[go: up one dir, main page]

JPS61107782A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS61107782A
JPS61107782A JP59228627A JP22862784A JPS61107782A JP S61107782 A JPS61107782 A JP S61107782A JP 59228627 A JP59228627 A JP 59228627A JP 22862784 A JP22862784 A JP 22862784A JP S61107782 A JPS61107782 A JP S61107782A
Authority
JP
Japan
Prior art keywords
layer
substrate
type
doped
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59228627A
Other languages
Japanese (ja)
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59228627A priority Critical patent/JPS61107782A/en
Publication of JPS61107782A publication Critical patent/JPS61107782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce the propagation of dislocation from a substrate and the generation of stress-inducing dislocation effectively by forming a high- concentration doping layer in impurity concentration of 2X10<18>atom/cm<3> or more onto the substrate and shaping double hetero-structure onto the doping layer. CONSTITUTION:A high-concentration doping layer 2 in impurity concentration of 2X10<18>atom/cm<3> or more is formed onto a substrate 1. An n type InGaP layer 3, an InGaAsP layer 4, a p type InGaP layer 5 and an n type GaAsP cap layer 6 are shaped onto the doping layer 2 in succession. Accordingly, the propagation of dislocation from the substrate 1 and the generation of stress induced dislocation are reduced effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体発光デバイスに用いられるダブルヘテロ
構造を有する化合物半導体装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a compound semiconductor device having a double heterostructure used in a semiconductor light emitting device.

〔従来の技術〕[Conventional technology]

現在、化合物半導体は■−v族を中心として各種研究が
進められている・ 例えばI−V族化合物半導体では赤外領域から可視領域
にわたる半導体レーデ、発光ダイオードAPD 、 P
IN等の受光素子として、またGaAs−FET 。
Currently, various research is being carried out on compound semiconductors, mainly in the ■-V group. For example, in the IV group compound semiconductors, there are semiconductor radars, light emitting diodes APD, P in the infrared region to visible region.
GaAs-FET can also be used as a light receiving element such as IN.

GaAs1C・HEMT等の高速デバイスとして研究開
発が進められている。しかしこれらのデバイスは転位に
対して極めて影響を受けやすく半導体レーデ、発光ダイ
オード等の発光デバイスでは光出力、寿命に影響を及ぼ
し、APD、PIN等の受光デバイスには雑音としてS
N比に影響を及ぼし、MES −FET等の高速デバイ
スには閾値電圧に影響を及ぼしている。
Research and development is progressing on high-speed devices such as GaAs1C HEMT. However, these devices are extremely susceptible to dislocation, which affects the light output and life of light emitting devices such as semiconductor radars and light emitting diodes, and causes S as noise in light receiving devices such as APDs and PINs.
It affects the N ratio, and affects the threshold voltage of high-speed devices such as MES-FETs.

この転位には化合物半導体結晶基板から引き継がれる転
位と、エピタキシャル成長中またはプロセス中またはデ
バイス動作中に入る転位とがある。
These dislocations include those inherited from the compound semiconductor crystal substrate and those introduced during epitaxial growth, process, or device operation.

化合物半導体結晶基板は、S1結晶基板と比べて転位が
多く、例えばGaAs基板では普通1〜5xlO’り3
程度である。このような基板にエピタキシャル成長を行
なうと、通常の条件では基板の転位がそのままエピタキ
シャル層に引き継がれることが知られている。
Compound semiconductor crystal substrates have more dislocations than S1 crystal substrates, for example, GaAs substrates usually have 1 to 5xlO'3
That's about it. It is known that when epitaxial growth is performed on such a substrate, dislocations in the substrate are carried over to the epitaxial layer as they are under normal conditions.

半導体発光デバイスに用いられるダブルヘテロ構造にお
いては基板からの転位の他に、ヘテロ界面での格子不整
合によって生ずる転位、熱膨張係数の違いによって生ず
る転位が問題となる。
In the double heterostructure used in semiconductor light emitting devices, problems arise not only from dislocations from the substrate but also from dislocations caused by lattice mismatch at the hetero interface and dislocations caused by differences in thermal expansion coefficients.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

格子不整合によって生ずるミスフィツト転位に関してい
えば、例えばInP上のInGaAsPについて、電気
通信研究所研究実用化報告Vol 、 28 、 A6
 P1027〜42 (1979)に記述されているよ
うにエビ層表面に平行な方向の格子定数差が0.03%
程度でミスフィツト転位は導入される。特に複雑な多層
構造の場合にはすべての層を完全に格子整合する様に組
成を制御することは困難である。
Regarding misfit dislocations caused by lattice mismatch, for example, regarding InGaAsP on InP, the Research and Practical Application Report of the Institute of Telecommunications Vol. 28, A6
As described in P1027-42 (1979), the lattice constant difference in the direction parallel to the shrimp layer surface is 0.03%.
Misfit dislocations are introduced to a certain extent. Particularly in the case of a complex multilayer structure, it is difficult to control the composition so that all the layers are perfectly lattice matched.

