[go: up one dir, main page]

JPS61108370A - bioreactor - Google Patents

bioreactor

Info

Publication number
JPS61108370A
JPS61108370A JP22845684A JP22845684A JPS61108370A JP S61108370 A JPS61108370 A JP S61108370A JP 22845684 A JP22845684 A JP 22845684A JP 22845684 A JP22845684 A JP 22845684A JP S61108370 A JPS61108370 A JP S61108370A
Authority
JP
Japan
Prior art keywords
reactor
immobilized
draft tube
suspension
immobilized particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22845684A
Other languages
Japanese (ja)
Other versions
JPH0331432B2 (en
Inventor
Tetsuo Yamaguchi
哲男 山口
Setsuo Saito
斉藤 節雄
Yoji Otahara
緒田原 蓉二
Masahiko Ishida
昌彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22845684A priority Critical patent/JPS61108370A/en
Publication of JPS61108370A publication Critical patent/JPS61108370A/en
Publication of JPH0331432B2 publication Critical patent/JPH0331432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はバイオリアクタに係り、特に被反応液と生体触
媒が固定された固定化粒子を懸濁液状態とし、この懸濁
液に気体を吹込んで反応を起こさせるバイオリアクタに
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a bioreactor, and particularly to a bioreactor, in which immobilized particles on which a reactant liquid and a biocatalyst are immobilized are made into a suspension state, and a gas is blown into this suspension. This invention relates to a bioreactor that causes a reaction.

〔発明の背景〕[Background of the invention]

従来バイオリアクタに用いられ、生体触媒が固定された
固定化粒子を貯留し、被反応液と反応を起こす反応器と
して懸濁反応塔がある。
A suspension reaction tower is conventionally used in a bioreactor as a reactor that stores immobilized particles to which a biocatalyst is immobilized and causes a reaction with a liquid to be reacted.

この懸濁反応塔は生体触媒(酵素、微生物等)が固定化
された固定化粒子を浮遊状態で貯留し、この固定化粒子
に反応液を接触させて目的物を一酵素反応等の生物反応
により得ようとするものである。
This suspension reaction tower stores immobilized particles on which biocatalysts (enzymes, microorganisms, etc.) are immobilized in a suspended state, and brings the reaction solution into contact with the immobilized particles to produce the target product in a biological reaction such as an enzyme reaction. This is what we are trying to obtain.

このWI4濁反応塔は固定化粒子が充填される充填塔に
比べて固定化粒子が目詰まりすることがなく。
This WI4 turbid reaction tower is less likely to be clogged with immobilized particles than a packed tower filled with immobilized particles.

従って、粒径の小さい固定化粒子を用いても圧力損失が
大きくない、特にゲル状の固定化粒子を用いても、液圧
によって該固定化粒子が圧縮変形しない、また1反応に
気体が関与する場合、反応が基質、生成物により阻害さ
れる場合、あるいは夾雑物を含む原料を処理する場合の
ように、塔内金体に良好な混合状態を要求される反応に
対しては安定した操作が得られる。
Therefore, even if immobilized particles with a small particle size are used, the pressure loss is not large, and even if gel-like immobilized particles are used, the immobilized particles are not compressively deformed by liquid pressure, and gas is involved in one reaction. Stable operation is required for reactions that require a good mixing state in the metal body in the column, such as when the reaction is inhibited by substrates or products, or when processing raw materials containing impurities. is obtained.

しかし、上記懸濁液反応塔は一般的に次のような問題が
ある。
However, the above-mentioned suspension reaction tower generally has the following problems.

すなわち、その第1は、懸濁反応塔内に収容する固定化
物粒子の充填率は低くした方が流動性が良くなるが、逆
に充填率を低くすると、塔容積尚りの触媒量が小さくな
り反応量が低下する。
That is, the first reason is that fluidity improves when the filling rate of immobilized particles contained in the suspension reaction tower is lowered, but conversely, when the filling rate is lowered, the amount of catalyst per tower volume becomes smaller. The amount of reaction decreases.

その第2点は、懸濁反応塔内の一定化物粒子はその一部
が底部に沈澱することなく、一様な粒子濃度分布になる
よう懸濁させる必要があるが、通気量が大きくなり過ぎ
ると、特にゲル材で形成された固定化物はその通気によ
る流動の機械的な衝撃により破壊される。
The second point is that the stabilized particles in the suspension reaction tower need to be suspended so that a uniform particle concentration distribution is achieved without some of them settling at the bottom, but the amount of ventilation becomes too large. In particular, immobilized objects formed of gel materials are destroyed by the mechanical impact of the flow caused by the aeration.

