JPS61112907A - Measuring apparatus of microscopic shape - Google Patents
Measuring apparatus of microscopic shapeInfo
- Publication number
- JPS61112907A JPS61112907A JP23322584A JP23322584A JPS61112907A JP S61112907 A JPS61112907 A JP S61112907A JP 23322584 A JP23322584 A JP 23322584A JP 23322584 A JP23322584 A JP 23322584A JP S61112907 A JPS61112907 A JP S61112907A
- Authority
- JP
- Japan
- Prior art keywords
- output
- measured
- photodiode
- signal
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims description 40
- 230000003287 optical effect Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 241001422033 Thestylus Species 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
a0発明の目的
(産業上の利用分野)
本発明に係る微細形状測定器は、鏡面仕」二を施した金
属表面の表面粗さ測定等、各種高精度の測定に使用され
る。[Detailed description of the invention] a0 Purpose of the invention (industrial application field) The micro-shape measuring instrument according to the present invention is suitable for various high-precision measurements such as surface roughness measurement of mirror-finished metal surfaces. used.
(従来の技術)
金属表面の表面粗さ等、各種精密形状測定を行なうため
に、光挺子式、電気式の微細形状測定器、或は比較的精
度の粗いものとしてはミクロケータ、ダイヤルゲージ等
が使用されている。(Prior art) In order to perform various precision shape measurements such as the surface roughness of metal surfaces, optical screw type or electric type fine shape measuring instruments, or relatively less precise ones such as micrometers and dial gauges are used. is used.
このうち、電気式の精密形状測定器について説明する。Among these, an electric precision shape measuring instrument will be explained.
電気式の精密形状測定器は、第1図に示すように、被測
定面1の凹凸に追従して昇降する触[有]12の途中に
固定した鉄芯3と、この鉄芯3を囲んで設けたコイル4
とにより差動トランスを構成したもので、上下対となっ
た互いに平行なばね5.5により支承された触針2が被
測定面lの凹凸に従って昇降すると、コイル4の出力電
圧が触針2の変位量に比例して変化する。このため、こ
の電圧変化分から被測定面1の凹凸形状を知ることがで
きる。6は測定圧調整用のばねである。As shown in Fig. 1, the electric precision shape measuring instrument has an iron core 3 fixed in the middle of a contact 12 that moves up and down following the irregularities of the surface to be measured 1, and a structure surrounding the iron core 3. Coil 4 provided with
When the stylus 2 supported by a pair of upper and lower springs 5.5 parallel to each other rises and falls according to the unevenness of the surface to be measured l, the output voltage of the coil 4 changes changes in proportion to the amount of displacement. Therefore, the uneven shape of the surface to be measured 1 can be known from this voltage change. 6 is a spring for adjusting measurement pressure.
このような従来の微細形状測定器は測定時に触針を被測
定物表面に接触させたまま移動させるため、被測定物の
表面を傷付けてしまう。このため、触針等の測定子を被
測定面に接触させることなく被測定面の形状を測定する
ことができる、レーザ光を用いた光学式の微細形状測定
器が各種提案されている。次に、この光学式の微細形状
測定器の原理について簡単に説明する。Such conventional micro-shape measuring instruments move the stylus while keeping it in contact with the surface of the object to be measured during measurement, thereby damaging the surface of the object to be measured. For this reason, various types of optical micro-shape measuring devices using laser light have been proposed, which can measure the shape of a surface to be measured without bringing a probe such as a stylus into contact with the surface to be measured. Next, the principle of this optical micro-shape measuring instrument will be briefly explained.
