JPS61112128A - liquid crystal display device - Google Patents
liquid crystal display deviceInfo
- Publication number
- JPS61112128A JPS61112128A JP23387684A JP23387684A JPS61112128A JP S61112128 A JPS61112128 A JP S61112128A JP 23387684 A JP23387684 A JP 23387684A JP 23387684 A JP23387684 A JP 23387684A JP S61112128 A JPS61112128 A JP S61112128A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display device
- crystal display
- substrates
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 46
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000000853 adhesive Substances 0.000 claims abstract description 23
- 230000001070 adhesive effect Effects 0.000 claims description 19
- 238000007789 sealing Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 abstract description 15
- 238000001723 curing Methods 0.000 abstract description 13
- 239000010409 thin film Substances 0.000 abstract description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000005297 pyrex Substances 0.000 abstract description 3
- 238000007650 screen-printing Methods 0.000 abstract description 2
- 238000003848 UV Light-Curing Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a liquid crystal display device.
特に、該液晶表示装置の2枚の基板の接着構造に関する
ものである。In particular, it relates to the bonding structure between two substrates of the liquid crystal display device.
第3図及び第4図に従って、従来の液晶表示装置の製造
方法及びその構造について詳述する。第8図は液晶表示
装置の一般的な製造方法ケ示している。即ち、工程(α
)に於て、薄膜トランジスターを集積した熱膨張係数の
小さい(6、OX 10−7cm/℃)石英製のアクテ
ィブ基板1とこれに対向する安価な熱膨張係数の大きい
(約33 X 10−’ crn/℃)パイレックスガ
ラス製の対向ガラス基板2の互いに向きあう表面は液晶
分子の配向を制御するために配向処理を施される。通常
、基板上に形成した有機高分子膜表面の活性化によって
処理される事が多い。工程(b)ではアクティブ基板1
と対向ガラス基板2を貼り合わせて液晶を封入する空間
を形成する為に少なくとも一方の基板、ここではアクテ
ィブ基板1の内面に熱硬化型接着剤3をつける。工程(
c)では、要求される上下の基板の位置合わせを実施す
る。工程(めに於て、一定の荷重をかけて加熱し、熱硬
化型接着剤8を硬化させる。以上までで、アクティブ基
板1と対向ガラス基板2は一定の間隙を持って熱硬化型
接着剤3によってはり合わされ、液晶封入前の段階まで
液晶表示装置の製造される。第4図は液晶4を封入して
完成した液晶表示装置の断面構造であり、液晶4は熱硬
化型接着剤3によってはり合わされた2枚の基板の間に
表示モードに応じて、配向させられて閉じ込められてい
る。以上の様にしてなる液晶表示袋fitFi、一方に
、アクティブ基板1を用いた事から、駆動デユーチー比
がほぼ100%の表示が実現でき、大面積の表示も可能
な鮮明な画素表示金ねらったものであった。A method of manufacturing a conventional liquid crystal display device and its structure will be described in detail with reference to FIGS. 3 and 4. FIG. 8 shows a general method for manufacturing a liquid crystal display device. That is, the process (α
), an active substrate 1 made of quartz with a small thermal expansion coefficient (6, OX 10-7 cm/°C) on which thin film transistors are integrated and an inexpensive active substrate 1 with a large thermal expansion coefficient (approximately 33 x 10-' crn/° C.) The mutually facing surfaces of the opposing glass substrates 2 made of Pyrex glass are subjected to alignment treatment in order to control the alignment of liquid crystal molecules. Usually, processing is often carried out by activating the surface of an organic polymer film formed on a substrate. In step (b), the active substrate 1
A thermosetting adhesive 3 is applied to the inner surface of at least one of the substrates, here the active substrate 1, in order to bond the opposite glass substrate 2 and form a space for sealing the liquid crystal. Process (
In c), the required alignment of the upper and lower substrates is performed. In the process, a certain load is applied and heated to harden the thermosetting adhesive 8. Thus far, the active substrate 1 and the opposing glass substrate 2 are bonded with the thermosetting adhesive with a certain gap between them. 3, and the liquid crystal display device is manufactured up to the stage before liquid crystal encapsulation. Figure 4 shows the cross-sectional structure of the completed liquid crystal display device with liquid crystal 4 encapsulated. It is oriented and confined between two substrates glued together according to the display mode.In the liquid crystal display bag fitFi made as described above, on the other hand, since the active substrate 1 is used, the drive duty ratio is The goal was to achieve a clear pixel display that could achieve almost 100% display and display over a large area.