そこで、特公昭54−26972号公報に示された懸濁
反応塔のように反応塔の下方部を円錐形状にし、塔内金
体E;循環流が形成されるようにして下降してくる固定
化物粒子が塔底中心部付近に集合する構造となし、液お
よび固定化物粒子が一部に堆積することなく良好な流動
状態が得られるようにしたものがある。しかし、この懸
濁反応塔は塔の横断面が高さ方向に一様でないので、塔
高を等しくして比較した場合、塔径の一様な反応塔に対
して設置面積当りの容積が小さくなる。従って内部に貯
留される固定化物の量が少なくなるから高効率は期待で
きない。
Therefore, as in the suspension reaction tower shown in Japanese Patent Publication No. 54-26972, the lower part of the reaction tower was made into a conical shape. Some types have a structure in which the compound particles gather near the center of the bottom of the column, so that a good fluidity state can be obtained without the liquid and fixed particles accumulating in some areas. However, in this suspension reaction tower, the cross section of the tower is not uniform in the height direction, so when comparing the towers with the same height, the volume per installation area is smaller than that of a reaction tower with a uniform tower diameter. Become. Therefore, high efficiency cannot be expected because the amount of immobilized substances stored inside is reduced.

そこで特開昭54−117379号公報記載のように懸
濁反応塔内に中空のドラフトチューブを配置して、ドラ
フトチューブがない懸濁反応塔に比べて通気量を小さく
シ11反応行おうとする懸濁反応塔がある。この懸濁反
応塔は上記特公昭54−26972号の懸濁反応塔のよ
うに塔の横断面が高さ方向に一様でないという構造では
ないので、固定化物の充填量は上記従来例の懸濁反応塔
に比べて増加するが、懸濁液の流動開始時には大きな通
気量を起こさなければならないために固定化物が破壊さ
れやすく、特に充填率が大きくなった場合にはそれに比
例して通気量が大きくなるためにより固定化物が破壊さ
れる恐れがある。
Therefore, as described in JP-A No. 54-117379, a hollow draft tube is arranged in the suspension reaction tower to reduce the amount of ventilation compared to a suspension reaction tower without a draft tube. There is a turbidity reaction tower. Since this suspension reaction tower does not have a structure in which the cross section of the tower is not uniform in the height direction like the suspension reaction tower of Japanese Patent Publication No. 54-26972, the amount of immobilized material packed is lower than that of the conventional example. Although this increases compared to a turbid reaction tower, since a large amount of aeration must be generated when the suspension starts flowing, the immobilized material is likely to be destroyed, and especially when the filling rate becomes large, the amount of aeration increases proportionally. There is a risk that the immobilized material may be destroyed due to the increased size of the immobilized material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、懸濁反応塔内に充填される固定化物の
濃度を増加しても、懸濁液の流動化に必要な通気量を固
定化物が破壊されない程度に調節することができるバイ
オリアクタを提供することにある。
It is an object of the present invention to provide a biochemical solution that can control the amount of aeration necessary for fluidizing the suspension to such an extent that the immobilized substances are not destroyed even if the concentration of the immobilized substances packed into the suspension reaction tower is increased. The purpose is to provide a reactor.

〔発明の概要〕[Summary of the invention]

本発明は懸濁反応塔内の固定化物粒子や被反応液の流動
状態を検出し、その検出結果に応じて固定化物粒子が通
気量の機械的な衝撃により破壊されないように懸濁反応
塔に通気する通気量の制御を行うことを特徴とするバイ
オリアクタである。
The present invention detects the flow state of the immobilized particles and the reacted liquid in the suspension reaction tower, and according to the detection results, controls the suspension reaction tower so that the immobilized particles are not destroyed by the mechanical impact of the ventilation amount. This bioreactor is characterized by controlling the amount of ventilation.

すなわち、反応開始時には懸濁液の流動化に必要な最少
限の通気量を懸濁液反応塔に供給し、流動化が開始され
た後は、その維持に必要な最少限の通気量を与えること
によって、特にゲル材で形成された固定化物の機械的な
衝撃による破壊を防止しようとするものである。
That is, at the start of the reaction, the minimum amount of ventilation required to fluidize the suspension is supplied to the suspension reaction tower, and after fluidization has started, the minimum amount of ventilation necessary to maintain it is provided. This is particularly intended to prevent the immobilized material formed of gel material from being destroyed by mechanical impact.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明に係るバイオリアクタの好ましい実施例を
添付図面に従って詳説する。
Next, a preferred embodiment of the bioreactor according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は1本発明に係るバイオリアクタの一実施例を示
す全体構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of a bioreactor according to the present invention.