第2〜4図は、光学式の微細形状測定器の原理の第1例
を示している。この原理は、昭和58年度精機学会秋季
大会学術講演会論文集の第391〜392頁及び工業技
術院機械技術研究所発行の機械価ニュース1983年陥
、9の第1〜2頁に記載されたものである。レーザダイ
オード7がら送り出されたレーザ光は、第2図に示した
コリメータレンズ8、偏光ビームスプリッタ9.4分の
1波長板10、対物レンズ11を通って被測定面1に投
射され、更にこのレーザ光はこの被測定面1で反射して
再び対物レンズ11.4分の1波長板10を通り、偏光
ビームスプリッタ9で反射してハーフミラ−12に送ら
れる。このハーフミラ−12で反射したレーザ光は第一
の臨界角プリズム13を通って第一、第二のフォトダイ
オード14.16に送られ、ハーフミラ−12を透過し
たレーザ光は第二の臨界角プリズム15を通って同じく
第一、第二のフォトダイオード14.16に送られる。2 to 4 show a first example of the principle of an optical micro-shape measuring device. This principle was described in pages 391-392 of the Proceedings of the 1981 Autumn Conference of the Japan Precision Machinery Society, and pages 1-2 of Machine Price News 1983, Issue 9, published by the Institute of Mechanical Technology, Agency of Industrial Science and Technology. It is something. The laser beam sent out from the laser diode 7 is projected onto the surface to be measured 1 through the collimator lens 8, polarizing beam splitter 9, quarter wavelength plate 10, and objective lens 11 shown in FIG. The laser beam is reflected by the surface to be measured 1, passes through the objective lens 11 and quarter wavelength plate 10 again, is reflected by the polarizing beam splitter 9, and is sent to the half mirror 12. The laser beam reflected by this half mirror 12 passes through the first critical angle prism 13 and is sent to the first and second photodiodes 14.16, and the laser beam transmitted through the half mirror 12 passes through the second critical angle prism 13. 15 and is similarly sent to the first and second photodiodes 14 and 16.
測定ヘッドに固定の対物レンズ11と被測定面lとの距
離が変化すると、この被測定面で反射してから第一、第
二の臨界角プリズム13.15内に進入するレーザ光の
入射角度が変化し、その結果第一、第二のフォトダイオ
ード14.16に達する光の強さが変化するため、第一
、第二のフォトダイオード14.16の出力差の変化を
検出すれば被測定面の凹凸を知ることができる。臨界角
プリズムの原理を示す第3図により更に説明すると、被
測定面がB位置にあった場合、被測定面で反射したレー
ザ光は同図に実線で示すような経路で第一、第二のフォ
トダイオード14.16に入り、両フォトダイオードか
ら同じ大きさの出力が出る(電位差0)。被測定面がA
位置にまで近付くと、反射レーザ光は同図に鎖線で示す
ような経路で臨界角プリズム13.15に入る。この状
態に於いてはレーザ光の一部がプリズム内で反射せずに
そのまま透過してしまうため、第一、第二のフォトダイ
オード14.16に入るレーザ光が弱くなるが、この弱
くなる度合は第二のフォトダイオード16に比べて第一
のフォトダイオード14の方が大きくなるため、両ダイ
オード14.16の出力に差が出る。反対に被測定面が
C位置にまで遠ざかると、反射レーザ光は同図に破線で
示すような経路で臨界角プリズム13.15に入り、上
述したA位置の場合と逆の電位差が第一、第二のフォト
ダイオード14.16の間に生じる。被測定面の変位量
と出力電位差Vとの間には第4図に示すような関係があ
るため、この電位差Vから被測定面の微細な形状を求め
ることができる。なお、第2図に於いて臨界角プリズム
を第一、第二の2個用意し、第一、第二のフォトダイオ
ード14.16を2組設けたのは、被測定面lの傾斜に
基く誤差をキャンセルするためである。When the distance between the objective lens 11 fixed to the measurement head and the surface to be measured l changes, the incident angle of the laser beam that is reflected from this surface to be measured and then enters the first and second critical angle prisms 13.15 changes. changes, and as a result, the intensity of the light reaching the first and second photodiodes 14.16 changes, so if a change in the output difference between the first and second photodiodes 14.16 is detected, the You can see the unevenness of the surface. To further explain the principle of the critical angle prism with reference to Figure 3, when the surface to be measured is at position B, the laser beam reflected from the surface to be measured passes through the first and second paths as shown by the solid line in the figure. The photodiodes 14 and 16 output the same amount of output from both photodiodes (potential difference 0). The surface to be measured is A
When it approaches the position, the reflected laser beam enters the critical angle prism 13.15 along a path as shown by the chain line in the figure. In this state, a part of the laser light passes through the prism without being reflected, so the laser light entering the first and second photodiodes 14 and 16 becomes weaker, but the degree of this weakening is Since the first photodiode 14 is larger than the second photodiode 16, there is a difference in the outputs of both diodes 14 and 16. On the other hand, when the surface to be measured moves away to position C, the reflected laser beam enters the critical angle prism 13.15 along the path shown by the broken line in the figure, and the potential difference opposite to that at position A described above becomes first, occurs between the second photodiode 14.16. Since there is a relationship as shown in FIG. 4 between the amount of displacement of the surface to be measured and the output potential difference V, the minute shape of the surface to be measured can be determined from this potential difference V. The reason why two critical angle prisms, first and second, and two sets of first and second photodiodes 14 and 16 are provided in FIG. 2 is based on the inclination of the surface to be measured l. This is to cancel the error.
