[go: up one dir, main page]

JPS61111996A - Rare earth garnet single crystal and method for producing the same - Google Patents

Rare earth garnet single crystal and method for producing the same

Info

Publication number
JPS61111996A
JPS61111996A JP59233345A JP23334584A JPS61111996A JP S61111996 A JPS61111996 A JP S61111996A JP 59233345 A JP59233345 A JP 59233345A JP 23334584 A JP23334584 A JP 23334584A JP S61111996 A JPS61111996 A JP S61111996A
Authority
JP
Japan
Prior art keywords
crystal
rare earth
single crystal
thermal conductivity
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233345A
Other languages
Japanese (ja)
Other versions
JPH034518B2 (en
Inventor
Hiroshi Maeda
弘 前田
Michinori Sato
佐藤 充典
Hideo Kimura
秀夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP59233345A priority Critical patent/JPS61111996A/en
Publication of JPS61111996A publication Critical patent/JPS61111996A/en
Publication of JPH034518B2 publication Critical patent/JPH034518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain single crystal of rare earth element having improved defects such as dislocation, vacancy, etc., by immersing seed crystal in melt of a specific garnet composition raw material mixture, and pulling it up in a nitrogen gas atmosphere to grow crystal. CONSTITUTION:A composition raw material mixture shown by the formula is melted under heating, seed crystal is immersed in it, and it is pulled up in a nitrogen gas atmosphere to grow crystal. In the formula, M is rare earth element; X is in 0.01<=X<=0.6; 0.01<=Y<=0.3. When value of X is <0.01, effect is hardly shown for improvement in thermal conductivity. When X exceeds 0.6, GdAlO3 phase of perovskite structure is crystallized in the garnet structure, and thermal conductivity is lowered. When Y is smaller than 0.01, effect is small, and when it exceeds 0.3, defects caused by dislocation, vacancy, etc. abruptly increase, and cracks occur. In growing crystal, pulling method is preferable with respect to easy preparation of large-scale crystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気バブルメモリー、磁気冷凍作業物質、磁気
光学材料、レーザ素子材料などに使用される希土類ガー
ネット単結晶体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rare earth garnet single crystal used in magnetic bubble memories, magnetic refrigeration materials, magneto-optical materials, laser element materials, etc., and a method for producing the same.

従来の技術 従来、希土類ガーネット単結晶体としては、Y、F’e
、0.2、Y、 At、 O,!、Gd、Ga、0.、
などが知られており、これらは磁気バブルメモリー、磁
気冷凍作業物質、磁気光学材料、レーザ素子材料として
広く用いられている。
Conventional technology Conventionally, rare earth garnet single crystals include Y, F'e
, 0.2, Y, At, O,! , Gd, Ga, 0. ,
These materials are widely used as magnetic bubble memories, magnetic refrigeration materials, magneto-optical materials, and laser element materials.

これらの単結晶の性能と信頼性を向上させるために、結
晶中の転位、空孔等の欠陥が極めて少なく、用途に応じ
た性能を発揮できる新しいガーネット単結晶の開発が要
望されている。
In order to improve the performance and reliability of these single crystals, there is a need for the development of new garnet single crystals that have extremely few defects such as dislocations and vacancies in the crystal and can exhibit performance appropriate to the intended use.

代表的なGd、Ga、0.2ガーネツトは、磁気パブル
メ% IJ−の基板材料として広く用いられている。ま
た最近では全く新しい原理に基づく磁気冷凍法に用いる
磁気冷凍作業物質として注目されている。
Typical Gd, Ga, and 0.2 garnet are widely used as substrate materials for magnetic materials. Recently, it has also attracted attention as a magnetic refrigeration material used in magnetic refrigeration methods based on completely new principles.

磁気冷凍法は、一般に磁性体を強磁界中に挿入し、磁気
スピンを整列状態にすると発熱が起こる。この熱を外部
に取り去った後、逆に強磁界から磁性体を引出して磁気
スピンを擾乱状態にすると、吸熱が起こり、外部の冷凍
対象物から熱を奪い冷凍すると言う冷凍法である。
In magnetic freezing, a magnetic material is generally inserted into a strong magnetic field and heat is generated when the magnetic spins are aligned. After this heat is removed to the outside, when the magnetic material is pulled out from a strong magnetic field and its magnetic spin is disturbed, heat absorption occurs, which takes heat from the external object to be frozen and freezes it.