図において、被反応液が貯留される原料貯蔵1は弁21
を有する配管22に接続されており、この配管22には
ポンプ2に接続されている。ポンプ2は途中に予備温度
調節器3が配設された配管23に接続されており、この
配管23は固定化酵素懸濁反応器4内の原料供給ノズル
12に接続されて5いる。固定化酵素懸濁反応器4内に
はドラフトチューブ7が配設され、さらにそのドラフト
チューブ7の上方部には固液分離部13が設けられてい
る。
In the figure, the raw material storage 1 in which the reacted liquid is stored is a valve 21.
The pump 2 is connected to a piping 22 having a pump 2 . The pump 2 is connected to a pipe 23 in which a preliminary temperature regulator 3 is disposed, and this pipe 23 is connected to a raw material supply nozzle 12 in an immobilized enzyme suspension reactor 4 . A draft tube 7 is disposed within the immobilized enzyme suspension reactor 4, and a solid-liquid separation section 13 is further provided above the draft tube 7.

前記固定化酵素懸濁反応器4の下方部には通気ノズル1
1が設けられており、この通気ノズル11には途中にa
mバルブ10を有し、゛ブロア6から呂る通気配管24
が接続されている。爽た。
A ventilation nozzle 1 is installed in the lower part of the immobilized enzyme suspension reactor 4.
1 is provided, and this ventilation nozzle 11 has a
A ventilation pipe 24 having an m-valve 10 and venting from the blower 6
is connected. Refreshing.

前記固定化酵素懸濁反応器4のドラフトチューブ7下部
の環状部には懸濁液の流動状態の検出を行う検出センサ
8が接続されており、この流動状態の検出センサ8から
信号S工は調節器9に入力さ九、この調節器9からの信
号S、が前記調節バルブ10に出力されている。
A detection sensor 8 for detecting the flow state of the suspension is connected to the annular portion at the bottom of the draft tube 7 of the immobilized enzyme suspension reactor 4, and a signal S is transmitted from the flow state detection sensor 8. A signal S input from the regulator 9 is output to the control valve 10.

上記懸濁反応l14の上部の固液分離部13には。In the solid-liquid separation section 13 above the suspension reaction 114.

反応液貯留槽5に反応液を供給するための配管14が接
続されている。
A pipe 14 for supplying a reaction liquid to the reaction liquid storage tank 5 is connected.

次に本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

原料貯槽1内の基質溶液はポンプ2によって抜き出され
、途中に設けである予備温度調節器3によって至適温度
まで加温さ九た後1反応器4に供給される。この反応器
4内に供給された基質は反応器4内にある。酵素が固定
化された固定化粒子により目的物に変換され、配管工4
を通って反応液槽5へ流出される。
The substrate solution in the raw material storage tank 1 is extracted by a pump 2, heated to an optimum temperature by a preliminary temperature controller 3 provided midway, and then supplied to a reactor 4. The substrate fed into this reactor 4 is within the reactor 4 . The enzyme is converted into the target product by the immobilized particles, and the plumber 4
The reaction liquid is discharged through the reaction liquid tank 5.

反応器4内の酵素が固定化された粒子には例えばアルギ
ン酸カリウムの粒子に酵素が固定化されたものがあり、
この固定化粒子は懸濁状態で反応器4内で浮遊している
。上記懸濁液の溶液は基質を含有する溶液である。
The enzyme-immobilized particles in the reactor 4 include, for example, potassium alginate particles with an enzyme immobilized thereon.
The immobilized particles are suspended in the reactor 4. The suspension solution is a substrate-containing solution.

上記反応器4内の酵素反応は、ブロア6から調節バルブ
10を通して配管24によって供給される気体により流
動状態で行われる。この気体が反応器4内に供給される
と懸濁液の流れは図中に示される矢印の動きとなる。こ
の懸濁液の流れによる動圧は圧力検出センサ8によって
検出され、その検出信号S2の検出値に対応して反応器
4内に供給する通気の流量を調節器9で決定し、その結
果出力された信号Ssによって調節バルブ10が作動し
配管24を通過する通気の流量が調節される。
The enzyme reaction in the reactor 4 is carried out in a fluidized state by gas supplied from the blower 6 through the control valve 10 and through the piping 24. When this gas is supplied into the reactor 4, the flow of the suspension becomes the movement of the arrow shown in the figure. The dynamic pressure caused by the flow of the suspension is detected by the pressure detection sensor 8, and the flow rate of ventilation supplied to the reactor 4 is determined by the regulator 9 in accordance with the detected value of the detection signal S2, and the resulting output is The control valve 10 is actuated by the generated signal Ss, and the flow rate of ventilation passing through the pipe 24 is adjusted.

反応器4内の懸濁液の流動状態を維持する最少の通気速
度は、第2図に示すように固定化物粒子の充填率によっ
て異なってくるものである。この通気速度を流動化維持
通気速度に押えておけば固定化物粒子の機械的な衝撃に
よる破壊は防止できる。
The minimum ventilation rate for maintaining the fluid state of the suspension in the reactor 4 varies depending on the filling rate of the immobilized particles, as shown in FIG. By keeping this aeration rate at a level that maintains fluidization, it is possible to prevent the immobilized particles from being destroyed by mechanical impact.

