JPS61103735A - Interpolation system of numerical control device - Google Patents
Interpolation system of numerical control deviceInfo
- Publication number
- JPS61103735A JPS61103735A JP22697984A JP22697984A JPS61103735A JP S61103735 A JPS61103735 A JP S61103735A JP 22697984 A JP22697984 A JP 22697984A JP 22697984 A JP22697984 A JP 22697984A JP S61103735 A JPS61103735 A JP S61103735A
- Authority
- JP
- Japan
- Prior art keywords
- interpolator
- electrode
- control
- speed
- high speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 14
- 238000003754 machining Methods 0.000 abstract description 11
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 4
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 102000016917 Complement C1 Human genes 0.000 description 1
- 108010028774 Complement C1 Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 101150110969 gap1 gene Proteins 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
- B23H7/28—Moving electrode in a plane normal to the feed direction, e.g. orbiting
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Numerical Control (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、数値制御装置の補間方式に係り、特に、電極
の送り込み方向のみの加工だけでなく。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an interpolation method for a numerical control device, and particularly relates to processing not only in the feeding direction of an electrode.
゛電極のまわりの方向をも含めた揺動加工を行なう型彫
り放電加工機において、その制御を容易にした数値制御
装置の補間方式に関する。``This invention relates to an interpolation method for a numerical control device that facilitates control in a die-sinking electric discharge machine that performs oscillating machining including the direction around the electrode.
(従来技術)
通常型彫り放電加]″機は、電極の送り込み方向のみに
加工を行なうものであるが、揺動加工では電極の動きを
電極の送り方向だけでなく、電極のまわりの揺動運動を
も含めた一制御を行なって、従来の放電加工機にはない
加−[動作を行なうことができるようになっている。揺
動運動形状としては円運動にかぎらず、四角運動なども
行なわせることができる。(Prior technology) Normal die-sinking electrical discharge machining machine performs machining only in the feeding direction of the electrode, but in oscillating machining, the movement of the electrode is performed not only in the feeding direction of the electrode but also in the oscillating motion around the electrode. It is possible to perform machining operations that are not available in conventional electrical discharge machines by controlling the entire motion.The oscillating motion shape is not limited to circular motion, but also rectangular motion. I can make you do it.
このような揺動加工を行なうと、実際の電極の径より大
きな径の型彫り加工を行なうことができたり、加工中に
発生ずるスラッジの除去が容易になったり、゛電極の消
jtを広い面積に分散させ、実質的に電極の消耗を低減
することができるといった利点がある。By performing this type of oscillating machining, it is possible to carve a diameter larger than the actual diameter of the electrode, it is easier to remove sludge generated during machining, and it is possible to It has the advantage that it can be distributed over an area, thereby substantially reducing the consumption of the electrode.
(従来技術の問題点)
ところで、型彫放電加工機の場合は、電極の送り込み方
向の電極送り制御は応答性を高める必要があるために、
揺動加工のための制御あるいは一般の数値制御(NC)
装置による制御、例えば。(Problems with conventional technology) By the way, in the case of a die-sinking electrical discharge machine, the electrode feed control in the electrode feeding direction needs to improve responsiveness.
Control for swing machining or general numerical control (NC)
Control by equipment, e.g.
位置表示などを行なうためのサービスがNC装このCP
Uによっては十分に行なえないという問題があった。The service for displaying the position etc. is NC equipped with this CP.
There was a problem that some U could not do it enough.
(発明の目的)
本発明は、上記問題点を解決するために、電極の送り込
み方向の送り軸の制御のためには高速補間器で専用の中
央演算処理装置を用いて応答性の高い制御を行なうと共
に揺動制御のための軸訓御や一般のNC装置による制御
は低速補間器で他の中央演算処理装置を用いることによ
り1円滑、かつ的確な制御を行ない得る型彫放電加工機
の制御方式を提供することを目的とする。(Object of the Invention) In order to solve the above problems, the present invention provides highly responsive control using a dedicated central processing unit with a high-speed interpolator to control the feed axis in the electrode feeding direction. At the same time, shaft control for swing control and control by a general NC device are performed using a low-speed interpolator and another central processing unit, thereby achieving smooth and accurate control of the die-sinking electrical discharge machine. The purpose is to provide a method.