又、第5図は光学式の微細形状測定器の別の原理を示し
ている。この原理は非点収差法と呼ばれ昭和59年年度
様学会春季大会学術講演会論文集第393〜394頁に
記載されたもので、光束を蒲鉾型のシリンドリカルレン
ズ17により集束させると、このレンズからの距離に応
じて光束の断面が直線状、縦長の楕円形、円形、横長の
楕円形に連続的に変化するのを利用して4分割のフォト
ダイオード18により光束の断面変化を求め、この断面
変化に基づいて被測定面の微細な形状を測定する。Further, FIG. 5 shows another principle of the optical micro-shape measuring device. This principle is called the astigmatism method, and was described in the Proceedings of the 1981 Spring Conference of the Society of Fine Arts and Sciences, pages 393-394. Using the fact that the cross section of the light flux changes continuously into a straight line, a vertically elongated ellipse, a circle, and a horizontally elongated ellipse depending on the distance from the Measures the minute shape of the surface to be measured based on cross-sectional changes.
レーザ光利用の測定器の原理としてはこの他にも、昭和
58年度精機学会春季大会学術講演会論文集第523〜
526頁に記載のもの、同年同学会秋季大会学術講演会
論文集第413〜414頁に記載のもの等がある。いず
れの原理に基づいて製作された微細形状測定器に於いて
も、接触子等を被測定面に接触させることなくこの被測
定面の微細な形状を測定することができる。In addition to this, there are other principles of measuring instruments that use laser light.
There are those described on page 526, and those described on pages 413-414 of the academic lecture collection of the autumn conference of the same year. A fine shape measuring device manufactured based on either principle can measure the fine shape of a surface to be measured without bringing a contactor or the like into contact with the surface to be measured.
(考案が解決しようとする問題点)
ところが、上述のような従来の光学式の微細形状測定器
に於いては、次に述べるような不都合を生じる。(Problems to be Solved by the Invention) However, in the conventional optical micro-shape measuring instrument as described above, the following disadvantages occur.
即ち、いずれの測定原理を用いる場合でも被測定面を照
射するためレーザダイオード7から投射されるレーザ光
は被測定面1で反射してからフォトダイオード14.1
6或は18に入る。このように被測定面1で反射した後
フォトダイオード14.16或は18に入るレーザ光の
強さは、被測定面1の反射率により大きく変化し、1回
の測定作業を行なう間にも逐次変化する。このため、レ
ーザ光の反射を利用する微細形状測定器には、上述のよ
うな反射率の差に基づくフォトダイオードへの入射光量
の変化が測定値に影響を及ぼさないようにする機構を設
けなければならない。このため、第2図に示した臨界角
プリズム式の微細形状測定器に於いては、4個のフォト
ダイオード14.16の総ての出力を加えることにより
得られるフォ]・ダイオードの総出力値により第一、第
二のフォトダイオード14.16の差を割ることで反射
率の差に基づく射光量の変化が測定値に与える影響を無
くすようにしている。即ち、第2図の右側のフォトダイ
オードのうち第一のフォトダイオード14の出力をA、
第二のフォトダイオード16の出力をB、左側のフォト
ダイオードのうち第一のフォトダイオード14の出力を
C1第二のフォトダイオード16の出力をDとした場合
、対物レンズ11と被測定面1との距離を示す信号Xを
、
として求める。第5図に示した非点収差法の原理を応用
した微細形状測定器の場合も、四分割されたフォトダイ
オード18の総ての出力により各部分の出力の差を割る
ことで、被測定面の反射率変化が測定値に影響を与えな
いように考慮する。That is, no matter which measurement principle is used, in order to irradiate the surface to be measured, the laser light projected from the laser diode 7 is reflected by the surface to be measured 1 and then transmitted to the photodiode 14.1.