前記調節器9は反応器4内に供給される通気が。The regulator 9 controls the ventilation supplied into the reactor 4.

流動化維持通気速度になるように調節バルブ10の調節
を行っているものである。
The control valve 10 is adjusted so that the air flow rate maintains fluidization.

そこで1次に調節器9によるil[IIBの具体的なル
ーチンについて説明すると次の通りになる。
Therefore, the specific routine of il[IIB by the regulator 9 will be explained as follows.

(1)反応器4の環状部の下方部に設置した圧力センサ
8を用いて懸濁液の下降流の動圧PAII定する。
(1) Using the pressure sensor 8 installed at the lower part of the annular part of the reactor 4, the dynamic pressure PAII of the downward flow of the suspension is determined.

(2)予め検量した動圧Pと下降流速UΩとの関係式か
ら下降流速USAを求める。
(2) Determine the descending flow velocity USA from the relational expression between the dynamic pressure P and the descending flow velocity UΩ, which have been calibrated in advance.

(3)下降流速UaAと粒子の流動化を維持できる最低
の下降流速よりわずかに上側に設定された値UAOと比
較し、ΔtJ2A=UjlA−Ujl○を計算する。
(3) Calculate ΔtJ2A=UjlA−Ujl○ by comparing the descending flow rate UaA with a value UAO set slightly above the lowest descending flow velocity that can maintain particle fluidization.

(4)ΔUuAが正で、かつ所定の可変領域ΔUROよ
り大きければ、そのΔUnAに相当する信号を計算しそ
の計算結果を信号としてバルブ10に出力し1通気量を
減少させる。
(4) If ΔUuA is positive and larger than the predetermined variable range ΔURO, a signal corresponding to the ΔUnA is calculated, and the calculation result is output as a signal to the valve 10 to reduce the amount of ventilation.

(5)  (3)で求めたΔUjlAが正で、かつ可変
領域ΔU慮oより小さければそのまま通気量を維持する
(5) If ΔUjlA obtained in (3) is positive and smaller than the variable area ΔU, the ventilation amount is maintained as it is.

(6)  (3)で求めたΔUAAが負であればそのΔ
UnAの大きさに相当する信号を計算し、バルブ10に
その計算結果を出力して反応器4内に供給される通気量
を増加させる。
(6) If ΔUAA obtained in (3) is negative, that Δ
A signal corresponding to the magnitude of UnA is calculated, and the calculated result is output to the valve 10 to increase the amount of air supplied into the reactor 4.

上記に示したルーチンでは一定の下辺領域ΔUflOを
設定してバルブ10の制御を行うために、ΔUnAが正
または負でバルブの調整を行う場合と比べてバルブの調
節を少なく押えることができる。
In the routine shown above, since the valve 10 is controlled by setting a constant lower side area ΔUflO, the valve can be adjusted less than when the valve is adjusted when ΔUnA is positive or negative.

本実施例において低流量の空気で固定化物粒子の良好な
流動状態を維持するには、流動化維持通気速度よりわず
かに大きい通気速度に設定して通気すればよい、しかし
、固定化物粒子を流動化させるには一旦、流動化維持通
気速度よりも大きい通気速度で通気する必要があり、そ
の後徐々に通気量を低下させて流動化維持通気速度より
わずかに大きい値に設定することになるので、反応器内
の固定化物粒子の流動状態を検出しないで通気量を低減
する操作は困難である。また1反応器内に供給される通
気量が流動化維持通気速度以下になり一旦懸濁液の循環
流が停止すると、第3図に示すように反応器4の下部の
周辺部には斜線で示した31のように固定化物粒子の沈
積が起こる。この場合通気量を大きくして懸濁液の流動
化を維持させようとすると流動化開始通気速度以上の大
きな通気量を供給しなければならないために、固定化物
粒子が機械的な衝撃により破壊される可能性がある。
In this example, in order to maintain a good fluidization state of the immobilized particles with a low flow rate of air, it is sufficient to set the aeration rate slightly higher than the fluidization maintenance aeration rate. In order to achieve fluidization, it is necessary to aerate at an aeration rate higher than the fluidization maintenance aeration rate, and then the aeration amount must be gradually lowered to a value slightly higher than the fluidization maintenance aeration rate. It is difficult to reduce the amount of ventilation without detecting the flow state of immobilized particles in the reactor. In addition, when the amount of air supplied to one reactor falls below the fluidization maintaining air flow rate and the circulating flow of the suspension stops, a diagonal line appears around the lower part of reactor 4, as shown in Figure 3. Immobilized particles are deposited as shown in 31. In this case, if an attempt is made to maintain the fluidization of the suspension by increasing the aeration rate, it is necessary to supply a large aeration rate that is greater than the aeration rate at which fluidization begins, and the immobilized particles are destroyed by mechanical impact. There is a possibility that

次に1通気速度と固定化物粒子の下降速度の関係につい
て第4図に示す。
Next, FIG. 4 shows the relationship between the ventilation speed and the descending speed of the immobilized particles.