(発明の概要)
本発明の数値制御装置の補間方式は、一定の周期で起動
される低速補間器と、それに同期して1 / nの周期
に起動される高速補間器とを設け。(Summary of the Invention) The interpolation method of the numerical control device of the present invention includes a low-speed interpolator that is started at a constant cycle and a high-speed interpolator that is started at a cycle of 1/n in synchronization with the low-speed interpolator.
前記低速補間器の出力パルスをn分割したパルスと高速
補間器の出力パルスとを加えたものを補間器の出力パル
スとすることを特徴とする。The output pulse of the interpolator is the sum of the output pulse of the low-speed interpolator divided into n and the output pulse of the high-speed interpolator.
(実施例)
gIJ1図は本発明に係る数f1制御装置の補間方式の
一実施例の説明図、第2図は本発明が適用される数値制
御システムの全体構成図である。・第2図において、l
はワーク、2は電極、3はV/F変換器、4はパルスカ
ウンタ、5はNC装置である。また、第1図において、
6は主補間器、8はl/8補間器、9は補助補間器、1
0は加rt器である。(Embodiment) Fig. gIJ1 is an explanatory diagram of an embodiment of the interpolation method of a numerical f1 control device according to the present invention, and Fig. 2 is an overall configuration diagram of a numerical control system to which the present invention is applied.・In Figure 2, l
2 is a workpiece, 2 is an electrode, 3 is a V/F converter, 4 is a pulse counter, and 5 is an NC device. Also, in Figure 1,
6 is the main interpolator, 8 is the l/8 interpolator, 9 is the auxiliary interpolator, 1
0 is the rt device.
ここで、ワークlと電極2間の放電状態は監視されてお
り、V/F変換器3を介して速度パルスがパルスカウン
タ4に送られる。一方、、NC装置5は入力パルス数を
読み取り、速度指令VCMDを電極駆動する制御軸に伝
達する。そして1本発明の数値制御装置の補間方式にお
いては、一定の周期、例えば、16msで起動される低
速(主)補間器6を設け、この補間器6にて電極のまわ
りの揺動運動や、ジョグ送り、早送りなどを行なわせる
ようにする。また、前記の低速補間器6に同期してl
/ nの周期1例えば、1/8の周期に起動される高速
(補助)補間器9を設け、この補間器9にて電極の送り
込みや、電極2とワークlとが短絡するとこれを検出し
て電極を後退制御したり、ジャンプなどの高速の応答を
行なうようにする。Here, the discharge state between the work l and the electrode 2 is monitored, and a speed pulse is sent to the pulse counter 4 via the V/F converter 3. On the other hand, the NC device 5 reads the number of input pulses and transmits the speed command VCMD to the control shaft that drives the electrodes. 1. In the interpolation method of the numerical control device of the present invention, a low-speed (main) interpolator 6 that is activated at a fixed period, for example, 16 ms, is provided, and this interpolator 6 controls the oscillating motion around the electrode, Enable jog feed, fast feed, etc. Also, in synchronization with the low-speed interpolator 6,
For example, a high-speed (auxiliary) interpolator 9 is provided that is activated at a period of 1/8 of n, and this interpolator 9 detects when the electrode is fed or when the electrode 2 and the work l are short-circuited. to control the electrode backwards or perform high-speed responses such as jumping.
そして、これらの主補間器6と補助補間器9とはそれぞ
れ別個のマイクロプロセッサ、つまり、メインCPUと
サブCPUとで構成するようにする。The main interpolator 6 and the auxiliary interpolator 9 are each composed of separate microprocessors, that is, a main CPU and a sub-CPU.