Enter 6 or 18. In this way, the intensity of the laser beam that enters the photodiode 14, 16 or 18 after being reflected by the surface to be measured 1 varies greatly depending on the reflectance of the surface to be measured 1, and even during one measurement operation. Changes sequentially. For this reason, fine shape measuring instruments that utilize reflection of laser light must be equipped with a mechanism to prevent changes in the amount of light incident on the photodiode due to the difference in reflectance as described above from affecting the measured value. Must be. Therefore, in the critical angle prism type micro-shape measuring instrument shown in Fig. 2, the total output value of the photodiode obtained by adding all the outputs of the four photodiodes 14 and 16 is By dividing the difference between the first and second photodiodes 14 and 16 by , the influence of the change in the amount of emitted light due to the difference in reflectance on the measured value is eliminated. That is, the output of the first photodiode 14 among the photodiodes on the right side of FIG. 2 is A,
If the output of the second photodiode 16 is B, the output of the first photodiode 14 among the left photodiodes is C1, and the output of the second photodiode 16 is D, then the objective lens 11 and the surface to be measured 1 The signal X indicating the distance is obtained as follows. In the case of a fine shape measuring instrument that applies the principle of the astigmatism method shown in FIG. Consideration should be given to ensuring that changes in reflectance do not affect the measured values.
上述のような対策を講じることにより、被測定面1の反
射率が変化しても測定値に影響を及ぼさないようにでき
るが、被測定面1の反射率が例えば10%以下になるよ
うに極端に低下した場合は、信頼に足る測定値を得るこ
とはできない。しかしながら、被測定面の反射率が十分
に測定を行なえる程度あるか否かを肉眼で判定すること
は難しく、又測定の途中に反射率の小さな微小な塵等が
付着していた場合等、肉眼でこれを見つけることはでき
ない。このように正確な測定を行なえない状態のまま測
定作業を行ない、その測定結果を基にして次の工程に進
むと、各種製品に所望の性能を得られないことになるた
め好ましくない。By taking the above-mentioned measures, it is possible to prevent the measurement values from being affected even if the reflectance of the surface to be measured 1 changes, but it is possible to prevent the reflectance of the surface to be measured 1 from being, for example, 10% or less. If the value drops significantly, reliable measurements cannot be obtained. However, it is difficult to judge with the naked eye whether or not the reflectance of the surface to be measured is sufficient for measurement, and if small particles with low reflectance are attached during the measurement, etc. This cannot be detected with the naked eye. If a measurement operation is carried out in such a state that accurate measurements cannot be made and the next step is proceeded to based on the measurement results, it is not preferable because the desired performance of various products will not be obtained.
本発明の微細形状測定器は上述のような不都合を解消し
、信頼性の無い測定値を得ることのない微細形状測定器
を得ることを目的としている。It is an object of the present invention to solve the above-mentioned disadvantages and to provide a micro-shape measuring instrument that does not produce unreliable measured values.
b1発明の構成
本発明の微細形状測定器は、被測定面からの反射光の光
量を測定するフォトダイオードの出力を増幅器で増幅し
てメータで示すことにより、或いは上記出力と、反射率
限界設定値とを比較器で比較し、上記フォトダイオード
の出力が設定値よりも低い場合には、正確な測定が行な
えない旨の警告を発したり、更には測定作業を自動的に
中止すように構成している。b1 Structure of the Invention The fine shape measuring device of the present invention can be used by amplifying the output of a photodiode that measures the amount of light reflected from a surface to be measured by an amplifier and indicating it with a meter, or by adjusting the above output and reflectance limit setting. If the output of the photodiode is lower than the set value, a warning will be issued that accurate measurement cannot be performed, and the measurement will be automatically stopped. are doing.