第4′@は固定化物粒子の密度が1.02の時。The 4th @ is when the density of the immobilized particles is 1.02.

固定化物粒子の流動化維持通気速度は0.03(C!1
/8)であり、流動化開始通気速度は0.12(am/
!l)である、この通気速度内に流量を調節すると、斜
線部で示した範囲に固定化物粒子の下降速度が表われて
くる。この固定化物粒子の下降速度は自由沈降速度より
も大きいために、第3図で示した固定化物粒子の沈積3
1が生じることはない、従って、固定化物粒子の沈積は
反応器の環状部底部に生じやすいために、固定化物粒子
の流動状態の検品箇所は第1図の実施例で示したように
反応器4の壁とドラフトチューブ7との間の環状部分の
反応器下部に設けるのがもつとも好ましい。
The aeration rate for maintaining fluidization of immobilized particles is 0.03 (C!1
/8), and the aeration rate at the start of fluidization is 0.12 (am/8).
! When the flow rate is adjusted within this aeration rate, which is 1), the descending speed of the immobilized particles appears in the shaded area. Since the descending speed of the immobilized particles is greater than the free sedimentation speed, the sedimentation rate of the immobilized particles shown in FIG.
1 does not occur. Therefore, the deposition of immobilized particles tends to occur at the bottom of the annular part of the reactor. It is most preferable to provide the annular portion between the wall of 4 and the draft tube 7 at the bottom of the reactor.

次にドラフトチューブの断面積比、つまり1反応器4の
断面積とドラフトチューブの断面積の相対比と流動化維
持通気速度の関係を第5図に示す。
Next, FIG. 5 shows the relationship between the cross-sectional area ratio of the draft tube, that is, the relative ratio of the cross-sectional area of one reactor 4 and the cross-sectional area of the draft tube, and the fluidization maintenance aeration rate.

図において明らかなように断面積比が0649〜0.6
9 にあるドラフトチューブを用いると流動化維持通気
速度をもつとも少なくすることができるために、固定化
物粒子の機械的な衝撃による破壊を防止することができ
る。
As is clear in the figure, the cross-sectional area ratio is 0649 to 0.6
By using the draft tube described in Section 9, the air flow rate for maintaining fluidization can be lowered, thereby making it possible to prevent the immobilized particles from being destroyed by mechanical impact.

なお本実施例では固定化物粒子の流動状態の検出手段と
して懸濁液の流れによる動圧を検出したものであるが、
この他に固定化物粒子の濃度を検出してバルブ10の制
御を行うこともできる。
In this example, the dynamic pressure due to the flow of the suspension was detected as a means for detecting the fluid state of the immobilized particles.
In addition, the valve 10 can also be controlled by detecting the concentration of immobilized particles.

次に本発明に係るバイオリアクタの°他の実施例につい
て説明する。第6図は反応器4内のドラフトチューブ7
を、上方部縮小形のドラフトチューブ61にした実施例
である。なお、前記第1図に示した実施例において説明
した部分に対応した部分については同一の符号を付しそ
の説明を省略する。
Next, another embodiment of the bioreactor according to the present invention will be described. Figure 6 shows the draft tube 7 in the reactor 4.
This is an embodiment in which a draft tube 61 with a reduced upper portion is used. Note that parts corresponding to those described in the embodiment shown in FIG.

本実施例でドラフトチューブ7の形状を上方部縮小形と
したのは、従来のドラフトチューブと反応器との横断面
積比が0.5〜0.7にあるストレート形のドラフトチ
ューブでは第7図に示すようにドラフトチューブ内に流
動化維持通気量近辺の低通気量で通気すると、上昇する
気泡が偏流を起こしやすい、さのため、ドラフトチュー
ブの上部から懸濁液の流出量が均一でなく1反応器4の
壁とドラフトチューブとの間の環状部に一様な循環流が
形成されない。
In this example, the shape of the draft tube 7 is reduced in the upper part, as compared to the conventional straight draft tube in which the cross-sectional area ratio between the draft tube and the reactor is 0.5 to 0.7. As shown in Figure 2, when the draft tube is aerated at a low airflow rate close to the fluidization maintenance airflow rate, the rising air bubbles tend to cause uneven flow, which causes the suspension to flow out from the top of the draft tube unevenly. 1 A uniform circulation flow is not formed in the annular portion between the wall of the reactor 4 and the draft tube.