さらにまた、対向ガラス基板2としてカラーフィルター
を用いれば、フルカラーの画像表示も可能ならしめるも
のであった。Furthermore, if a color filter is used as the counter glass substrate 2, it is possible to display a full color image.
しかし、従来例の様に熱硬化型接着剤8を用いると、硬
化の為に一般的には約100’C以上の高温中に長時間
保たなければならない。However, when a thermosetting adhesive 8 is used as in the conventional example, it must be kept at a high temperature of approximately 100'C or higher for a long time in order to cure.
すると今、薄膜トランジスターを集積する為に高温プロ
セスを経る事から一方の基板として、軟化点が高く、熱
膨張係数の小さなアクティブ基板1を用い、他方の基板
として安価な熱膨張係数の大きい対向ガラス基板2t−
用いて両者を接着剤を介して高温中で硬化させると、高
温中で接着剤が硬化した時に、今対向ガラス基板2の熱
膨張係数が正で大なる場合を仮定すると、その断面構造
は笛5図のようになる。これを次工程で室温中に取り出
すと、対向ガラス基板が収縮する為に、製造される液晶
表示装置の断面構造は第6図の様になり、この結果、液
晶表示装置は大きなノリを持った形状となり、さらに、
第6図かられかる様に2枚の基板間の液晶の注入される
間隙が一定とならず、ここに液晶を注入して得られる液
晶表示装置は、液晶4の厚みが一様でない事から表示の
ムラt−まねき、表示品質が低下する事になる。具体的
に言えば、表示装置の色付きや、各部での厚みのムラか
ら電気光学的特性の場所による差異が生ずるのである。Now, since a high temperature process is required to integrate thin film transistors, an active substrate 1 with a high softening point and a small coefficient of thermal expansion is used as one substrate, and an inexpensive counter glass with a large coefficient of thermal expansion is used as the other substrate. Board 2t-
When the adhesive is cured at high temperature, assuming that the coefficient of thermal expansion of the facing glass substrate 2 is positive and large, the cross-sectional structure will be like that of a whistle. It will look like Figure 5. When this is taken out to room temperature in the next process, the opposing glass substrate shrinks, and the cross-sectional structure of the manufactured liquid crystal display device becomes as shown in Figure 6. As a result, the liquid crystal display device has a large glue. shape, and furthermore,
As shown in Figure 6, the gap between the two substrates where the liquid crystal is injected is not constant, and the liquid crystal display device obtained by injecting the liquid crystal here is because the thickness of the liquid crystal 4 is not uniform. The display becomes uneven and the display quality deteriorates. Specifically, differences in electro-optical characteristics occur depending on the location due to coloring of the display device and uneven thickness at various parts.
また、該液晶表示装置を部品として組み立てる場合、高
密度な実装にあたってはソリがあるため位置決め+液晶
表示装置の支持構造が複雑になってしまう事が起きる。Further, when the liquid crystal display device is assembled as components, warping occurs in high-density packaging, which makes positioning and the supporting structure of the liquid crystal display device complicated.
さらに、熱硬化は上述の様に瞬時で完了しない事から、
硬化中にかけられている荷重のかたよりがあると、2枚
の基板は要求された位置からずれを生じそのまま硬化し
、この現象が著しい場合一方の基板が接着剤の部分から
はずれて液晶表示装置として成り立たない。Furthermore, as heat curing is not completed instantaneously as mentioned above,
If there is an imbalance in the load being applied during curing, the two substrates will shift from the required position and will continue to cure. If this phenomenon is significant, one of the substrates will separate from the adhesive and will not function as a liquid crystal display device. It doesn't work.
本発明の液晶表示装置は、2枚の熱膨張係数の異なる基
板を一定の間隔を持って貼り合わせて生ずる空間に液晶
を封入して構成される液晶表示装置に於て、前記2枚の
基板を紫外線硬化型接着剤にて貼り合わせてなる事を特
徴とする。The liquid crystal display device of the present invention is a liquid crystal display device configured by sealing a liquid crystal in a space created by bonding two substrates having different coefficients of thermal expansion at a constant interval. It is characterized by being bonded together using an ultraviolet curing adhesive.