また熱膨張係数の影響については、フィジカステイタス
ソリッデ4 (Phyi、 5tat、 Sol、(a
) 53に1651979)に記述されているように、
組成によって熱膨張係数は異なる為に、プロセス中に受
ける熱履歴によシ応力が発生して転位を生じ易い。
Regarding the influence of thermal expansion coefficient, Physica Status Solid 4 (Phyi, 5tat, Sol, (a
) 53, 1651979),
Since the coefficient of thermal expansion differs depending on the composition, stress is generated due to the thermal history during the process, which tends to cause dislocation.

また半導体表面とその上の電極との間で生ずる転位に関
しては■−v族化合物半導体と電極金属との熱膨張係数
の違いは一般に非常に大きく、その発生する応力は半導
体へテロ界面に於ける熱応力に比べて極めて大きい。こ
のことはプロセス中に於いて半導体表面と電極との間に
転位が発生し易いことを示している。
Regarding dislocations that occur between the semiconductor surface and the electrode on it, the difference in thermal expansion coefficient between the ■-V group compound semiconductor and the electrode metal is generally very large, and the stress generated is This is extremely large compared to thermal stress. This indicates that dislocations are likely to occur between the semiconductor surface and the electrode during the process.

しかしながらこれらに対する対策はできるだけ転位の少
ない基板を用いるとか、多層エピタキシ ゛ヤル成長に
おいて、その格子定数を合せるべく努力が行なわれてい
るだけで、あまり検討されていないのが現状である。
However, at present, countermeasures against these problems have not been studied much, other than using a substrate with as few dislocations as possible or trying to match the lattice constant in multilayer epitaxial growth.

次に半導体発光デバイスに用いられる化合物半導体装置
として半導体レーデ用ダブルヘテロ構造を例として詳細
に述べる。
Next, a double heterostructure for a semiconductor radar will be described in detail as an example of a compound semiconductor device used in a semiconductor light emitting device.

第6図は一般的なダブルヘテロ構造の断面図を示す。こ
こではGaAs基板を用い、I n−Ga−As−P系
の0.7μm帯の発光域を有する半導体レーデを示して
いる。
FIG. 6 shows a cross-sectional view of a typical double heterostructure. Here, a GaAs substrate is used and an In-Ga-As-P semiconductor radar having an emission range of 0.7 μm band is shown.

図中1はGaAs基板、3はInGaPクラッド層、4
ij InGaAsP活性層、5はInGaPクラッド
層である。
In the figure, 1 is a GaAs substrate, 3 is an InGaP cladding layer, and 4 is a GaAs substrate.
ij is an InGaAsP active layer, and 5 is an InGaP cladding layer.

ここで基板として用いたGaAs基板lにおける転位密
度は通常1〜5X10’c+n’程度である。この様な
基板の上にダブルヘテロ構造を作成すると基板からの転
位を引き継いで基板と同程度の転位密度を有するエピタ
キシャル層しか得られない。
The dislocation density in the GaAs substrate 1 used as the substrate here is usually about 1 to 5×10'c+n'. If a double heterostructure is created on such a substrate, only an epitaxial layer can be obtained which takes over dislocations from the substrate and has a dislocation density comparable to that of the substrate.

また、さらにダブルヘテロ構造を作成する場合に700
〜800℃程度の高温で結晶成長を行なう為に成長後室
部まで冷却する間に結晶は熱収縮を起こし歪を生じる。
In addition, when creating a double heterostructure, 700
Since crystal growth is carried out at a high temperature of about 800 DEG C., the crystal undergoes thermal contraction and distortion while being cooled down to the chamber after growth.