これに使用する磁気冷凍作業物質としては、(1)磁気
モーメントが大きいこと、(2)熱伝導率が高いこと、
(3)磁気変態温度が低いことなどの特゛性が要求され
る。しかし、Gd3Ga、O,□は熱伝導率が低い問題
点があった。
The magnetic refrigeration material used for this purpose has (1) a large magnetic moment, (2) a high thermal conductivity,
(3) Characteristics such as a low magnetic transformation temperature are required. However, Gd3Ga, O, □ had a problem of low thermal conductivity.

本発明者らはこの問題点を解決するため研究の結果、さ
きにQd、 Qa、 ol!ガーネットのGaの一部を
入りで置換した新しいガーネットであるGdx (Ga
、−xAt)OsO+z(ただし、Xは0.01≦X≦
0.6)の高い熱伝導率を有するガーネットを見出した
。(昭和59年10月16日提出の特許願(イ))発明
の目的 本発明ガーネットは磁気モーメントが大きく、熱伝導率
の高い特性を有し、本発明者らが発明した前記Gd、 
(Ga、−xA4)□sO+g より転位、空孔などの
欠陥の少ない単結晶を提供し、磁気冷凍作業物質として
は勿論、磁気バブルメモリー用基板材料、レーザ素子材
料、磁気光学材料などとして広く利用し得られる新しい
ガーネット単結晶を提供するにある。
As a result of research to solve this problem, the present inventors first developed Qd, Qa, ol! Gdx (Ga
, -xAt)OsO+z (where X is 0.01≦X≦
Garnet was found to have a high thermal conductivity of 0.6). (Patent Application (A) filed on October 16, 1982) Purpose of the Invention The garnet of the present invention has a large magnetic moment and a high thermal conductivity, and the above-mentioned Gd, which was invented by the present inventors,
(Ga, -xA4)□sO+g Provides a single crystal with fewer defects such as dislocations and vacancies, and is widely used as a magnetic refrigeration material, as well as substrate materials for magnetic bubble memories, laser element materials, magneto-optical materials, etc. The goal is to provide new garnet single crystals.

発明の構成 本発明者らはGd3 (Ga、−xAzx)sO+z(
ただし、Xは前記と同じものを表わす)ガーネットにつ
いて研究を重ねた結果、該単結晶では熱応力によって導
入された転位等の欠陥が残ることが分秒、(G a +
 −X Atx)の1部を希土類元素で置換す、Yo、
、 (ただし、Mは希土類元素の1種または2種以上の
組合せ、Xは0.01≦X≦0.6、Yは0.01≦Y
≦0.3を表わす)で示される希土類ガーネット単結晶
体にある。
Structure of the Invention The present inventors have prepared Gd3 (Ga, -xAzx)sO+z(
However, as a result of repeated research on garnet (X represents the same thing as above), it has been found that defects such as dislocations introduced by thermal stress remain in the single crystal (G a +
-X Atx) is partially replaced with a rare earth element, Yo,
(However, M is one kind or a combination of two or more rare earth elements, X is 0.01≦X≦0.6, and Y is 0.01≦Y.
≦0.3) is a rare earth garnet single crystal.

MとしてはGd、 Pr、NdXSmXDy、 TbX
Er。
M is Gd, Pr, NdXSmXDy, TbX
Er.

Ho、等が塁げられ、Gdの場合は前記一般式をGd、
+Y(、Oa、−xAlx)、−YO,□として示すこ
とができる。これらの希土類元素は巣独で4、また2種
以上を組合せても使用することができる。
Ho, etc. are expressed, and in the case of Gd, the above general formula is changed to Gd,
+Y(, Oa, -xAlx), -YO, □. These rare earth elements can be used singly or in combination of two or more.

Xの値は0.01−0.6の範囲であることが必要であ
る。Xが0.01より少ないと熱伝導率の向上に殆んど
効果を現わさない。Xが0.6を超えると、ガーネット
構造中にペロブスカイト構造のGdAtOs相が晶出し
、熱伝導率を低下させる。
The value of X needs to be in the range 0.01-0.6. If X is less than 0.01, there will be little effect on improving thermal conductivity. When X exceeds 0.6, a GdAtOs phase with a perovskite structure crystallizes in the garnet structure, reducing thermal conductivity.

