and they match.
以上が本発明の詳細な説明である。The above is a detailed description of the present invention.
本発明によれば、三次曲面上に切削域の境界を表す閉曲
線を作ることによって曲面の部分領域の切削が可能とな
るので、カッター干渉の回避が容易にでき、かつ干渉の
起る限界点まで切削可能なので削シ残しがなく正確に削
れるという特徴ある。According to the present invention, it is possible to cut a partial area of the curved surface by creating a closed curve representing the boundary of the cutting area on the cubic surface. Therefore, it is possible to easily avoid cutter interference, and to reach the limit point where interference occurs. Since it can be cut, it has the characteristic of being able to cut accurately without leaving any marks.
第1図はカッターの駆動点を示す図、第2図はカッター
干渉を避けるためのカッター停止位置を示す図、第3図
は閉曲線を曲面上に作成する際の手順を示す図、第4図
は本発明の実施例構成を示す図、第5図は第4囚の符号
9の機能を説明するための図である。
1・・・三次元曲面上に作成された閉曲線を記憶するメ
モリ、2・・・三次元曲面データを記憶するメモリ、3
・・・曲面9曲線の表示処理を行う部分、4・・・曲面
上の三次元曲線を曲面パラメータu、v空関に値をとる
二次元曲線に変換する部分、5・・・二次元曲線データ
記憶メモリ、6・・・点を無限直線に変換する部分、7
・・・三次元曲面と無限直線の交点計算部、8・・・平
面上においである点が閉曲線の内部にあるか外部にある
かを判定する部分、9・・・80判定結果を10”、1
1”で記憶するメモリ、10・・・切削データの記憶メ
モリ、11・・・カッター径路主成部、12・・・二次
元曲線と二次元直線の交点計算部、13・・・カッター
径路を交点で分割する部分、14・・・二点の中点を計
算する部分、15・・・数の比較を第 l 図
第 2 口
第 3 コ
(ハ)
良臓
第5目
(A、)
淳θεキヱ36PO’
I+lIl
二θC本O
11FFigure 1 shows the drive point of the cutter, Figure 2 shows the cutter stop position to avoid cutter interference, Figure 3 shows the procedure for creating a closed curve on a curved surface, and Figure 4. 5 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 5 is a diagram for explaining the function of the fourth prisoner 9. 1...Memory for storing closed curves created on a three-dimensional curved surface, 2...Memory for storing three-dimensional curved surface data, 3.
... A part that performs display processing of the curved surface 9 curves, 4... A part that converts the three-dimensional curve on the curved surface into a two-dimensional curve that takes values for the surface parameters u and v space function, 5... Two-dimensional curve Data storage memory, 6... Portion for converting points into infinite straight lines, 7
... An intersection calculation section between a three-dimensional curved surface and an infinite straight line, 8... A section that determines whether a point on a plane is inside or outside a closed curve, 9 ... 80 judgment results are 10" ,1
1" memory for storing cutting data; 10... memory for storing cutting data; 11... cutter path main component; 12... intersection calculation section between two-dimensional curve and two-dimensional straight line; 13... cutter path. Part to divide at the intersection, 14... Part to calculate the midpoint of two points, 15... Comparison of numbers. θεkey 36PO' I+lIl 2θC book O 11F
Claims (1)
システムにおいて、カッターオフセット処理を施した三
次元曲面上に作成された閉曲線に対し、どちら側の曲面
領域を切削域とするかを座標入力装置で指示する手段と
、曲面上に作られるカッター径路を前記閉曲線で切断し
、切削域に属する部分のみを取り出して数値制御指令を
生成する手段を有する曲面加工装置。In an interactive 3D figure processing system equipped with a graphics display device, a coordinate input device is used to determine which side of the curved surface area to be the cutting area for a closed curve created on a 3D curved surface subjected to cutter offset processing. A curved surface machining device comprising a means for instructing, and a means for cutting a cutter path made on a curved surface by the closed curve, extracting only a portion belonging to the cutting area, and generating a numerical control command.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23493484A JPS61114312A (en) | 1984-11-09 | 1984-11-09 | Curved surface processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23493484A JPS61114312A (en) | 1984-11-09 | 1984-11-09 | Curved surface processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61114312A true JPS61114312A (en) | 1986-06-02 |
Family
ID=16978560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23493484A Pending JPS61114312A (en) | 1984-11-09 | 1984-11-09 | Curved surface processing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61114312A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175608A (en) * | 1990-11-08 | 1992-06-23 | Motoda Electron Co Ltd | Measurement of level and tilted level detector |