次に、かかる低速補間器6と高速補間器9とを有する補
間方式を型彫放電加工機に適用した場合について説明す
る。Next, a case will be described in which an interpolation method having such a low-speed interpolator 6 and a high-speed interpolator 9 is applied to a die-sinking electrical discharge machine.
前記した様に、揺動加工を行なう型彫放電加工機におい
てはワーク1と’Fl極2との間の放電ギャップをff
lmLながら電極を送り込む連動(以下。As mentioned above, in a die-sinking electrical discharge machine that performs oscillating machining, the electrical discharge gap between the workpiece 1 and the 'Fl pole 2 is ff.
Interlocking to feed the electrode while lmL (below).
サーボ連動という)と、そのサーボ運動の廻りで一定の
パターンを繰り返す運動、つまり、揺動運動とがある。There are two types of movement: servo interlocking) and oscillating movement, which is a movement that repeats a certain pattern around the servo movement.
なかでも、サーボ運動は放電ギャップを制御1例えば、
通常の状態での電極の送り制御だけでなく、ワーク1と
電極2とが短絡するとこれを検出して電極2を後退制御
し、また、短絡状態が回復すると通常の状態での電極の
送り制御を行なうようにするなどの高速の応答性が要求
され、計算の周期を短かくする必要がある。しかしなが
ら、このために周期を短かくすると、NCとしての他゛
の処理のサービスが十分に行なえなくなる。そこで、サ
ーボi]!動の演算は高速補間器のサブCPUを用いて
、このCPUに短かい周期、例えば、2ms毎に高速演
算を行なわせることにより、サーボ′Bl動制御を迅速
、かつ的確に行なえるようにする。一方、揺動運動制御
あるいはジョグ送りや早送りなどは低速補間器6のメイ
ンCPUを用いることにより、例えば、通常の周期12
m5毎に演算を実行して、サーボ連動制御に影響を受け
ることなく円滑な揺動、!I!動やジョグ送り、V送り
などを実行できるように構成する。Among them, the servo movement controls the discharge gap1, e.g.
In addition to controlling the electrode feed in the normal state, if a short circuit occurs between the workpiece 1 and the electrode 2, this is detected and the electrode 2 is controlled backward, and when the short circuit is restored, the electrode feed control is performed in the normal state. High-speed responsiveness is required, and the calculation cycle must be shortened. However, if the cycle is shortened for this purpose, the NC cannot sufficiently service other processes. So, servo i]! Motion calculations use the sub-CPU of the high-speed interpolator, and by having this CPU perform high-speed calculations at short intervals, for example, every 2 ms, servo 'Bl movement control can be performed quickly and accurately. . On the other hand, swing motion control, jog feed, fast feed, etc. can be performed using the main CPU of the low-speed interpolator 6, for example, with a normal period of 12
Calculations are executed every m5 to ensure smooth swinging without being affected by servo interlocking control! I! It is configured to be able to perform motion, jog feed, V feed, etc.
第3図は、本発明に係る数f直制御装置の補間方式を適
用した数値制御システムの他の実施例を示すブロック図
である0図中、101はNCwI令データが穿孔されて
いる紙テープであり、加工のための位置決め情報やM、
S、T機能情憎等のNC指令データを蓄積したもの、1
02はNC装置であり、紙テープ101からテープリー
グをしてNCデータを読取らせると共に、読取られたN
Cデータを解読し1例えば、M、S、T@能命令であれ
ば図示しない強電盤を介して機械側へ送jBする。FIG. 3 is a block diagram showing another embodiment of the numerical control system to which the interpolation method of the multi-f direct control device according to the present invention is applied. In FIG. Yes, positioning information for processing and M,
Accumulated NC command data such as S, T function love/hate, etc., 1
02 is an NC device, which performs tape league from the paper tape 101 to read NC data, and also reads the read N data.