Yは単結晶に生ずる転位、空孔などの欠陥の量や熱応力
によって発生するクラックと密接な関係を有する。、Y
が001よ抄少ないと、効果が少なく、0.3を超える
と転位、空孔などによる欠陥が急激に増加し、クラック
が発生するようになる。従ってYは0.01〜0.3の
範囲であることが必要である。
Y has a close relationship with the amount of defects such as dislocations and vacancies that occur in a single crystal, and with cracks that occur due to thermal stress. ,Y
When the value is less than 001, the effect is small, and when it exceeds 0.3, defects due to dislocations, vacancies, etc. increase rapidly, and cracks begin to occur. Therefore, Y needs to be in the range of 0.01 to 0.3.

本発明の希土類ガーネット単結晶は、引上げ法(チョク
ラルスキー法)によって容易に製造し得られる。すなわ
ち、一般式Gd8My(Ga、−8AtX )!−YO
12(ただし、M、Y、Xは前記と同じ本のを表わす)
の組成原料を加熱によって溶解し、これに種結晶を浸し
、0”−3%の酸素ガスを含む窒素ガス雰囲気中で<1
11>結晶軸方向に引上げることによって得られる。し
かし、他の結晶育成法、例えば、ベルヌーイ法、プリジ
マン法、フローティングシー/法などでもよい。
The rare earth garnet single crystal of the present invention can be easily produced by a pulling method (Czochralski method). That is, the general formula Gd8My(Ga, -8AtX)! -YO
12 (However, M, Y, and X represent the same books as above)
A raw material with a composition of
11> Obtained by pulling in the crystal axis direction. However, other crystal growth methods, such as the Bernoulli method, the Prigiman method, and the floating sea/method, may also be used.

中でも高品質な、大型結晶が容易に得られる点で引上げ
法が好ま【7い。
Among these, the pulling method is preferred because high-quality, large-sized crystals can be easily obtained.

実施例1゜ 直径約5pm、純度99.99 %のGd2O,Ga2
O。
Example 1 Gd2O, Ga2 with a diameter of about 5 pm and a purity of 99.99%
O.

及びxz2n、の粉末を、Gd 3 + Y (G a
 6s AZo2) s YO12において、Yが0.
0,01.0.07.0.12.0.170.22.0
.30.0.35になるように配合したもの4202を
それぞれ混練し、プレス後1250℃で焼成して8種類
のガーネットペレットを作った。
and xz2n, Gd 3 + Y (G a
6s AZo2) s YO12, Y is 0.
0,01.0.07.0.12.0.170.22.0
.. 30.0.35 was mixed and kneaded, pressed and then fired at 1250° C. to make eight types of garnet pellets.

各試料をイリジウムるつぼ(直径50wmφ、高さ50
IIIII)中で高周波誘導加熱によって溶解l1、こ
れに種結晶を浸し、0〜3チの酸素ガスを含む窒素ガス
雰囲気中で<111>結晶軸方向に引上げて、直径約2
8薗φ、長さ約50鴫のガーネット単結晶を育成した。
Place each sample in an iridium crucible (diameter 50wmφ, height 50mm).
A seed crystal is immersed in this by high-frequency induction heating in III), and pulled up in the direction of the <111> crystal axis in a nitrogen gas atmosphere containing 0 to 3 g of oxygen gas to give a diameter of about 2
A garnet single crystal with a diameter of 8 mm and a length of approximately 50 mm was grown.

その結果、YがOでは熱応力によって導入された転位に
よる欠陥が多く観1察された。Yが0.35では転位、
空孔などによる欠陥密度が高く、多数のクラックが発生
した。しかし、Yが001〜0.30では転位が極めて
少なく、透明で良質な単結晶が得られた。その熱伝導率
は50〜80W/6nKX@94モーメントけGd 1
原子肖り7.9〜8.0石 町であった。
As a result, when Y was O, many defects due to dislocations introduced by thermal stress were observed. When Y is 0.35, dislocation,
The defect density due to vacancies was high, and many cracks occurred. However, when Y was 001 to 0.30, there were very few dislocations, and a transparent and high-quality single crystal was obtained. Its thermal conductivity is 50~80W/6nKX@94 moment Gd 1
His atomic profile was 7.9 to 8.0 stones.