それに対して本実施例のようにドラフトチューブを用い
れば、第8図に示すようにドラフトチューブ内を流れる
懸濁液の偏流という問題はない。
On the other hand, if a draft tube is used as in this embodiment, there is no problem of uneven flow of the suspension flowing inside the draft tube, as shown in FIG.

本流例に用いられるドラフトチューブは第8図で示した
ドラフトチューブの他に第7図、第8図で示した上方部
縮小形の円錐形のドラフトチューブを用いることもでき
る。
As the draft tube used in the main flow example, in addition to the draft tube shown in FIG. 8, it is also possible to use a conical draft tube whose upper part is reduced as shown in FIGS. 7 and 8.

また、本実施例のように上方部縮小形のドラフトチュー
ブを用いると第2図に示すように、固定化物粒子の充填
率に対する流動化維持通気速度を従来のストレート形の
ドラフトチューブに比べて低減することができる。すな
わち、第11図で示すように固定化物粒子の充填率に対
する流動化維持通気速度は上方部縮小形のドラフトチュ
ーブを用いた場合(A)は従来の横断面積比が0.5〜
0.7にあるストレート形状のドラフトチューブの場合
CB)に比べて少なくすることを見出した。
In addition, as shown in Fig. 2, when a draft tube with a reduced upper part is used as in this example, the fluidization maintaining air velocity relative to the filling rate of immobilized particles is reduced compared to a conventional straight draft tube. can do. That is, as shown in FIG. 11, the fluidization maintenance ventilation rate with respect to the filling rate of immobilized particles is as follows: when using a draft tube with a reduced upper part (A), the conventional cross-sectional area ratio is 0.5~
It has been found that in the case of a straight draft tube of 0.7, the amount can be reduced compared to CB).

さらに、第12図に示すように上方部縮小形のドラフト
チューブを設置した懸濁反応器の液混合時間(図のA)
は、従来のストレート形状のドラフトチューブを設置し
た懸濁反応器の液混合時間(図のB)に比べて短かく、
上方部縮小形のドラフトチューブを用いた反応器では基
質を含む原料溶液と固定化物粒子の混合の効果が大きい
ことが認められた。従って1反応器内に通気される通気
量を一層少なくすることが、できる。
Furthermore, as shown in Figure 12, the liquid mixing time of a suspension reactor equipped with a draft tube with a reduced upper part (A in the diagram)
is shorter than the liquid mixing time (B in the diagram) of a suspension reactor equipped with a conventional straight draft tube.
It was found that the mixing effect of the raw material solution containing the substrate and the immobilized particles was large in the reactor using the draft tube with the upper part reduced. Therefore, the amount of ventilation per reactor can be further reduced.

次に、本発明に係るバイオリアクタの具6体的な実施例
について説明する。
Next, six specific embodiments of the bioreactor according to the present invention will be described.

く実験例1〉 第6図に示すバイオリアクタを用いて固定化物粒子の懸
濁液を収容し、空気を流量計で計量した熱反応器の底部
11より通気して懸濁液を流動化させた反応器4は径の
大きさが300閣であり。
Experimental Example 1 The bioreactor shown in Figure 6 was used to contain a suspension of immobilized particles, and the suspension was fluidized by venting air from the bottom 11 of the thermal reactor measured with a flowmeter. The reactor 4 had a diameter of 300 mm.

材質はアクリル性で外部より塔内の粒子の流動状態を観
察できるようにしである。なお、斜動状態を観察できれ
ば1手動により通気量の調整を行うこともできるが1反
応が長時間に及ぶ場合には。
The material is acrylic and allows the flow state of particles inside the tower to be observed from the outside. Note that if the tilting state can be observed, the ventilation amount can be adjusted manually, but if one reaction takes a long time.

検出センサーおよび調節器を用いて通気量の自動制御を
行う必要がある1反応器4内部に設置したドラフトチュ
ーブ7は下方部が径210mで、上方部が径100■で
あり途中は円錐形のドラフトチューブで連結され、全高
600mとなっている。
It is necessary to automatically control the ventilation amount using a detection sensor and a regulator.1 The draft tube 7 installed inside the reactor 4 has a diameter of 210 m at the lower part, a diameter of 100 m at the upper part, and a conical part in the middle. They are connected by draft tubes and have a total height of 600m.