The C data is decoded and, for example, if it is an M, S, T @ function command, it is sent to the machine side via a power board (not shown).
一方、移動指令、つまり、サーボ運動制御のためのZ軸
方向の軸送り指令Zc、揺動運動制御のためのxY軸指
令Xc、Ycはそれぞれ後段のパルス分配器に出力する
。NC装21102は制御プログラムに従って揺動運動
制御その他正常のNC制御のための第2のCPU102
aと、専らサーボ運動制御のための送り軸指令Zcの演
算処理を実行する第1のCPU102にと、所定の制御
プログラムを記憶するプログラムメモリ102bとデー
タを記憶するデータメモリ102cと、8a作のための
操作盤102dと、テープリーダ/パンチャ102eと
、周波数パルス変換回路102fと、入出カポ−)10
2gと、現在位置カウノタ102hと、表示装置102
iとこれらを接続するアドレス・データバス102 j
とで構成されるプログラムメモリ102bは、リードオ
ンリーメモリ(ROM)で構成され1機械を数値制御す
るためのNCプログラムを記憶する。一方、データメモ
リ102cには紙テープlotのNCデータ(加工4に
、71データ等)を記憶する他にパラメータやユーザマ
クロでプログラムした加ニブログラムを領域PMに記憶
する。103はパルス分配器であり、移動指令Xc、Y
c、Zcに基いて公知のパルス分配演算を実行して指令
速度5に応じた周波数の分配パルスPsを発生するもの
である。On the other hand, the movement commands, that is, the axis feed command Zc in the Z-axis direction for servo motion control, and the xY-axis commands Xc and Yc for swing motion control, are output to the subsequent pulse distributor, respectively. The NC unit 21102 is a second CPU 102 for swing motion control and other normal NC control according to the control program.
a, a first CPU 102 that exclusively executes arithmetic processing of a feed axis command Zc for servo motion control, a program memory 102b that stores a predetermined control program, a data memory 102c that stores data; operation panel 102d, tape reader/puncher 102e, frequency pulse conversion circuit 102f, input/output capo) 10
2g, current position counter 102h, and display device 102
i and an address/data bus 102 j that connects these
The program memory 102b is comprised of a read-only memory (ROM) and stores an NC program for numerically controlling one machine. On the other hand, in the data memory 102c, in addition to storing the NC data of the paper tape lot (processing 4, 71 data, etc.), the machine program programmed with parameters and user macros is stored in the area PM. 103 is a pulse distributor, which receives movement commands Xc, Y
A known pulse distribution calculation is executed based on c and Zc to generate a distribution pulse Ps of a frequency corresponding to the command speed 5.
104は分配パルス列Psのパルス速度を該パルス列の
発生時に直線的に加速し、また該パルス列
Jの終了時に直線的に減速してパルス列Piを発生す
る公知の加減速回路、105は型彫放電加工機の電極B
Pを加工送りするサーボモータ、106はこのモータが
所定量回転する毎に1個のフィードバックパルスEPを
発生するパルス分配器、107は誤差演算記憶部であり
1例えば可逆カウンタにより構成され、加減速回路10
4から発生した入力パルスPiの数とフィードバックパ
レスFPの差Erを記憶する0例えば、この誤差演算配
化11部は図示の如<PiとErを演算する演算回路1
07aと誤差Erを記憶する誤差レジスタ107bとで
構成する。108は誤差レジスタ107bの内容に比例
したアナログ電圧を発生するデジタルアナログ(D A
)変換器、109は速度制御回路である。EPは型彫放
電加工機の加工電極であり、ポンチとなる電極EPはス
ピンドルSPにより支持されていると共に、サーボモー
タlO5により矢印方向に加工送りが与えられ、グイと
なる被加工体(ワーク)WKと電極EP間には電源PS
から通電が行なわれるものである。110は間隙電圧検
出回路であり、電極EPとワークWK間の印加電圧から
間隙電圧Vaを検出するもの、txtは電圧−周波数(
V F)変換器であり、アナログの間隙電圧Vaを周波
数変換するものである。104 linearly accelerates the pulse speed of the distribution pulse train Ps when the pulse train is generated;
A known acceleration/deceleration circuit decelerates linearly at the end of J to generate a pulse train Pi, and 105 is an electrode B of a die-sinking electrical discharge machine.