本発明の上記の構成によれば、接着剤の硬化が光エネル
ギーによって瞬時に達成されるため、熱硬化型接着剤8
f:、用いる時2枚の基板両者とも硬化温度にまで熱り
せられていたのに対して、該基板の温度上昇をまねく事
なく、換言すれば接着剤のみを選択的に硬化さる事が可
能となるのである。According to the above configuration of the present invention, since the adhesive is instantly cured by light energy, the thermosetting adhesive 8
f: When used, both of the two substrates are heated to the curing temperature, but in other words, only the adhesive can be selectively cured without causing the temperature of the substrate to rise. It becomes possible.
実施例1
第1図は本発明の実施例における液晶表示装置の製造方
法を示すもので、工程(α)に於て石英ガラス上に薄膜
トランジスターを集積し、画素電極7をつくった、アク
ティブ基板1と、全面に電極6を持つパイレックスガラ
ス表の対向ガラス基板2の向かい合う面に配向処理を施
した後、工程(b)に於て、例えばスクリーン印刷にて
、紫外線硬化型接着剤5をアクティブ基板1の上に形成
する。工程(C)に於て、必要な位置合わせを実施した
後、工程(力で、一定の荷重を負荷として、紫外光線を
照射することによって紫外線硬化型接着剤5を硬化させ
る。この硬化は、紫外光線の作用によって迅速に進み、
約1分以内で完了し、硬化にあたっての基板表面温度は
約刃℃以下に抑える事ができた。Embodiment 1 FIG. 1 shows a method for manufacturing a liquid crystal display device in an embodiment of the present invention. In step (α), thin film transistors are integrated on quartz glass, and a pixel electrode 7 is formed on an active substrate. 1 and a facing glass substrate 2 made of Pyrex glass having electrodes 6 on the entire surface are subjected to alignment treatment, and then in step (b), an ultraviolet curable adhesive 5 is activated by, for example, screen printing. It is formed on the substrate 1. In step (C), after performing the necessary positioning, the ultraviolet curable adhesive 5 is cured by irradiating ultraviolet rays with force and a constant load. Proceeds quickly through the action of ultraviolet light,
The curing process was completed within about 1 minute, and the substrate surface temperature during curing was able to be kept below about 30°F.
さらに徹底するためには、紫外光線の照射工程U)に於
て、紫外線硬化型接着剤5の部分にのみ照射するように
例えば紫外線カツトフィルターにてマスキングを施す事
で、基板表面の温度上昇はより低温に抑制可能である。In order to be more thorough, in the ultraviolet ray irradiation process U), for example, by masking with an ultraviolet cut filter so that only the part of the ultraviolet curable adhesive 5 is irradiated, the temperature rise on the substrate surface can be prevented. It is possible to suppress the temperature to a lower temperature.
以上の様に構成された本発明による液晶表示装置の断面
構造図を第2図(α)に示した。2枚の熱膨張係数の大
きく異なる基板1.2を用いながら、熱硬化型接着剤8
を用いた従来例に対してソリの量が約殖以下で、液晶4
の厚みの均一な液晶表示装置が得られた。A cross-sectional structural diagram of the liquid crystal display device according to the present invention constructed as described above is shown in FIG. 2 (α). While using two substrates 1.2 with significantly different coefficients of thermal expansion, the thermosetting adhesive 8
The amount of warpage is less than that of the conventional example using liquid crystal 4
A liquid crystal display device with a uniform thickness was obtained.
実施例2
本発明によって対向ガラス基板2の内面に赤(ト)、線
(G)、青(B)の着色層8を形成して構成された一実
施例における液晶表示装置の断面構造図fc第2図(b
)に示した。各着色層はそれぞれが、アクティブ基板1
の上に形成された画素電極7に重なる様に位置合わせす
る事が要求される。本実施例によると鮮やかなフルカラ
ー液晶表示装置が得られるわけであるが、特に紫外線硬
化反接着剤5を用いる事で、2枚の基板1,2の熱膨張
係数が大きく異なるにもかかわらず、硬化途中での位置
のズレを抑え、さらに液晶4の厚みのムラから発生する
色付きをなくして、非常に色再現性にすぐれた、フルカ
ラー液晶表示装置が実現できた。Example 2 Cross-sectional structural diagram fc of a liquid crystal display device according to an example in which colored layers 8 of red (G), lines (G), and blue (B) are formed on the inner surface of a counter glass substrate 2 according to the present invention. Figure 2 (b
)It was shown to. Each colored layer is connected to the active substrate 1.