この歪は各層の熱膨張係数の違いによって生じ、熱膨張
係数の最も大きく異なるGaAa基板lとI nGaP
層との間に大きな熱歪が生じ、応力誘起転位を発生させ
る原因となっている。これらの結果ダブルヘテロ構造を
有するエピタキシャル層の転位密度は基板の転位密度よ
りさらに多くなってしまう。
This strain is caused by the difference in the thermal expansion coefficient of each layer, and the GaAa substrate and the InGaP substrate have the largest difference in thermal expansion coefficient.
Large thermal strains occur between the layers, causing stress-induced dislocations. As a result, the dislocation density of the epitaxial layer having a double heterostructure becomes higher than that of the substrate.

本発明は転位を低減した化合物半導体装置を提供するこ
とにある。
An object of the present invention is to provide a compound semiconductor device with reduced dislocations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体発光デバイスに用いられるダブルヘテロ
構造を有する化合物半導体装置において、不純物濃度2
×10  原子/c!rL3以上の高濃度ドーピング層
を基板上に設け、該ドーピング層上にダブルヘテロ構造
を形成したことを特徴とする化合物半導体装置および、
半導体発光デバイスに用いられるダブルヘテロ構造を有
する化合物半導体装置において、該装置に形成されたエ
ピタキシャル層側電極下に不純物濃度2×1018原子
/cm”以上の高濃度ドーピング層を有することを特徴
とする化合物半導体装置、並びに、ダブルヘテセ構造を
有する化合物半導体装置において、不純物濃度2×10
  原子層以上の高濃度ドーピング層を基板上に設け、
該ドーピング層上にダブルヘテロ構造を形成し、かつエ
ピタキシャル層側の′を種下に不純物濃度2×10  
原子/cwt”以上の高濃度ドーピング層を有すること
を特徴とする化合物半導体装置である。
The present invention provides a compound semiconductor device having a double heterostructure used in a semiconductor light emitting device, with an impurity concentration of 2.
×10 atoms/c! A compound semiconductor device characterized in that a high concentration doping layer of rL3 or more is provided on a substrate, and a double heterostructure is formed on the doping layer, and
A compound semiconductor device having a double heterostructure used in a semiconductor light emitting device is characterized by having a highly doped layer with an impurity concentration of 2×10 atoms/cm” or more under an electrode on an epitaxial layer formed in the device. In a compound semiconductor device and a compound semiconductor device having a double hetese structure, an impurity concentration of 2×10
A highly concentrated doping layer of atomic layer or higher is provided on the substrate,
A double heterostructure is formed on the doped layer, and an impurity concentration of 2×10 is formed with ′ on the epitaxial layer side as a seed.
The present invention is a compound semiconductor device characterized by having a highly doped layer with a concentration of atoms/cwt" or higher.

以下本発明を図によって説明する。The present invention will be explained below with reference to the drawings.

本発明は第1図に示す様な不純物濃度2X1018原子
/儂3以上の高濃度ドーピング層2をダブルヘテロ構造
中に有する化合物半導体装置を提案するものである。
The present invention proposes a compound semiconductor device having a highly doped layer 2 with an impurity concentration of 2×10 18 atoms/min 3 or more in a double heterostructure as shown in FIG.

第1図において、GaAs基板l上には前記高濃度ドー
ピング層2、n型I nGaP層3、InGaAsP層
4、p型I nGaP層5か゛順次形成されている。
In FIG. 1, the high concentration doping layer 2, n-type InGaP layer 3, InGaAsP layer 4, and p-type InGaP layer 5 are successively formed on a GaAs substrate l.

ここでドーグぐントは関らによるジャーナルアプライド
フィシ、クラ(J、 Appl、 Phys、 49 
(2) (1978)822 )中のシングルーゲンド
ーエネルギーの太きな不純物で、n型ドー/やントとし
てはS、 Se、 Te。
Here, the journal Applied Physicians (J, Appl, Phys, 49) by Doug Gund and Seki et al.
(2) (1978) 822) is an impurity with a large single-gen do energy, and the n-type dopants include S, Se, and Te.

Sl、p型ドーノクントとしてはZn、Cd1中性不純
物としてはB、 At、 N等である。
Zn is used as Sl and p-type donokund, and B, At, N, etc. are used as neutral impurities of Cd1.