まず、基本的構成を示す第6図により説明すると、レー
ザダイオード7からコリメータレンズ8、偏光ビームス
プリッタ9、対物レンズ11、を介して被測定面1に投
射されたレーザ光は、この被測定面1で反射してフォト
ダイオード14.16に入り、このフォトダイオード1
4.16で電圧に変換され出力される。総てのフォトダ
イオード14.16の出力の和は増幅器19によって増
幅されてから比較器20に入力される。この比較器20
では、上記増幅器19からの信号と反射率限界設定器2
1からの設定信号とを比較し、増幅器19を介して送ら
れるフォトダイオード14.16の出力信号が設定器2
1からの設定信号よりも小さくなった場合にのみ信号を
出して警告灯22、ブザー23等の警告手段を駆動し、
正確な測定が行なえない旨の警告を出す。第6図の例で
は、反射率限界設定器21を設定値を変えられるように
示しているが、この設定器21に設定する反射率は固定
でも良い。又、警告手段はブザー23と警告灯22との
一方を設けるだけでも良い。メータ32は、増幅器19
の出力を示すものでこの出力と被測定面1の反射率とは
比例するため、メータの指標には反射率を示す数値を記
載しである。First, to explain the basic configuration with reference to FIG. 1 and enters the photodiode 14.16, and this photodiode 1
4.16, it is converted into voltage and output. The sum of the outputs of all photodiodes 14 and 16 is amplified by an amplifier 19 and then input to a comparator 20. This comparator 20
Now, the signal from the amplifier 19 and the reflectance limit setter 2
The output signals of the photodiodes 14 and 16 sent via the amplifier 19 are compared with the setting signal from the setting device 2.
1, outputs a signal and drives warning means such as a warning light 22 and a buzzer 23, only when the signal becomes smaller than the set signal from 1.
Issues a warning that accurate measurements cannot be made. In the example of FIG. 6, the reflectance limit setter 21 is shown so that the set value can be changed, but the reflectance set in this setter 21 may be fixed. Further, only one of the buzzer 23 and the warning light 22 may be provided as the warning means. The meter 32 is connected to the amplifier 19
Since this output is proportional to the reflectance of the surface to be measured 1, a numerical value indicating the reflectance is written on the indicator of the meter.
次に第7図は、比較器20と警告灯22、ブザー23等
の警告手段との間に記憶器24を設け、一連の測定作業
の終了詩に正確な測定作業を行なえたか否かを示すよう
に構成したものである。25は比較器20と記憶器24
との間の接点26の開閉を制御するための測定開始指令
回路、27はリセット指令回路である。測定開始時に測
定開始指令回路25からの信号に基づいて接点26を閉
じ、測定作業を開始する。測定作業の途中で1度でも被
測定面の反射率が設定値よりも小さくなる場合があると
、比較器20が信号を出し、この信号が記憶器24に記
憶され、一連の測定作業が終了した段階で警告灯22、
ブザー23等の警告手段を駆動する。警告を確認したな
らば、リセット指令回路27からの信号により記憶器2
4の記憶を消去するとともに測定開始指令回路25を介
して接点26を開く。Next, FIG. 7 shows that a memory device 24 is provided between the comparator 20 and warning means such as a warning light 22 and a buzzer 23, and indicates whether accurate measurement has been performed at the end of a series of measurement operations. It is configured as follows. 25 is a comparator 20 and a memory 24
27 is a reset command circuit. At the start of measurement, the contact 26 is closed based on a signal from the measurement start command circuit 25, and the measurement work is started. If the reflectance of the surface to be measured becomes smaller than the set value even once during the measurement process, the comparator 20 outputs a signal, this signal is stored in the memory 24, and the series of measurement processes ends. At that stage, warning light 22,
A warning means such as a buzzer 23 is activated. When the warning is confirmed, the memory 2 is reset by a signal from the reset command circuit 27.