106 is a pulse distributor that generates one feedback pulse EP every time this motor rotates by a predetermined amount; 107 is an error calculation storage section 1 composed of, for example, a reversible counter; circuit 10
For example, this error calculation circuit 11 stores the difference Er between the number of input pulses Pi generated from 4 and the feedback pulse FP.
07a and an error register 107b that stores the error Er. 108 is a digital analog (DA) that generates an analog voltage proportional to the contents of the error register 107b.
) converter, 109 is a speed control circuit. EP is a machining electrode of a die-sinking electrical discharge machine. The electrode EP, which serves as a punch, is supported by a spindle SP, and a machining feed is given in the direction of the arrow by a servo motor 1O5, and a workpiece that becomes a gun is Power supply PS is connected between WK and electrode EP.
Electricity is supplied from the 110 is a gap voltage detection circuit that detects the gap voltage Va from the voltage applied between the electrode EP and the workpiece WK, and txt is the voltage-frequency (
VF) converter, which converts the frequency of analog gap voltage Va.
このように構成された@植制御システムにおいて、前記
した様に、未発11においては、型彫放電加工機の電極
EPとワークWK間のギャップを一定距離に保つ電極の
送り込み方向送り制御は第1のCPU102hを用いて
1例えば1周期2ms毎に高速演算制御を行なう、つま
り放電加工が正常時の電極送り制御はもちろんのこと、
電極BPとワークWKの短絡時には的確に電極EPを1
&氾制御し、短絡状態が回復するとすばやく通常の電極
BPの送り制御を行なうようにする。In the @implanting control system configured in this way, as mentioned above, in the case of misfire 11, the electrode feeding direction feed control to maintain the gap between the electrode EP and the workpiece WK of the die-sinking electrical discharge machine at a constant distance is performed at the first step. Using the CPU 102h of 1, for example, high-speed calculation control is performed every 2 ms per cycle, that is, not only electrode feed control when electrical discharge machining is normal, but also
When the electrode BP and workpiece WK are short-circuited, set the electrode EP to 1.
&flooding control, and when the short-circuit condition is recovered, normal electrode BP feeding control is quickly performed.
一方、電極BPの揺動運動制御やジ、グ送り。On the other hand, the oscillating motion control and jig feeding of the electrode BP.
早送り及び通常のNC制υ蓼は、第2のcput。Fast forwarding and normal NC control use the second cput.
2aを用いて1周期16ms毎に演算を行なうことによ
り実行するように構成する。2a is used to perform calculations every 16 ms in one cycle.
尚1本発明は前記した実施例に限定されるものではなく
、本発明の主旨に従い、種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。Note that the present invention is not limited to the embodiments described above, and various modifications can be made in accordance with the gist of the present invention, and these are not excluded from the scope of the present invention.