It is required to align the pixel electrode 7 so that it overlaps with the pixel electrode 7 formed on the pixel electrode 7 . According to this example, a bright full-color liquid crystal display device can be obtained, but in particular, by using the ultraviolet curing anti-adhesive 5, even though the coefficients of thermal expansion of the two substrates 1 and 2 are greatly different, By suppressing misalignment during curing and eliminating discoloration caused by uneven thickness of the liquid crystal 4, a full-color liquid crystal display device with excellent color reproducibility was realized.
実施例8
本発明によれば、一方の基板としてプラスチック製フィ
ルムを用いる場合にも、2枚の基板の熱膨張係数が異な
る事になるのでその効果は大きいと言える。Example 8 According to the present invention, even when a plastic film is used as one of the substrates, the effect is significant because the two substrates have different coefficients of thermal expansion.
以上述べたように、本発明によれば、著しく熱膨張係数
の異なる2枚の基板を、紫外線硬化型接層剤5を介して
貼り合わせた構造をとることにより、接着剤の硬化が光
エネルギーで瞬時に完了するため、基板に不必要な温度
をかける事なく液晶表示装置を構成するため、膨張係数
の差から生ずるソリを防ぐ事ができる。また、2枚の基
板の間の液晶層の厚みが均一化されるため表示にあたっ
ては大画面でも場所による光学特性の変化が少く良好な
表示が得られるものであり、特に反射型の表示や、カラ
ー表示にあたって問題となる色付きも発生せず有効であ
る。さらに、ノリが少ない事から完成した液晶表示装置
の外形精度を高く安定させて製造可能となった。加えて
、本発明によると、ノリの発生を防ぐ事が可能であるた
め、硬化中に荷重の偏りによる基板のズレがない為、高
度の位置合わせを可能ならしめるものである。As described above, according to the present invention, by adopting a structure in which two substrates having significantly different coefficients of thermal expansion are bonded together via the ultraviolet curing adhesive 5, the curing of the adhesive is performed using light energy. Since the process is completed instantly, the liquid crystal display device can be constructed without applying unnecessary temperature to the substrate, thereby preventing warping caused by differences in expansion coefficients. In addition, since the thickness of the liquid crystal layer between the two substrates is made uniform, it is possible to obtain a good display with little change in optical characteristics depending on the location even on a large screen. It is effective and does not cause coloring, which is a problem in color display. Furthermore, because there is less glue, it is now possible to manufacture completed liquid crystal display devices with high and stable external precision. In addition, according to the present invention, since it is possible to prevent the occurrence of glue, there is no displacement of the substrate due to unbalanced load during curing, making it possible to achieve a high degree of alignment.
第1図は(α)〜(d)本発明にかかる液晶表示装置の
製造方法の一例を示す図。
第2図(cL)は本発明の一実施例を示す液晶表示装置
の断面構造図。
第2図(6)は本発明の一実施例を示すフルカラー液晶
表示装置の断面構造図。
第3図(α)〜(力は従来の液晶表示装置の代表的製造
方法の一例を示す図。
第4図は従来の液晶表示装置の断面構造図。
第5図は従来の液晶表示装置の接着剤硬化工程中での断
面構造図。
第6図は従来の液晶表示装置の完成体断面構造図。
IIIII−アクティブ基板
2勢・・対向ガラス基板
3・・睡熱硬化型接着剤
4・・・液晶
5・・・紫外#硬化型接着剤
6・・・対向ガラス基板の全面PiIL極7−・−・画
素電極
8・・會着色層
以 上FIG. 1 is a diagram (α) to (d) showing an example of a method for manufacturing a liquid crystal display device according to the present invention. FIG. 2(cL) is a cross-sectional structural diagram of a liquid crystal display device showing one embodiment of the present invention. FIG. 2(6) is a cross-sectional structural diagram of a full-color liquid crystal display device showing one embodiment of the present invention. Figures 3 (α) to (forces are diagrams showing an example of a typical manufacturing method of a conventional liquid crystal display device. Figure 4 is a cross-sectional structural diagram of a conventional liquid crystal display device. Figure 5 is a diagram of a conventional liquid crystal display device. A cross-sectional structural diagram during the adhesive curing process. Figure 6 is a cross-sectional structural diagram of a completed conventional liquid crystal display device.・Liquid crystal 5...Ultraviolet curing adhesive 6...Full surface PiIL pole of opposing glass substrate 7--Pixel electrode 8...Fixed colored layer and above
Claims (1)
り合わせて生ずる空間に液晶を封入して構成される液晶
表示装置に於て、前記2枚の基板を紫外線硬化型接着剤
にて貼り合わせてなる事を特徴とする液晶表示装置。In a liquid crystal display device that is constructed by sealing a liquid crystal in the space created by bonding two substrates with different coefficients of thermal expansion at a certain distance, the two substrates are bonded together with an ultraviolet curing adhesive. A liquid crystal display device characterized by being laminated together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23387684A JPS61112128A (en) | 1984-11-06 | 1984-11-06 | liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23387684A JPS61112128A (en) | 1984-11-06 | 1984-11-06 | liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61112128A true JPS61112128A (en) | 1986-05-30 |