反応器内に収容した固定化物粒子は常法により調整した
アルギン酸カルシウムの粒子であり、この固定化物粒子
を懸濁する溶液は塩化カルシウムを含有する水道水であ
る。固定化物粒子は反応器内にはり込まれた懸濁液原料
50j1に対してみかけの粒子容量が60%になるよう
に充填した0次に、圧力センサ8、調節器9.バルブ1
0.ブロア6を作動させたところ前記で説明したバルブ
10の操作が行われ通気速度0.12a”s  で懸濁
液の流動化が開始された。そして、流動化が開始された
後、調節器9によりバルブ10の操作が行われ通気量が
徐々に低下して0.03CIl/S で反応器底部環状
部に固定化物が沈積しない状態で良好な流動状態が維持
できることを確認した。
The immobilized particles contained in the reactor are particles of calcium alginate prepared by a conventional method, and the solution in which the immobilized particles are suspended is tap water containing calcium chloride. The immobilized particles were filled into the reactor so that the apparent particle volume was 60% of the suspension raw material 50j1 inserted into the reactor.Next, the pressure sensor 8, the regulator 9. Valve 1
0. When the blower 6 was operated, the valve 10 described above was operated and fluidization of the suspension was started at an air flow rate of 0.12a"s. After the fluidization was started, the regulator 9 The valve 10 was operated, and the aeration rate was gradually reduced to 0.03 CIl/S. It was confirmed that a good fluidity state could be maintained without depositing immobilized substances in the bottom annular portion of the reactor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば懸濁反応器内の懸濁
液の流動状態を検出しながら反応を行うことができるた
めに、流動化開始速度および維持速度を最少限のものに
押えることができ、そのために、生体触媒が固定化され
た固定化物の機械的な破壊を防止しながら反応を効率よ
く行うことができるものである。
As explained above, according to the present invention, since the reaction can be carried out while detecting the fluidization state of the suspension in the suspension reactor, the fluidization start speed and maintenance speed can be kept to a minimum. Therefore, the reaction can be carried out efficiently while preventing mechanical destruction of the immobilized material on which the biocatalyst is immobilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第6図は本発明に係るバイオリアクタの一
実施例を示す全体構成図、第2図および第11図は固定
化物粒子の充填率と流動化維持通気速度の関係を示すグ
ラフ、第3図は従来のドラフトチューブ内の懸濁液の流
動状態を示す図、第4図は通気速度と固定化物粒子の下
降速度の関係を示すグラフ、第5図はドラフトチューブ
の断面積比と流動化維持通気速度との関係を示すグラフ
。 第7図および第8図はドラフトチューブ内の流動状態を
示す図、第9図および第10図は第6図に示されたバイ
オリアクターに用いられる他のドラフトチューブを示し
た図、第12図は通気速度と液混合時間の関係を示すグ
ラフである。 4・・・反応器、5・・・反応液混合槽、6・・・通気
ブロワ。 7・・・ドラフトチューブ、8・・・圧力センサー、9
・・・調節器、10・・・通気弁、11・・・通気ノズ
ル。
1 and 6 are general configuration diagrams showing one embodiment of a bioreactor according to the present invention, and FIGS. 2 and 11 are graphs showing the relationship between the filling rate of immobilized particles and the fluidization maintenance aeration rate, Fig. 3 is a diagram showing the flow state of a suspension in a conventional draft tube, Fig. 4 is a graph showing the relationship between the aeration rate and the descending speed of immobilized particles, and Fig. 5 is a graph showing the cross-sectional area ratio of the draft tube. Graph showing the relationship between fluidization maintenance aeration rate. Figures 7 and 8 are diagrams showing the flow state in the draft tube, Figures 9 and 10 are diagrams showing other draft tubes used in the bioreactor shown in Figure 6, and Figure 12. is a graph showing the relationship between ventilation speed and liquid mixing time. 4... Reactor, 5... Reaction liquid mixing tank, 6... Ventilation blower. 7...Draft tube, 8...Pressure sensor, 9
... Regulator, 10... Ventilation valve, 11... Ventilation nozzle.

Claims (1)

【特許請求の範囲】 1、所定の生体触媒が固定化された固定化粒子の懸濁溶
液が貯留された反応器と、該反応器内に設けられた中空
のドラフトチューブと、前記反応器に前記固定化粒子と
反応を起こす基質を含有する基質含有原料を供給する原
料供給手段と、前記反応器内の前記基質含有原料が供給
された懸濁溶液に液流を惹起するための気体を供給する
気体供給手段と、前記基質含有原料が前記固定化粒子と
反応して生じた反応物を取り出す反応物取出手段とを備
えているバイオリアクタにおいて、前記反応器内の固定
化粒子の流動状態を検知して所定の検知信号を出力する
検知手段と、該検知信号の出力量が所定値以上のときは
前記気体供給手段の気体の流量を低下させ、前記検知信
号の出力量が所定値以下のときは前記気体供給手段の気
体の流量を増加させ前記固定化粒子の所定の流動状態を
維持する気体の流量制御手段を備えたことを特徴とする
バイオリアクタ。 2、ドラフトチューブの上端がその下端よりも開口面積
が狭い構造であることを特徴とする特許請求の範囲第1
項記載のバイオリアクタ。
[Claims] 1. A reactor in which a suspended solution of immobilized particles on which a predetermined biocatalyst is immobilized is stored, a hollow draft tube provided in the reactor, and a hollow draft tube provided in the reactor; a raw material supply means for supplying a substrate-containing raw material containing a substrate that reacts with the immobilized particles; and supplying a gas for inducing a liquid flow to a suspension solution to which the substrate-containing raw material is supplied in the reactor. In the bioreactor, the bioreactor is equipped with a gas supply means for reacting the substrate-containing raw material with the immobilized particles, and a reactant extraction means for taking out the reactant produced by the reaction of the substrate-containing raw material with the immobilized particles. a detection means for detecting and outputting a predetermined detection signal; and when the output amount of the detection signal is above a predetermined value, the flow rate of the gas of the gas supply means is reduced; A bioreactor comprising: a gas flow rate control means for increasing the gas flow rate of the gas supply means to maintain a predetermined flow state of the immobilized particles. 2. Claim 1, characterized in that the upper end of the draft tube has a structure in which the opening area is narrower than that of the lower end.
Bioreactor as described in Section.
JP22845684A 1984-10-30 1984-10-30 bioreactor Granted JPS61108370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22845684A JPS61108370A (en) 1984-10-30 1984-10-30 bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22845684A JPS61108370A (en) 1984-10-30 1984-10-30 bioreactor