(本発明の効果)
本発明によれば一定の周期で起動される低速補間器と、
それに同期して1 / nの周期に起動される高速補間
器とを設け、前記低速補間器の出力パルスをn分割した
パルスと前記高速補間器の出力パルスとを加えたものを
補間器の出力パルスとするようにしたので、それぞれの
補間器に適した制御を分担させることができ、きめの細
かい的確な補間を実行することができる。更に、電極と
ワーク間の放電空隙を制御するように送り軸を制御する
と共に電極を揺動制御する型彫放電加工機の制御方式に
おいて、前記送り軸制御を行なうために専用の中央演算
処理装置を設けると共に前記婚動−制御は他の中央演算
処理装置によって実行させるようにしたので、高応答性
が求められる送り軸制御は専用のCPUを用いて所望の
適応制御を可能にすることができると共に送り軸制御は
ど高応答性が求められない揺動制御あるいは一般のNC
装置の制御は別のCPUを用いて設定条件に適合した円
滑な制御を遂行することができる。従って、型彫放電加
工機の制御を全体的にみて5円滑かつ的確に制御するこ
とができるという効果を奏することができる。(Effects of the present invention) According to the present invention, a low-speed interpolator activated at a constant cycle;
A high-speed interpolator that is activated at a period of 1/n is provided in synchronization with this, and the output of the interpolator is the sum of the output pulse of the low-speed interpolator divided into n and the output pulse of the high-speed interpolator. Since the pulses are used, appropriate control can be assigned to each interpolator, and fine-grained and accurate interpolation can be performed. Furthermore, in a die-sinking electrical discharge machine control method that controls the feed axis and swings the electrode so as to control the discharge gap between the electrode and the workpiece, a dedicated central processing unit is used to control the feed axis. is provided, and the above-mentioned movement control is executed by another central processing unit, so that the feed axis control, which requires high responsiveness, can be controlled using a dedicated CPU. In addition, feed axis control is used for swing control or general NC where high responsiveness is not required.
The device can be controlled smoothly using a separate CPU that meets set conditions. Therefore, the die-sinking electric discharge machine can be controlled smoothly and accurately as a whole.
【図面の簡単な説明】
tJIj1図は本発明に係る数値制御装置の補間方式を
説明する説明図、第2図は本発明の補間方式が適用され
る数値制御システムの概略構成図、第3図は他の実施例
を説明する数値制御システムの全体ブロック図である参
1、WK・・・ワーク、2.EP・・・電極、6・・・
儂速(主)補1■器、8・・・1/8補間器。
9・・・高速(補助)補間器、10・・・加算器、5、
LO2−NC装置、102a・・−第1のCPU、10
2g・・・入出力ポート、102k・・・第2のCPU[BRIEF DESCRIPTION OF THE DRAWINGS] tJIj1 is an explanatory diagram for explaining the interpolation method of the numerical control device according to the present invention, FIG. 2 is a schematic configuration diagram of a numerical control system to which the interpolation method of the present invention is applied, and FIG. 1 is an overall block diagram of a numerical control system for explaining other embodiments. EP...electrode, 6...
Self-speed (main) complement 1■ interpolator, 8...1/8 interpolator. 9...High-speed (auxiliary) interpolator, 10...Adder, 5,
LO2-NC device, 102a...-first CPU, 10
2g...I/O port, 102k...2nd CPU
Claims (3)
期して1/nの周期に起動される高速補間器とを設け、
前記低速補間器の出力パルスをn分割したパルスと前記
高速補間器の出力パルスとを加えたものを補間器の出力
パルスとすることを特徴とする数値制御装置の補間方式
。(1) Providing a low-speed interpolator that is started at a constant cycle and a high-speed interpolator that is started at a 1/n cycle in synchronization with the interpolator,
An interpolation method for a numerical control device, characterized in that the output pulse of the interpolator is the sum of a pulse obtained by dividing the output pulse of the low-speed interpolator into n parts and an output pulse of the high-speed interpolator.
プロセッサで構成することを特徴とする特許請求の範囲
第(1)項記載の数値制御装置の補間方式。(2) An interpolation system for a numerical control device according to claim (1), wherein the low-speed interpolator and the high-speed interpolator are configured by separate microprocessors.