Family
ID=16961947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23387684A Pending JPS61112128A (en) | 1984-11-06 | 1984-11-06 | liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61112128A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0432831A2 (en) * | 1989-12-08 | 1991-06-19 | Koninklijke Philips Electronics N.V. | Double cell liquid crystal display with composite structure and display device incorporating same |
US5680186A (en) * | 1990-02-26 | 1997-10-21 | Sharp Kabushiki Kaisha | Liquid crystal display device with microlenses having a focal point between a cover layer and the liquid crystal layer's center |
US5959712A (en) * | 1997-07-11 | 1999-09-28 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a liquid crystal display element having a decreased fluctuation of aperture ratio |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56155920A (en) * | 1980-05-06 | 1981-12-02 | Ricoh Elemex Corp | Manufacture of liquid crystal display device |
JPS59131A (en) * | 1982-06-25 | 1984-01-05 | Toshiba Corp | Device for assembling liquid crystal display |
JPS59114518A (en) * | 1982-12-22 | 1984-07-02 | Seikosha Co Ltd | Electrically connecting method |
-
1984
- 1984-11-06 JP JP23387684A patent/JPS61112128A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56155920A (en) * | 1980-05-06 | 1981-12-02 | Ricoh Elemex Corp | Manufacture of liquid crystal display device |
JPS59131A (en) * | 1982-06-25 | 1984-01-05 | Toshiba Corp | Device for assembling liquid crystal display |
JPS59114518A (en) * | 1982-12-22 | 1984-07-02 | Seikosha Co Ltd | Electrically connecting method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0432831A2 (en) * | 1989-12-08 | 1991-06-19 | Koninklijke Philips Electronics N.V. | Double cell liquid crystal display with composite structure and display device incorporating same |
EP0432831A3 (en) * | 1989-12-08 | 1991-07-24 | N.V. Philips' Gloeilampenfabrieken | Double cell liquid crystal display with composite structure and display device incorporating same |
US5680186A (en) * | 1990-02-26 | 1997-10-21 | Sharp Kabushiki Kaisha | Liquid crystal display device with microlenses having a focal point between a cover layer and the liquid crystal layer's center |
US5959712A (en) * | 1997-07-11 | 1999-09-28 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a liquid crystal display element having a decreased fluctuation of aperture ratio |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100854028B1 (en) | LCD and its manufacturing method | |
KR100477567B1 (en) | A method for manufacturing plane display device | |
KR20020032091A (en) | Liquid crystal display panel and method for manufacturing the same | |
JPH11174435A (en) | Production of liquid crystal display device | |
JPS61112128A (en) | liquid crystal display device | |
JPH05333351A (en) | Production of liquid crystal display panel | |
JP2000019540A (en) | Liquid crystal display device | |
JPH01195421A (en) | Manufacture of liquid crystal display device | |
JPH11125829A (en) | Manufacturing method of liquid crystal display device | |
JP2001318387A (en) | Liquid crystal display panel and its manufacturing method | |
JP2609088B2 (en) | Manufacturing method of liquid crystal display | |
JP2001281677A (en) | Liquid crystal display device | |
JPH01257824A (en) | Production of liquid crystal panel | |
JPH03127029A (en) | Production of spacer material, sealing material and liquid crystal panel | |
JPH05109482A (en) | Thin-film el panel with sealing plate and manufacture thereof | |
JP2815822B2 (en) | Liquid crystal panel manufacturing method | |
JPH08114789A (en) | Liquid crystal display device and its production | |
JPH049923A (en) | Sticking structure for optical element | |
JP2006234957A (en) | Liquid crystal display device and method for manufacturing liquid crystal display device | |
JPH04107530A (en) | Production of liquid crystal panel | |
JPH04163423A (en) | Manufacture for liquid crystal panel | |
JPH07175072A (en) | Liquid crystal display device and its production | |
JPS5886518A (en) | Liquid crystal display device | |
JPH04195121A (en) | Production of liquid crystal display element | |
JPS62131224A (en) | Production of liquid crystal cell |