これらの不純物が不純物濃度2×10  原子/cm3
以上にドーピングされた高濃度ドーピング層を有するレ
ーデ用DH構造は基板よりさらに転位の減少が認められ
る。この原因として、これらの不純物が結晶中に高濃度
とり込まれることによって該結晶の臨界せん断応力が増
加し転位が発生し難く、また発生した転位が伝播し難く
なることが考えられる。
These impurities have an impurity concentration of 2×10 atoms/cm3
In the DH structure for radar having a highly doped layer as described above, dislocations are more reduced than in the substrate. The reason for this is thought to be that these impurities are incorporated into the crystal at a high concentration, which increases the critical shear stress of the crystal, making it difficult for dislocations to occur and for the generated dislocations to be difficult to propagate.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

(実施例1) n型GaAs基板上にInGaAsP系混晶による半導
体レーデ用ダブルヘテロ構造を作成し比例を第2図に基
づき説明する。
(Example 1) A double heterostructure for a semiconductor radar was created using an InGaAsP mixed crystal on an n-type GaAs substrate, and its proportionality will be explained based on FIG.

図中の1はSlドープn型GaAs基板でキャリア濃度
は] X 10”cIn−3、転位密度Fi1 x 1
0’an−2テある。
1 in the figure is an Sl-doped n-type GaAs substrate, the carrier concentration is] x 10"cIn-3, and the dislocation density is Fi1 x 1.
There are 0'an-2te.

この上に気相成長法によシSを5X1018cm−3ド
ープした、I nGa P高濃度ドーピング層2を2μ
mの厚さに成長させ、その後、従来法の半導体レーデ用
ダブルヘテロ構造と同様にSを8X10”c++t−’
ドープし1、; たn型InGaPクラ、ド層3を1μm、ノンドープI
nGaAaP活性層4を0.11m %Znを1×10
cIrL  ドープしたp型I nGaPクラ、ド層5
を1μm%Sを5×10 − ドーグしたn型GaAs
Pキャップ層6を5声の厚さにそれぞれ連続成長させた
。各成長層の格子定数は5 X 10”−’以内に格子
整合されている。
On top of this, an InGaP high concentration doping layer 2 doped with 5x1018 cm-3 of S by vapor phase growth is formed.
After that, S was grown to a thickness of 8X10"c++t-' as in the conventional double heterostructure for semiconductor radar.
Doped 1, n-type InGaP layer 3 with a thickness of 1 μm, non-doped I
nGaAaP active layer 4: 0.11 m %Zn: 1×10
cIrL doped p-type InGaP layer 5
n-type GaAs doped with 5×10 − 1 μm% S
The P cap layer 6 was successively grown to a thickness of 5 tones. The lattice constants of each grown layer are lattice matched to within 5 x 10''-'.

キャップ層6の転位密度をKOH工、チングにより調べ
た結果、転位密度は300cIrL  と極めて少なく
なっておフ、基板からの伝播転位及び応力誘起転位が大
幅に低減されて−いることが確認された。
As a result of examining the dislocation density of the cap layer 6 by KOH processing and chipping, it was confirmed that the dislocation density was extremely low at 300 cIrL, and that propagating dislocations from the substrate and stress-induced dislocations were significantly reduced. .

また格子整合のみ注意する従来技術による同様な実験を
行なった結果は転位密度が約15000cWL−2とな
っており、転位の影響を受は易い光デバイス高速デバイ
スにとっても本発明は非常に有用性の高いものである。
Furthermore, the results of a similar experiment using the prior art where only lattice matching was taken into account showed that the dislocation density was approximately 15,000 cWL-2, which indicates that the present invention is extremely useful for optical devices and high-speed devices that are easily affected by dislocations. It's expensive.

(実施例2) n型GaAs基板上にnをGaAaP混晶をグレーデッ
ドエピタキシャル成長させた発光ダイオード用GaAs
Pエビ基板を用いて、その上に半導体レーデ用ダブルヘ
テロ構造を作成した例を第3図に基づき説明する。
(Example 2) GaAs for light emitting diodes in which n-GaAaP mixed crystal was grown epitaxially on an n-type GaAs substrate.
An example in which a double heterostructure for a semiconductor radar is created using a P-striped substrate will be explained based on FIG. 3.

図中の1はn型GaAm基板でこの上に約30μmのS
をlXl0 crn  ドープしたn型G aA s 
1−XP X (0<!<0.4)グレーデッド層7と
同じく約30atnのSを1×1017cIrL−3ド
ーグしたh型GaAg 、−xPx(x : 0.4 
) コアスタンド層8が設けられている。
1 in the figure is an n-type GaAm substrate on which about 30 μm of S
n-type GaA s doped with lXl0 crn
1-XP
) A core stand layer 8 is provided.