実施例2゜ 実施例1と同じ原料及び方法によって、Yが0.17の
Gd、、、 (Ga、−、Azx)、、30.、におい
て、Xが0.01.0.1,0.3.0,4.0.5.
0.6、O17の7種類のガーネット単結晶を育成した
Example 2 Using the same raw materials and method as in Example 1, Gd with Y of 0.17, (Ga, -, Azx), 30. , where X is 0.01.0.1, 0.3.0, 4.0.5.
Seven types of garnet single crystals of 0.6 and O17 were grown.

その結果、Xが0.01〜0.6の範囲では転位が極め
て少なく、透明で良質な単結晶が得られた。
As a result, when X was in the range of 0.01 to 0.6, there were extremely few dislocations, and a transparent and high-quality single crystal was obtained.

その熱伝導率及び磁気モーメントは実施例1と同様であ
った。Xが07ではガーネット構造中にペロプスカイト
構造のGdA/、0.相が晶出し、多数のクラックが発
生した。
Its thermal conductivity and magnetic moment were similar to Example 1. When X is 07, GdA/, which has a perovskite structure in the garnet structure, is 0. Phases crystallized and many cracks occurred.

実施例3゜ 実施例1の原料及びこれと同程度の粒度、純度を持つN
d、O,、DY、O,、Br、O,の粉末を用いて、実
施例1と同じ方法によって、Yが0.17のGd、MO
,1,(Gaay入tlLm )4.1+10Hにおい
て、MがNd。
Example 3゜N having the same particle size and purity as the raw material of Example 1
Using powders of d, O,, DY, O,, Br, O, Gd and MO with Y of 0.17 were prepared by the same method as in Example 1.
, 1, (Gaay included tlLm) 4.1+10H, M is Nd.

DyXgr、Ndo、5DYo、mである4種類のガー
ネット単結晶を育成した。
Four types of garnet single crystals were grown: DyXgr, Ndo, 5DYo, and m.

その結果、いずれ本転位が極めて少なく、良質な単結晶
が得られた。その熱伝導率及び磁気モーメントは実施例
1のものと同様であった。
As a result, a high-quality single crystal with extremely few main dislocations was obtained. Its thermal conductivity and magnetic moment were similar to those of Example 1.

発明の効果 本発明の希土類ガーネット単結晶体は、磁気モーメント
が大きく、熱伝導率が高い優れだ特    。
Effects of the Invention The rare earth garnet single crystal of the present invention has excellent characteristics such as a large magnetic moment and high thermal conductivity.

性を有(71、しかも転位、空孔などの欠陥が極めで少
ない良質な大盤単結晶である。従って、磁気冷凍作業物
質、磁気バブルメモリー用基板材料、レーザ素子材料、
磁気光学材料などとして優れた性能と信頼性を有するも
のである。tわ、     しかも従来の製造装置及び
技術がそのまま利用し得られる利点を有する。
It is a high-quality large single crystal with extremely low defects such as dislocations and vacancies. Therefore, it can be used as a magnetic refrigeration material, a substrate material for magnetic bubble memory, a laser element material,
It has excellent performance and reliability as a magneto-optical material. Moreover, it has the advantage that conventional manufacturing equipment and techniques can be used as is.

特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  −
Patent applicant: Ryu Kawa, Director, Research Institute for Metals, Science and Technology Agency −

Claims (1)

