JPS61102906A - Method and apparatus for forecasting destruction of structure - Google Patents
Method and apparatus for forecasting destruction of structureInfo
- Publication number
- JPS61102906A JPS61102906A JP59221220A JP22122084A JPS61102906A JP S61102906 A JPS61102906 A JP S61102906A JP 59221220 A JP59221220 A JP 59221220A JP 22122084 A JP22122084 A JP 22122084A JP S61102906 A JPS61102906 A JP S61102906A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- failure
- filter
- detected
- concrete bridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 17
- 230000006378 damage Effects 0.000 title claims description 6
- 238000005259 measurement Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 230000001902 propagating effect Effects 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 22
- 239000010959 steel Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000001066 destructive effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Bridges Or Land Bridges (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
く産業上の利用分野〉
開示技術は、PC鋼線埋設のコンクリート橋桁等の疲労
破壊を予め内部に埋設している上記PC鋼線の素線の初
断線を検出することによって所定に対処することが出来
るようにする検知技術の技術分野に属する。[Detailed description of the invention] Industrial application field> The disclosed technology detects fatigue failure of a concrete bridge girder, etc. in which a prestressed steel wire is buried, and detects the initial breakage of a strand of the prestressed steel wire that has been previously buried inside. It belongs to the technical field of detection technology that enables predetermined measures to be taken.
而して、この出願の発明は、複数の素線を撚り合せる等
した集合体のPC鋼線等の抗張力線を埋設しているコン
クリート橋桁等の構造物の疲労破壊を非破壊的に内部埋
設の該素線の1本の初断線を検知することによって該1
本の素線の初断線以後に急速に進む構造物の疲労の進行
にかかわらず、予知して所定の対処手段を講することが
出来るようにした構造物破壊予知方法と該方法に直接使
用する装置に関する発明であり、特に、該素線の1本の
初断線によって構造物内を伝播する弾性波を該構造物の
表面、或は、表面に近い内部位でたわみ形振動子等によ
って検出し、鑑視記録して対処することが出来るように
した構造物破壊予知方法と、該弾性波に対する圧電素子
等のたわみ形振動子と該たわみ形振動子に電気的に接続
されたフィルタが波形記憶装置に同じく電気的に接続さ
れ、該波形記憶装置が記録装置と該初断線発生時からの
経時計測装置の時計等に接続されている破壊予知装置に
係る発明である。Therefore, the invention of this application is a non-destructive method for internally burying tensile strength wires such as PC steel wires made of a plurality of wires twisted together to prevent fatigue failure of structures such as concrete bridge girders. 1 by detecting the first disconnection of one of the strands of
A method for predicting structural failure that can predict and take predetermined countermeasures regardless of the rapid progression of structural fatigue after the initial breakage of a real wire, and a method that can be directly used in the method. This invention relates to a device, and in particular, detects an elastic wave propagating within a structure due to an initial break in one of the strands using a flexible vibrator or the like on the surface of the structure or at an internal part close to the surface. , a method for predicting structural damage that allows for inspection and recording and countermeasures, and a method for predicting structural failure that uses a flexible vibrator such as a piezoelectric element that responds to the elastic wave and a filter electrically connected to the flexible vibrator to store waveforms. This invention relates to a failure prediction device that is electrically connected to the device, and the waveform storage device is connected to a recording device and a clock of a time measuring device from the time when the first wire breakage occurs.
〈従来技術〉
周知の如く、様々な構造物が建築物として構築されてい
るが、その突発的な衝撃破壊に対する安全上の対処は勿
論のこと、繰返し楠重による疲労破壊に対処することは
極めて重要である。<Prior Art> As is well known, various structures are constructed as buildings, but it is extremely difficult to deal with not only safety measures against sudden impact failures, but also fatigue failures caused by repeated loads of camphor trees. is important.
例えば、PC鋼線埋設の高速道路のコンクリート橋桁等
に於いては、経時的な繰返し荷重が印加される典型的な
構造物であるが、このような構造物ではコンクリート橋
桁内部に埋設一体化されているPC鋼線の疲労破壊に対
する予知は必ずしも正確、且つ、平均して行われるとは
限らず、又、その現場での非破壊検査等はとうてい不可
能であり、又、実験等についても再現性を持って正確に
行うことは同じく出来ないことである。 。For example, concrete bridge girders on expressways with buried PC steel wires are typical structures to which repeated loads are applied over time; It is not always possible to predict the fatigue failure of PC steel wires accurately or evenly, and it is impossible to conduct non-destructive tests on-site, and it is difficult to reproduce them through experiments. Similarly, it is impossible to do it properly and with dignity. .
蓋し、核種PC鋼線は、例えば、7本等のピアノ線等の
撚り等の撚り線であり、全体が一挙に破断するのではな
く、様々な非平均的な繰返し荷重により不特定の1本が
最初に破断する所謂初断線の発生により経時的に他の素
線に繰返し荷重が大きく印加されて次々に素線が破断し
、最後にPC鋼線全体が破断してコンクリート橋桁に疲
労破壊が生ずるものである。The nuclide PC steel wire is, for example, a stranded wire such as seven piano wires, etc., and it does not break all at once, but breaks at unspecified points due to various non-average repeated loads. When the so-called first break occurs, in which the PC steel wire breaks first, large repeated loads are applied to other wires over time, causing the wires to break one after another, and finally the entire PC steel wire breaks, causing fatigue failure in the concrete bridge girder. This is what happens.