Publications (2)

Publication Number Publication Date
JPS61108370A true JPS61108370A (en) 1986-05-27
JPH0331432B2 JPH0331432B2 (en) 1991-05-07

Family

ID=16876769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22845684A Granted JPS61108370A (en) 1984-10-30 1984-10-30 bioreactor

Country Status (1)

Country Link
JP (1) JPS61108370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060787A1 (en) * 1999-06-17 2000-12-20 Compagnie Generale Des Matieres Nucleaires Process and appatus to perform a three-phase chemical reaction under pressure
DE10354311B4 (en) * 2003-11-20 2009-09-17 Lurgi Gmbh Reactor for continuously carrying out a chemical multiphase reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060787A1 (en) * 1999-06-17 2000-12-20 Compagnie Generale Des Matieres Nucleaires Process and appatus to perform a three-phase chemical reaction under pressure
FR2795001A1 (en) * 1999-06-17 2000-12-22 Cogema METHOD AND INSTALLATION FOR IMPLEMENTING A THREE-PHASE CHEMICAL REACTION UNDER PRESSURE
US6759027B1 (en) 1999-06-17 2004-07-06 Compagnie Generale Des Matieres Nucleaires Method and installation for carrying out a three phase chemical reaction under pressure
US7022295B2 (en) 1999-06-17 2006-04-04 Compagnie Generale Des Matieres Nucleaires Installation for carrying out a three phase chemical reaction under pressure
DE10354311B4 (en) * 2003-11-20 2009-09-17 Lurgi Gmbh Reactor for continuously carrying out a chemical multiphase reaction

Also Published As

Publication number Publication date
JPH0331432B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
US5426024A (en) Fermentation method and fermentor
Oh et al. Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging
US5660977A (en) Fermentation method and fermentor
Lieberman et al. Hydrolysis of particulate tributyrin in a fluidized lipase reactor
JPS6111136A (en) Fluidized bed reactor equipped with means for securing uniform distribution of fluid to be treated
Okabe et al. Itaconic acid production in an air-lift bioreactor using a modified draft tube
Träger et al. Comparison of airlift and stirred reactors for fermentation with Aspergillus niger
JPS62227498A (en) Fluidized bed anaerobic treatment equipment
Molina et al. Gas holdup, liquid circulation and mixing behaviour of viscous Newtonian media in a split-cylinder airlift bioreactor
SE452879B (en) PROCEDURE FOR CONTINUOUS ANAEROBIC DECOMPOSITION OF ORGANIC COMPOUNDS
US4643972A (en) Method and apparatus for multiphase contacting between gas, solid and liquid phases
US4904601A (en) Cell culture tank
EP0022613A2 (en) A method and apparatus for continuous fermentation
JPS61108370A (en) bioreactor
Nakao et al. Mass transfer properties of bubble columns suspending immobilized glucose oxidase gel beads for gluconic acid production
US4713345A (en) Fermentation methods and apparatus
EP0024758B1 (en) An oxidative biological purification process for waste water
US4847203A (en) Fermentation vessels
JPH0738789B2 (en) Membrane bioreactor device
EP0099634B1 (en) Reactor apparatus for multiphase contacting
Vallat et al. Maltodextrin hydrolysis in a fluidized‐bed immobilized enzyme reactor
JP2775161B2 (en) Liquid flow biochemical reactor
JPH0716584A (en) Method for biological treatment of water
EP0051063B1 (en) A process and an apparatus for converting organic material along a micro-biological route
Tamada et al. Continuous cellulase production by immobilized Sporotrichum cellulophilum and continuous saccharification of bagasse