【特許請求の範囲】 1)一般式Gd_3M_Y(Ga_1_−_xAl_x
)_5_−_YO_1_2(ただし、Mは希土類元素の
1種または2種以上の組合せ、Xは0.01≦X≦0.
6、Yは0.01≦Y≦0.3を表わす。)で示される
希土類ガーネット単結晶体。 2)一般式Gd_3M_Y(Ga_1_−_xAl_x
)_5_−_YO_1_2(ただし、Mは希土類元素の
1種または2種以上の組合せ、Xは0.01≦X≦0.
6、Yは0.01≦Y≦0.3を表わす)の組成原料混
合物を加熱によって溶解し、これに種結晶を浸し、窒素
ガス雰囲気中で引上げて結晶を育成することを特徴とす
る希土類ガーネット単結晶体の製造方法。
[Claims] 1) General formula Gd_3M_Y(Ga_1_-_xAl_x
)_5_-_YO_1_2 (However, M is one kind or a combination of two or more kinds of rare earth elements, and X is 0.01≦X≦0.
6, Y represents 0.01≦Y≦0.3. ) rare earth garnet single crystal. 2) General formula Gd_3M_Y(Ga_1_-_xAl_x
)_5_-_YO_1_2 (However, M is one kind or a combination of two or more kinds of rare earth elements, and X is 0.01≦X≦0.
6, Y represents 0.01≦Y≦0.3) A rare earth material characterized by dissolving a raw material mixture by heating, immersing a seed crystal in this, and growing the crystal by pulling it up in a nitrogen gas atmosphere. Method for producing garnet single crystal.
JP59233345A 1984-11-07 1984-11-07 Rare earth garnet single crystal and method for producing the same Granted JPS61111996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233345A JPS61111996A (en) 1984-11-07 1984-11-07 Rare earth garnet single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233345A JPS61111996A (en) 1984-11-07 1984-11-07 Rare earth garnet single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61111996A true JPS61111996A (en) 1986-05-30
JPH034518B2 JPH034518B2 (en) 1991-01-23

Family

ID=16953689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233345A Granted JPS61111996A (en) 1984-11-07 1984-11-07 Rare earth garnet single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JPS61111996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128921A (en) * 1985-11-26 1987-06-11 Takakuni Hashimoto Magnetic material
JPS6481380A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481378A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481379A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481377A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPH01152605A (en) * 1987-12-09 1989-06-15 Shin Etsu Chem Co Ltd Oxide garnet single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128921A (en) * 1985-11-26 1987-06-11 Takakuni Hashimoto Magnetic material
JPH0313171B2 (en) * 1985-11-26 1991-02-21 Gishu Hashimoto
JPS6481380A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481378A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481379A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPS6481377A (en) * 1987-09-24 1989-03-27 Nec Corp Crystal for solid state laser
JPH01152605A (en) * 1987-12-09 1989-06-15 Shin Etsu Chem Co Ltd Oxide garnet single crystal

Also Published As

Publication number Publication date
JPH034518B2 (en) 1991-01-23

Similar Documents

Publication Publication Date Title
WO2010024392A1 (en) Manufacturing method for silicon carbide monocrystals
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JPS61111996A (en) Rare earth garnet single crystal and method for producing the same
Jiang et al. Large size rare earth iron garnet single crystals grown by the flux–Bridgman method
CN103160911B (en) A method for growing BiFe1‐xCoxO3 series crystals
CN103993348B (en) The growing method of rare earth orthoferrite monocrystalline and application
Kontani et al. Magnetic, transport and thermal properties of CeCuAl3 single crystal
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
Nielsen Properties and preparation of magnetic materials for bubble domains
US4323618A (en) Single crystal of calcium-gallium germanium garnet and substrate manufactured from such a single crystal and having an epitaxially grown bubble domain film
Korczak et al. Structural and Galvanomagnetic Properties of Pb1− xMnxTe Single Crystals Grown by the Bridgman‐Stockbarger Method
Nishio et al. Large single crystals of Ba1− xKxBiO3 grown by electrochemical technique
CN106087034B (en) A method of utilizing corrosion seed crystal induced growth REBCO high-temperature superconducting block
Menovsky et al. Crystal growth and characterization of MT2Si2 ternary intermetallics (M= U, RE and T= 3d, 4d, 5d transition metals)
CN1544709A (en) Growth method of gadolinium silicate scintillation crystal
US4708763A (en) Method of manufacturing bismuth germanate crystals
JP2003238294A (en) Garnet single crystal substrate and method of producing the same
CN109972198A (en) A kind of preparation method of flaky erbium manganate single crystal
Gudim et al. Single-crystal growth of trigonal DyFe 3 (BO 3) 4 and study of magnetic properties
CN108531974A (en) A kind of large scale Rb0.5RhO2Or Cs0.5RhO2The growing method of crystal
JPS62128921A (en) Magnetic material
JP2003238295A (en) Garnet single crystal substrate and method of producing the same
CN117288554A (en) Preparation method of magnetic material with semen cassiae phase
Milstein Single crystal growth of HoFe2 and ErFe2
Menovsky et al. The crystal growth of uranium tetraboride UB4 from the melt

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term