この様な発光ダイオード用GaA+sPエビ基板上にS
を5X1018crIL−’ドープしたInGaP高濃
度ドーピング層2を2μm成長させ、その後、従来法の
レーザ用ダブルヘテロ構造と同様にSを13X10 c
m  ドープしたn型1nGaPクラ、ド層3を1.□
%ノンドープInGaAsP活性層4を0.1μ、Zn
を1×10cIrL  ドープしたp型InGaPクラ
、ド層5を1μm、Sを5X10 (m  ドープした
n型GaAaPキャ’tデ層9を51rrrLの厚さに
それぞれ連続成長させた。各成長層の格子定数は5 X
 I O−’以内に格子整合されている。
S on the GaA+sP shrimp substrate for light emitting diode
An InGaP heavily doped layer 2 doped with 5 x 1018 crIL-' is grown to 2 μm, and then S is grown to 13 x 10 c as in the conventional double heterostructure for lasers.
m doped n-type 1nGaP layer 3 to 1. □
% non-doped InGaAsP active layer 4 with 0.1μ, Zn
A p-type InGaP layer 5 doped with 1×10 cIrL and a 5×10 m S-doped n-type GaAaP layer 9 were successively grown to a thickness of 51rrrL.The lattice of each grown layer The constant is 5
It is lattice matched to within I O-'.

キャップ層の転位密度をH2S04(96チ):H,P
O4(85チ) :H20□(30チ)=5:5:2の
工、チンダ液で光音照射しなから工、チングを行ない調
べた結果、50.000cm であった。発光ダイオー
ド用GaAsPエピ基板自体の転位密度についても同様
に調べた結果350.000〜400,000cm  
であった。また、格子整合にのみ注意する従来技術によ
る同様な実験を行なった結果は転位密度が400.0O
OcrrL  となった。
The dislocation density of the cap layer is H2S04 (96chi): H,P
O4 (85 inches): H20□ (30 inches) = 5:5:2, and as a result of 50.000 cm of 50.000 cm after photo-sound irradiation with tinda solution and tinging. The dislocation density of the GaAsP epitaxial substrate itself for light emitting diodes was similarly investigated and was found to be 350,000 to 400,000 cm.
Met. In addition, the results of a similar experiment using the conventional technology that focused only on lattice matching showed that the dislocation density was 400.0O
It became OcrrL.

これらの結果より高濃度ドーピング層によって基板から
の伝播転位及び応力誘起転位が大幅に低減されているこ
とが確認された。
These results confirmed that propagating dislocations and stress-induced dislocations from the substrate were significantly reduced by the highly doped layer.

(実施例3) n型GaAs基板上にInGaAsP系混晶によるイン
ナーストライプ半導体レーザを作成した例を第4図に基
づき説明する。
(Example 3) An example of fabricating an inner stripe semiconductor laser using an InGaAsP mixed crystal on an n-type GaAs substrate will be described with reference to FIG.

図中のIH8Iドープn型GaAs基板でキャリア濃度
はlXl0”cm−3、転位密度u I X 1.0’
 art−2である。
In the IH8I-doped n-type GaAs substrate in the figure, the carrier concentration is lXl0"cm-3, and the dislocation density is u IX 1.0'
It is art-2.

この上にSを8xlOan  ドープしたn型InGa
Pクラッド層3を1lrrrL% ノンドープInGa
AsP活性層4を0.11InL、 ZnをlXl0 
cnt  ドープしたp型I nGaPクラ、ド層5t
l−IItrrL1Sを8X10  cm  ドープし
たn型ブロック層10を0.5μmの厚さにそれぞれ成
長させた。ここでn型ブロック層10を図示の様に巾4
声程度のストライプ状にエツチングを行ない、その後Z
nを1×10cIrL  ドープしたInGaPnGa
Pクラ1rrL成長させ、さらにZnを5X10 cI
rL  ドープしたGaAs高濃度ドーピング層12を
1声、Znを1刈018c’i−’ドープしたGaAs
コンタクト層13を0.3μmの厚さにそれぞれ成長さ
せた。各成長層の格子定数は5 X 10−’以内に格
子整合されている。電極はp型に、ヒートシンクをかね
たAu−Zn合金電極14を5000i、 n型にAu
電極15を100 Xの厚さに蒸着した。
N-type InGa doped with 8xlOan of S on this
P cladding layer 3 is 1lrrrL% non-doped InGa
AsP active layer 4 is 0.11InL, Zn is 1Xl0
cnt doped p-type I nGaP layer 5t
An n-type blocking layer 10 doped with 8×10 cm of l-IItrrL1S was grown to a thickness of 0.5 μm, respectively. Here, the n-type block layer 10 has a width of 4 as shown in the figure.
Etching is done in a stripe shape that is about the same size as the voice, and then Z
InGaPnGa doped with 1×10 cIrL n
P crystal 1rrL was grown, and Zn was further added to 5×10 cI.
rL Doped GaAs GaAs doped with one high concentration doping layer 12 and one Zn layer 018c'i-'
Each contact layer 13 was grown to a thickness of 0.3 μm. The lattice constants of each grown layer are lattice matched to within 5 x 10-'. The electrode is p-type, the Au-Zn alloy electrode 14 that also serves as a heat sink is 5000i, and the n-type is Au.
Electrode 15 was deposited to a thickness of 100×.