運動は前記高速補間器で行ない、電極のまわりの揺動運
動は前記低速補間器で行なうようにしたことを特徴とす
る特許請求の範囲第(1)項又ほ第(2)項記載の数値
制御装置の補間方式。(3) In the die-sinking electrical discharge machine, the movement of the electrode in the feeding direction is performed by the high-speed interpolator, and the swinging movement around the electrode is performed by the low-speed interpolator. An interpolation method for a numerical control device according to item (1) or item (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22697984A JPS61103735A (en) | 1984-10-29 | 1984-10-29 | Interpolation system of numerical control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22697984A JPS61103735A (en) | 1984-10-29 | 1984-10-29 | Interpolation system of numerical control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61103735A true JPS61103735A (en) | 1986-05-22 |
Family
ID=16853604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22697984A Pending JPS61103735A (en) | 1984-10-29 | 1984-10-29 | Interpolation system of numerical control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61103735A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271502A (en) * | 1987-04-28 | 1988-11-09 | Okuma Mach Works Ltd | Numerical control system |
JPS6478728A (en) * | 1987-09-21 | 1989-03-24 | Hitachi Seiko Kk | Electric discharge machine |
JPS6488604A (en) * | 1987-09-29 | 1989-04-03 | Toko Inc | Method for generating interpolating pulse |
JPH01109409A (en) * | 1987-10-22 | 1989-04-26 | Mitsubishi Electric Corp | Numerical controller |
JP2016103097A (en) * | 2014-11-27 | 2016-06-02 | ファナック株式会社 | Multiple system numerical control device having high-speed responce shaft control system |
-
1984
- 1984-10-29 JP JP22697984A patent/JPS61103735A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271502A (en) * | 1987-04-28 | 1988-11-09 | Okuma Mach Works Ltd | Numerical control system |
JPS6478728A (en) * | 1987-09-21 | 1989-03-24 | Hitachi Seiko Kk | Electric discharge machine |
JPS6488604A (en) * | 1987-09-29 | 1989-04-03 | Toko Inc | Method for generating interpolating pulse |
JPH01109409A (en) * | 1987-10-22 | 1989-04-26 | Mitsubishi Electric Corp | Numerical controller |
JP2016103097A (en) * | 2014-11-27 | 2016-06-02 | ファナック株式会社 | Multiple system numerical control device having high-speed responce shaft control system |
US9983570B2 (en) | 2014-11-27 | 2018-05-29 | Fanuc Corporation | Multiple system numerical control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7973509B2 (en) | Numerical controller having control mode switching function | |
JPS5968003A (en) | Emergency machine origin resetting device of numerically controlled machine tool | |
JP2004318762A (en) | Numerical control device | |
CN117270456B (en) | Rollback working method and device, numerical control system and storage medium | |
US5298843A (en) | Method for restarting punch press machine and numerical controller | |
JPS61103735A (en) | Interpolation system of numerical control device | |
JP2001037080A (en) | Energy recycling method in a system composed of machines | |
JP2673543B2 (en) | Excessive Error Detection Method in Servo Motor Control | |
JP3488801B2 (en) | Machine tool control method and device | |
US4667079A (en) | Electrode retraction control system of electric discharge machine | |
US4675490A (en) | Method and apparatus for controlling electrode position in an electric discharge machine by counting feedback pulses and repeatedly adding the count | |
JP3427800B2 (en) | Numerical control unit | |
EP0160099A1 (en) | Method of retrieving coded instructions for a machining system | |
JP2880211B2 (en) | Tool load monitoring control method | |
KR970009980A (en) | Work area control method of machine tool | |
JPH0885044A (en) | Working load monitoring system | |
US4567342A (en) | Method and apparatus for controlling direction reversal in electric discharge machines | |
JP7469462B2 (en) | CONTROL DEVICE, DATA TRANSFER SYSTEM FOR CONTROL DEVICE, AND DATA TRANSFER METHOD | |
US11287797B2 (en) | Numerical control device | |
WO2022186135A1 (en) | Numerical control device, and computer-readable recording medium | |
JP2632950B2 (en) | Adaptive control device for electric discharge machine | |
JP2652977B2 (en) | Numerical control unit | |
JP2779797B2 (en) | Numerical control unit | |
JPH1190772A (en) | Command device for main spindle and feed shaft | |
JPH06158478A (en) | Controller for stopping loom at definite position |