JPH06119032A (en) * | 1992-10-02 | 1994-04-28 | Murata Mach Ltd | Tool arrangement interference checking method for working graphic data |
US5747935A (en) * | 1992-04-16 | 1998-05-05 | Advanced Energy Industries, Inc. | Method and apparatus for stabilizing switch-mode powered RF plasma processing |
CN101776882B (en) | 2010-01-19 | 2012-05-30 | 广东大族粤铭激光科技股份有限公司 | Method for generating laser cutting program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5472382A (en) * | 1977-11-18 | 1979-06-09 | Fanuc Ltd | Diameter of tool correcting system |
JPS55110307A (en) * | 1979-02-16 | 1980-08-25 | Oki Electric Ind Co Ltd | Correcting method for cutter diameter |
JPS58155409A (en) * | 1982-03-10 | 1983-09-16 | Mitsubishi Electric Corp | Numerical control working system |
-
1984
- 1984-11-09 JP JP23493484A patent/JPS61114312A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5472382A (en) * | 1977-11-18 | 1979-06-09 | Fanuc Ltd | Diameter of tool correcting system |
JPS55110307A (en) * | 1979-02-16 | 1980-08-25 | Oki Electric Ind Co Ltd | Correcting method for cutter diameter |
JPS58155409A (en) * | 1982-03-10 | 1983-09-16 | Mitsubishi Electric Corp | Numerical control working system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175608A (en) * | 1990-11-08 | 1992-06-23 | Motoda Electron Co Ltd | Measurement of level and tilted level detector |
US5747935A (en) * | 1992-04-16 | 1998-05-05 | Advanced Energy Industries, Inc. | Method and apparatus for stabilizing switch-mode powered RF plasma processing |
JPH06119032A (en) * | 1992-10-02 | 1994-04-28 | Murata Mach Ltd | Tool arrangement interference checking method for working graphic data |
CN101776882B (en) | 2010-01-19 | 2012-05-30 | 广东大族粤铭激光科技股份有限公司 | Method for generating laser cutting program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8723862B2 (en) | Information processor and information processing method | |
CN104793560A (en) | Method and system for generating a trajectory | |
JPH02293904A (en) | Cad/cam device | |
KR20120089707A (en) | Method, computer system and computer program product for machining simulation and for visually presenting such simulation | |
US4879667A (en) | Process for generating a computer model of an alterable structure | |
JPS60213426A (en) | Machined shape displaying method in wire-cut electric discharge machining device | |
GB2310579A (en) | Method and apparatus for providing a dynamically orientated compass cursor on computer displays | |
JP2012018472A (en) | Device and method for working simulation | |
JP4046370B2 (en) | 3D shape drawing method | |
Kim et al. | A study on the precision machinability of ball end milling by cutting speed optimization | |
JPS61114312A (en) | Curved surface processing device | |
JPH11345011A (en) | Method for nonlinearly displaying locus curve | |
JP2004110828A (en) | Method and system for generating numerical control tool path on solid model | |
JPS62272366A (en) | Graphic information processor | |
US6346943B1 (en) | Method, apparatus, and article of manufacture for defining a relative polar angle snap CAD tool | |
CN108227628A (en) | Processing program resolver, processing program analysis program and processing program analytic method | |
KR101530895B1 (en) | Methods for extracting object data for 2d cad from 3d cad and vice versa | |
WO1988006312A1 (en) | Method of generating curved surfaces | |
JP3165249B2 (en) | Motion locus creation device for welding robot | |
WO2023162300A1 (en) | Path planning device and path planning method | |
WO1993001535A1 (en) | Method for specifying position where fillet curved surface is located | |
Martinova et al. | Extending functionality of control system by adding contour building capabilities | |
Schützer et al. | C-Space based approach for the calculation of toolpaths for freeform surfaces in B-Spline description | |
JPS61272805A (en) | Numerical control method | |
JPS6327748B2 (en) |