この様にして作成したインナーストライプ型半導体レー
ザーは発振波長7800Xにて室温連続発振し、発振閾
値電流密度は2kA/cIn2であった。このレーデの
寿命試験を室温にて発振閾値電流の1.5倍の電流を通
電して行なった結果、平均寿命は約3000時間であっ
た。
The inner stripe type semiconductor laser produced in this manner continuously oscillated at room temperature at an oscillation wavelength of 7800X, and had an oscillation threshold current density of 2 kA/cIn2. A lifespan test of this Rede was conducted at room temperature by passing a current 1.5 times the oscillation threshold current, and as a result, the average lifespan was about 3000 hours.

これに対して従来技術による高濃度ドーピング層12の
ないインナーストライプ型半導体レーデの寿命試験の結
果は平均寿命約800時間であった。
On the other hand, the life test result of the prior art inner stripe type semiconductor radar without the heavily doped layer 12 was about 800 hours on average.

これはp型電極を作成する際にかなりの応力誘起転位が
発生しているものと考えられ、高濃度ドーピング層12
を設けることによって発生した転位が活性層4に伝播し
難くなるものと考えられる。
This is thought to be due to a considerable amount of stress-induced dislocation occurring during the creation of the p-type electrode, and the highly doped layer 12
It is considered that the provision of this makes it difficult for generated dislocations to propagate to the active layer 4.

以上の様に本発明はプロセス過程において、発生する応
力誘起転位に対しても有用性があり複雑なプロセス及び
熱履歴を経験する高速デバイス、光デバイスには有効で
ある。
As described above, the present invention is also useful against stress-induced dislocations that occur during the process, and is effective for high-speed devices and optical devices that undergo complicated processes and thermal history.

(実施例4) n型GaAs基板上にn型GaAsP混晶をグレーデ。(Example 4) Grade n-type GaAsP mixed crystal on an n-type GaAs substrate.

ラドエピタキシャル成長させた発光ダイオード用GaA
sPエピ基板を用いてその上にメサストライプ型半導体
レーデを作成した例をW、5図に基づき説明する。
Rad epitaxially grown GaA for light emitting diodes
An example of forming a mesa stripe type semiconductor radar on an sP epitaxial substrate will be explained based on FIG.

図中の11ri n型GaAs基板である。この上に、
約3Q ptnの、SをlXl0”(m−’ドープした
n型GaAttr 1− xP x (0< x< O
−4)グレーデツド層7と、同じく約30 μmの、S
をlXl0”cm−3ドープしたn型GaAs 、−、
Px(X : 0.4 )コンスタントN!I8が設け
られている。
This is an 11rin type GaAs substrate in the figure. On top of this
S-doped n-type GaAttr 1− xP x (0<x< O
-4) Graded layer 7 and S of about 30 μm
n-type GaAs doped with lXl0"cm-3, -,
Px (X: 0.4) constant N! I8 is provided.