4 is erased and the contact 26 is opened via the measurement start command circuit 25.
更に、1度でも被測定面の反射率が設定値以下になった
場合に測定作業を中止するためには、第8図に示すよう
に構成する。第8図に於いて28は測定中止指令回路、
29は測定作業時に試料台又はレーザヘッドを駆動して
被測定面1と対物レンズ11とを相対的に平行移動させ
るためのモータ、30はこのモータ29に通電する導線
31の途中に設けた接点である。被測定面lの形状を求
めるため接点30を閉じ、モータ29により試料台(又
はレーザヘッド)を水平移動させつつ測定作業を行なっ
た場合、被測定面lの反射率が1度でも設定値以下にな
ると比較器20からの信号に基づき測定中止指令回路2
8が接点30を開く。Furthermore, in order to stop the measurement operation even once when the reflectance of the surface to be measured falls below a set value, a configuration as shown in FIG. 8 is used. In Fig. 8, 28 is a measurement stop command circuit;
Reference numeral 29 is a motor for driving the sample stage or laser head during measurement work to relatively move the surface to be measured 1 and the objective lens 11 in parallel; 30 is a contact provided in the middle of a conductive wire 31 that supplies electricity to the motor 29; It is. When the contact point 30 is closed to determine the shape of the surface to be measured l and the sample stage (or laser head) is moved horizontally by the motor 29 while the measurement work is performed, the reflectance of the surface to be measured l is less than the set value even by one degree. When this happens, the measurement stop command circuit 2 is activated based on the signal from the comparator 20.
8 opens contact 30.
これによってモータ29が停止し、試料台又はレーザヘ
ッドの水平移動が止って測定作業が中止される。第8図
に示したような測定作業を自動的に中止する回路に、第
6〜7図に示すような警告手段を駆動する回路を組合せ
ても良い。As a result, the motor 29 is stopped, the horizontal movement of the sample stage or the laser head is stopped, and the measurement operation is stopped. The circuit for automatically stopping the measurement operation as shown in FIG. 8 may be combined with a circuit for driving a warning means as shown in FIGS. 6 and 7.
C8発明の効果
本発明の微細形状測定器は以上に述べた通り構成され、
知らない間に不正確な測定を行なうことを防止できるた
め、不正確な測定に起因して不良な製品を造ることを防
止でき、各種製品の歩留りや信頼性の向上を図れる。C8 Effects of the Invention The fine shape measuring device of the present invention is configured as described above,
Since it is possible to prevent unintentionally performing inaccurate measurements, it is possible to prevent the production of defective products due to inaccurate measurements, and it is possible to improve the yield and reliability of various products.
第1図は接触式の微細形状測定器の1例を示す略縦断側
面図、第2図は光学式の変位検出器の原理の第1例を示
す略側面図、第3図は臨界角プリズムの原理を示す略側
面図、第4図は臨界角プリズムにより生じる電位差と変
位量との関係を示す線図、第5図は光学式変位検出器の
原理の第2例を示す略側面図、第6図は第一の発明を示
す回路図、第7〜8図は第二、第三の発明をそれぞれ示
す第6図のX部に相当する回路図である。
1:被測定面、2:触針、3:鉄芯、4:コイル、5.
6:ばね、7:レーザダイオード、8:コリメータレン
ズ、9:偏光ビームスプリッタ、10:4分の1波長板
、11:対物レンズ、12:ハーフミラ−,13:第一
の臨界角プリズム、14:第一のフォトダイオード、1
5:第二の臨界角プリズム、16:第二のフォトダイオ
ード、17:シリンドリカルレンズ、18:フォトダイ
オード、19:増幅器、20:比較器、21:反射率限
界設定器、22:警告灯、23:ブザー、24:記憶器
、25:測定開始指令回路、26:接点、27:リセッ
ト指令回路、28:測定中止指令回路、29:モータ、
30:接点、31:導線、32:メータ。Fig. 1 is a schematic vertical side view showing an example of a contact type micro-shape measuring device, Fig. 2 is a schematic side view showing a first example of the principle of an optical displacement detector, and Fig. 3 is a critical angle prism. 4 is a diagram showing the relationship between the potential difference generated by the critical angle prism and the amount of displacement. FIG. 5 is a schematic side view showing the second example of the principle of the optical displacement detector. FIG. 6 is a circuit diagram showing the first invention, and FIGS. 7 and 8 are circuit diagrams corresponding to section X in FIG. 6 showing the second and third inventions, respectively. 1: Surface to be measured, 2: Stylus, 3: Iron core, 4: Coil, 5.