この様な発光ダイオード用GaAsPエピ基板上にSを
5X10 cm  ドープしたInGaP高濃度ドーピ
ング/e2を2μm成長させ、その後従来法のレーザ用
ダブルヘテロ構造と同様にSを8X10”cIrL−’
ドープしfan型InGaPクラッドM3を17m、ノ
ンドープInGaAsP活性層4をQ、l声、Znを1
×10crrL  ドープしたp型InGaPクラ、ド
層5を1μm成長させ、さらにZnを5×10 傭 ド
ープしたp型1nGaP高濃度ドーピング層12を2p
m、f3を5×1717crrL−3ドープしたn型I
nGaAsPキャ、デ層16を1μm成長させた。その
後ストライプ巾4声でキャップ屓よりZnを選択的に拡
散しZn、拡散層17を形成し、メサ構造にエツチング
を行ない、5102でマスク18を行なった後Auを蒸
着して電極15とした。
On such a GaAsP epitaxial substrate for a light emitting diode, 2 μm of InGaP doped with 5×10 cm of S doped/e2 was grown, and then S was grown to 8×10”cIrL-' in the same manner as the conventional double heterostructure for a laser.
Doped fan-type InGaP cladding M3 is 17 m, non-doped InGaAsP active layer 4 is Q, L, Zn is 1.
×10 crrL doped p-type InGaP layer 5 is grown to 1 μm, and further Zn doped 5×10 crrL p-type 1nGaP high concentration doping layer 12 is grown to 2p.
m, f3 doped n-type I with 5×1717 crrL-3
An nGaAsP layer 16 was grown to a thickness of 1 μm. Thereafter, Zn was selectively diffused from the bottom of the cap with a stripe width of 4 to form a Zn diffusion layer 17, and a mesa structure was etched. After a mask 18 was formed at 5102, Au was evaporated to form an electrode 15.

この様にして作成し念メサストライプ型半導体レーザは
発振波長6500Xにて室温ノ4ルス発振し、発振閾値
電流密度は4 kA/cm2であった・これに対して従
来技術によるn型高濃度ドーピング層2およびp型窩濃
度ドーピング層12のないメサストライプ型半導体レー
デの特性は室温パルス発振にて発振閾値電流密度12 
kA /an”であった。
The mesa stripe type semiconductor laser created in this way oscillated at room temperature at an oscillation wavelength of 6500X, and the oscillation threshold current density was 4 kA/cm2.In contrast, n-type high concentration doping using conventional technology The characteristics of the mesa stripe type semiconductor radar without the layer 2 and the p-type cavity concentration doped layer 12 are as follows: The oscillation threshold current density is 12 at room temperature pulse oscillation.
kA/an”.

これは本発明による高濃度ドーピング層が転位の発生及
び伝播を阻止したものと考えられ、転位の影響を受は易
い半導体発光デバイスには非常に有用性が高い。
This is considered to be because the highly doped layer according to the present invention inhibits the generation and propagation of dislocations, and is highly useful for semiconductor light emitting devices that are easily affected by dislocations.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば基板からの転位の伝播及び
応力誘起転位の発生を有効に減少させることができ、転
位の影響を受は易い光デバイス、高速デバイスを考える
時に極めて優れた効果を得ることができる。
As described above, according to the present invention, it is possible to effectively reduce the propagation of dislocations from the substrate and the generation of stress-induced dislocations, which is an extremely excellent effect when considering optical devices and high-speed devices that are easily affected by dislocations. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成を示す断面図、第2図〜第
5図はそれぞれ本発明の実施例を示す断面図、第6図は
従来の化合物半導体装置を示す断面図である。 l・・・GaAs基板、2・・・高濃度ドーピング層、
3・・・n型1nGaP層、4− InGaAsP層、
5−p型1nGaP層、12・・・p型窩濃度ドーピン
グ層、14・・・Au−Zn合金電極、15・・・電極
。 第1図 第2図
FIG. 1 is a sectional view showing the basic structure of the present invention, FIGS. 2 to 5 are sectional views showing embodiments of the invention, and FIG. 6 is a sectional view showing a conventional compound semiconductor device. l...GaAs substrate, 2...highly doped layer,
3...n-type 1nGaP layer, 4-InGaAsP layer,
5-p-type 1nGaP layer, 12... p-type cavity concentration doped layer, 14... Au-Zn alloy electrode, 15... electrode. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)半導体発光デバイスに用いられるダブルヘテロ構
造を有する化合物半導体装置において、不純物濃度2×
10^1^8原子/cm^3以上の高濃度ドーピング層
を基板上に設け、該ドーピング層上にダブルヘテロ構造
を形成したことを特徴とする化合物半導体装置。
(1) In a compound semiconductor device having a double heterostructure used in a semiconductor light emitting device, an impurity concentration of 2×
1. A compound semiconductor device, characterized in that a high concentration doping layer of 10^1^8 atoms/cm^3 or more is provided on a substrate, and a double heterostructure is formed on the doping layer.
(2)半導体発光デバイスに用いられるダブルヘテロ構
造を有する化合物半導体装置において、該装置に形成さ
れたエピタキシャル層側電極下に、不純物濃度2×10
^1^8原子/cm^3以上の高濃度ドーピング層を有
することを特徴とする化合物半導体装置。
(2) In a compound semiconductor device having a double heterostructure used in a semiconductor light emitting device, an impurity concentration of 2×10
A compound semiconductor device characterized by having a high concentration doping layer of ^1^8 atoms/cm^3 or more.
(3)半導体発光デバイスに用いられるダブルヘテロ構
造を有する化合物半導体装置において、不純物濃度2×
10^1^8原子/cm^3以上の高濃度ドーピング層
を基板上に設け、該ドーピング層上にダブルヘテロ構造
を形成し、かつ、エピタキシャル層側の電極下に不純物
濃度2×10^1^8原子/cm^3以上の高濃度ドー
ピング層を有することを特徴とする化合物半導体装置。
(3) In a compound semiconductor device having a double heterostructure used in a semiconductor light emitting device, an impurity concentration of 2×
A highly doped layer with a concentration of 10^1^8 atoms/cm^3 or more is provided on the substrate, a double heterostructure is formed on the doped layer, and an impurity concentration of 2 x 10^1 is formed under the electrode on the epitaxial layer side. A compound semiconductor device characterized by having a high concentration doping layer of ^8 atoms/cm^3 or more.
JP59228627A 1984-10-30 1984-10-30 Compound semiconductor device Pending JPS61107782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228627A JPS61107782A (en) 1984-10-30 1984-10-30 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228627A JPS61107782A (en) 1984-10-30 1984-10-30 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61107782A true JPS61107782A (en) 1986-05-26