6: Spring, 7: Laser diode, 8: Collimator lens, 9: Polarizing beam splitter, 10: Quarter wavelength plate, 11: Objective lens, 12: Half mirror, 13: First critical angle prism, 14: first photodiode, 1
5: Second critical angle prism, 16: Second photodiode, 17: Cylindrical lens, 18: Photodiode, 19: Amplifier, 20: Comparator, 21: Reflectance limit setter, 22: Warning light, 23 : Buzzer, 24: Memory device, 25: Measurement start command circuit, 26: Contact, 27: Reset command circuit, 28: Measurement stop command circuit, 29: Motor,
30: Contact, 31: Conductor, 32: Meter.
Claims (1)
オードで測定し、このフォトダイオードの出力から上記
被測定面までの距離の変化を求める微細形状測定器に於
いて、上記フォトダイオードの出力により駆動され、被
測定面の反射率を表わすメータを設けたことを特徴とす
る微細形状測定器。 2)被測定面に投射したレーザ光の反射光をフォトダイ
オードで測定し、このフォトダイオードの出力から上記
被測定面までの距離の変化を求める微細形状測定器に於
いて、上記フォトダイオードの出力と反射率限界設定器
の設定値とを比較して上記出力が設定値よりも低い場合
にのみ信号を出す比較器と、この比較器からの信号に基
づいて警告を出す警告手段とを設けたことを特徴とする
微細形状測定器。 3)被測定面に投射したレーザ光の反射光をフォトダイ
オードで測定し、このフォトダイオードの出力から上記
被測定面までの距離の変化を求める微細形状測定器に於
いて、上記フォトダイオードの出力と反射率限界設定器
の設定値とを比較して上記出力が設定値よりも低い場合
にのみ第一の信号を出す比較器と、この比較器からの信
号を記憶して測定作業中に一度でも第一の信号を受けた
場合、測定作業終了後に第二の信号を出す記憶器と、こ
の第二の信号に基づいて警告を出す警告手段とを設けた
ことを特徴とする微細形状測定器。 4)被測定面に投射したレーザ光の反射光をフォトダイ
オードで測定し、このフォトダイオードの出力から上記
被測定面までの距離の変化を求める微細形状測定器に於
いて、上記フォトダイオードの出力と反射率限界設定器
の設定値とを比較して上記出力が設定値よりも低い場合
にのみ信号を出す比較器と、この比較器からの信号に基
づいて被測定面と測定ヘッドとを平行移動させるための
モータに通電する導線の途中に設けた接点を開く測定中
止指令回路とを設けたことを特徴とする微細形状測定器
。[Scope of Claims] 1) In a micro-shape measuring instrument that measures the reflected light of a laser beam projected onto a surface to be measured using a photodiode, and determines the change in distance from the output of the photodiode to the surface to be measured. . A fine shape measuring instrument, characterized in that it is provided with a meter that is driven by the output of the photodiode and that indicates the reflectance of the surface to be measured. 2) In a micro-shape measuring instrument that measures the reflected light of the laser beam projected onto the surface to be measured with a photodiode and calculates the change in distance from the output of this photodiode to the surface to be measured, the output of the photodiode and a set value of the reflectance limit setter, and a comparator that outputs a signal only when the output is lower than the set value, and a warning means that issues a warning based on the signal from the comparator. A fine shape measuring instrument characterized by: 3) In a micro-shape measuring instrument that measures the reflected light of the laser beam projected onto the surface to be measured with a photodiode and calculates the change in distance from the output of this photodiode to the surface to be measured, the output of the photodiode and the set value of the reflectance limit setter, and a comparator that outputs the first signal only when the above output is lower than the set value, and a comparator that memorizes the signal from this comparator and outputs the first signal once during measurement work. However, when the first signal is received, a memory device that outputs a second signal after the measurement operation is completed, and a warning means that issues a warning based on the second signal are provided. . 4) In a micro-shape measuring instrument that measures the reflected light of the laser beam projected onto the surface to be measured with a photodiode and calculates the change in distance from the output of this photodiode to the surface to be measured, the output of the photodiode A comparator that compares the output with the set value of the reflectance limit setter and outputs a signal only when the above output is lower than the set value, and a comparator that parallels the surface to be measured and the measurement head based on the signal from this comparator. A micro-shape measuring instrument characterized by being provided with a measurement stop command circuit that opens a contact point provided in the middle of a conductive wire that energizes a motor for movement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23322584A JPS61112907A (en) | 1984-11-07 | 1984-11-07 | Measuring apparatus of microscopic shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23322584A JPS61112907A (en) | 1984-11-07 | 1984-11-07 | Measuring apparatus of microscopic shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61112907A true JPS61112907A (en) | 1986-05-30 |
JPH0513241B2 JPH0513241B2 (en) | 1993-02-22 |
Family
ID=16951711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23322584A Granted JPS61112907A (en) | 1984-11-07 | 1984-11-07 | Measuring apparatus of microscopic shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61112907A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0743853U (en) * | 1992-08-04 | 1995-09-26 | オカモト株式会社 | Inflatable boat |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716806U (en) * | 1980-06-21 | 1982-01-28 | ||
JPS57139607A (en) * | 1981-02-23 | 1982-08-28 | Hitachi Ltd | Position measuring equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620410A (en) * | 1979-07-30 | 1981-02-26 | Tada Motsukou Seisakusho Kk | Constitutional material for furniture |
-
1984
- 1984-11-07 JP JP23322584A patent/JPS61112907A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716806U (en) * | 1980-06-21 | 1982-01-28 | ||
JPS57139607A (en) * | 1981-02-23 | 1982-08-28 | Hitachi Ltd | Position measuring equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0743853U (en) * | 1992-08-04 | 1995-09-26 | オカモト株式会社 | Inflatable boat |
Also Published As
Publication number | Publication date |
---|---|
JPH0513241B2 (en) | 1993-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3749500A (en) | Optical caliper and edge detector-follower for automatic gaging | |
US3885875A (en) | Noncontact surface profilometer | |
JPS6379004A (en) | Light probe for measuring shape | |
US5929983A (en) | Optical apparatus for determining the height and tilt of a sample surface | |
JPH03223609A (en) | Touch probe | |
JPS6127682B2 (en) | ||
JPS63295911A (en) | Measuring apparatus for displacement | |
JPS6339842B2 (en) | ||
CN116164673A (en) | Straightness interferometry method based on optical interference principle | |
CN114577125B (en) | Non-contact optical lens center thickness measuring method and measuring device | |
US5124563A (en) | Optical scanning method and device for measuring the width of lines | |
CN111964580B (en) | Device and method for detecting position and angle of film based on optical lever | |
US3406292A (en) | Surface checking device | |
JPS61112907A (en) | Measuring apparatus of microscopic shape | |
CN116336995A (en) | A small-angle inspection device and a small-angle inspection method based on the principle of autocollimation | |
JPH0238808A (en) | Photosensor | |
Murty et al. | Method for measurement of parallelism of optically parallel plates | |
CN114383500A (en) | A kind of multi-parameter detection method and device | |
JPH05164556A (en) | Focusing type non-contact displacement gage | |
KR100344344B1 (en) | Potable Nondestructive and Noncontact Optical Measurement System | |
JPH0338645Y2 (en) | ||
US3220113A (en) | Surface checking device | |
JPH044167Y2 (en) | ||
CN1072773A (en) | Active laser displacement sensor | |
JPH044966Y2 (en) |