Family

ID=16879300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228627A Pending JPS61107782A (en) 1984-10-30 1984-10-30 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61107782A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347431A (en) * 1992-06-15 1993-12-27 Sharp Corp Substrate for semiconductor element and semiconductor element
JPH05347432A (en) * 1992-06-15 1993-12-27 Sharp Corp Semiconductor light-emitting element
JP2002305355A (en) * 2001-04-05 2002-10-18 Furukawa Electric Co Ltd:The Semiconductor laser element
US7288793B2 (en) 2003-11-20 2007-10-30 Rohm Co., Ltd. Semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347431A (en) * 1992-06-15 1993-12-27 Sharp Corp Substrate for semiconductor element and semiconductor element
JPH05347432A (en) * 1992-06-15 1993-12-27 Sharp Corp Semiconductor light-emitting element
JP2002305355A (en) * 2001-04-05 2002-10-18 Furukawa Electric Co Ltd:The Semiconductor laser element
US7288793B2 (en) 2003-11-20 2007-10-30 Rohm Co., Ltd. Semiconductor laser

Similar Documents

Publication Publication Date Title
US5508554A (en) Semicoductor device having defect type compound layer between single crystal substrate and single crystal growth layer
CA1102903A (en) Fabrication of mesa devices by mbe growth over channeled substrates
JP5929115B2 (en) Semiconductor nanodevice
JPH0274088A (en) Semiconductor laser device
JPS6343387A (en) Semiconductor laser device and manufacture thereof
EP1201012A1 (en) Semiconductor structures using a group iii-nitride quaternary material system
JP5185030B2 (en) Semiconductor structure and optical semiconductor device using the semiconductor structure
JPS61107782A (en) Compound semiconductor device
JP2008235519A (en) Optical semiconductor element and optical semiconductor element manufacturing method
JPS5948976A (en) Semiconductor laser
JPH0834338B2 (en) Semiconductor laser
CN114389152A (en) Epitaxial growth method of semiconductor laser
JPH0439988A (en) Semiconductor light emitting device
JP3062510B2 (en) Semiconductor optical device
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JPH05129721A (en) Semiconductor laser and manufacture thereof
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPH1084131A (en) Semiconductor light emitting device
JPH04180686A (en) Manufacture of semiconductor laser of window structure
TW439335B (en) A semiconductor laser and the fabrication method thereof
JPS621293A (en) Semiconductor light-emitting element
JPH04275479A (en) Semiconductor laser
JPS61134091A (en) Ingaasp visible light semiconductor laser
JPH0734493B2 (en) Semiconductor laser device and method of manufacturing the same