そして、この各素線の順次の破断はコンクリート橋桁に
疲労を及ぼすが、このような経時的なプロセスについて
はPC鋼線がコンクリート橋桁の内部に一体的に埋設さ
れているために、外部からの検知が極めて難しいという
潜在的な制約がある。The successive breakage of each strand causes fatigue on the concrete bridge girder, but this process over time cannot be avoided because the PC steel wire is integrally buried inside the concrete bridge girder. A potential limitation is that it is extremely difficult to detect.
而して、このような構造物、即ち、例えば、上記高速道
路のコンクリート橋桁等の不測の疲労破壊は極めて重大
な結果を招くために、充分にこれを予知しておくことは
土木構造工学上ばかりでなく、社会的にも極めて重要で
必る。Since unexpected fatigue failure of such structures, such as concrete bridge girders on the above-mentioned expressway, can lead to extremely serious consequences, it is important in civil engineering to be able to fully predict such failures. Not only that, but it is also extremely important and necessary socially.
これに対処するに、例えば、上記PC&ll線の両端部
に電気抵抗計測装置を接続し、その電気抵抗を経時的に
測定することによってPC鋼線の1本の初断線、或は、
順次1本づつの破断を予知することも考えられているが
、PC1J4線を成すところの複数の素線はその相互の
接触、非接触の状態が複雑であり、更に、周囲のコンク
リートの充填や接触状態も様々に異なるために、各々条
件が同一でないコンクリート橋桁中でのpcui線の電
気抵抗測定による手段では再現性を充分に保証する予知
が出来ない欠点がある。To deal with this, for example, by connecting an electrical resistance measuring device to both ends of the above-mentioned PC&ll wire and measuring the electrical resistance over time, it is possible to detect the initial breakage of one of the PC steel wires, or
It has been considered to predict the breakage of individual wires one by one, but the contact and non-contact states of the multiple wires that make up the PC1J4 wire are complicated, and the surrounding concrete filling and Since contact conditions vary widely, the method of measuring the electrical resistance of PCUI wires in concrete bridge girders, which are not subject to the same conditions, has the disadvantage that it is not possible to make predictions that fully guarantee reproducibility.
又、初断線の破断位置を測定することは装置上も極めて
煩瑣である難点があり、結果的にコスト高につくという
不利点もある。In addition, measuring the break position of the initial wire breakage has the disadvantage that it is extremely cumbersome in terms of equipment, and as a result, it also has the disadvantage of increasing costs.
これに対し、音響学的にコンクリート橋桁の側面にマイ
クロホン等を付設して初断線の破断に伴うところの伝播
エネルギーを音声エネルギーとして受信し、これによっ
て音響学的に検出測定を行うことも理論的には可能であ
るが、環境雑音を拾う確率が極めて高く、したがって、
その検出波形の測定が難しいという難点がある。On the other hand, it is also theoretically possible to acoustically attach a microphone or the like to the side of the concrete bridge girder to receive the propagation energy associated with the first break as audio energy, and perform acoustic detection and measurement using this. is possible, but the probability of picking up environmental noise is extremely high, and therefore,
The problem is that it is difficult to measure the detected waveform.
特に、現場のコンクリート橋桁にマイクロホンを付設す
るようなことは不可能に近く、又、実験室等における研
究データ等では現場の疲労破壊に適用するには条件が異
なりすぎて、実用性に欠ける嫌いがあった。In particular, it is nearly impossible to attach a microphone to a concrete bridge girder in the field, and research data from a laboratory etc. is too different to apply to fatigue fractures in the field, making it impractical. was there.
〈発明が解決しようとする問題点〉
この出願の発明の目的は上述従来技術に基づく高速道路
のコンクリート橋桁等の抗張力線一体埋設構造物の疲労
破壊に対処する抗張力線の初断線検知の問題点を解決す
べき技術的課題とし、複数の素線から成る抗張力線の1
本の初断線に伴う弾性波の特定周波数に対応してこれを
確実に検出し何等環境雑振動を拾うことなく、その破断
は勿論、破断位置すらも検出し、構造物の経時的繰返し
荷重による疲労の進行を早期に検出して破壊予知を行う
ことが出来るようにして土木建築産業における安全利用
分野に益する優れた構造物破壊予知方法と該方法に直接
使用する破壊予知装置を提供せんとするものである。<Problems to be Solved by the Invention> The purpose of the invention of this application is to solve the problems of detecting the initial breakage of tensile strength wires in order to deal with fatigue failure of structures embedded with tensile strength wires, such as expressway concrete bridge girders, based on the above-mentioned prior art. is a technical problem to be solved, and one of the tensile strength wires consisting of multiple strands.
Corresponding to the specific frequency of the elastic wave associated with the initial break of the book, it can be detected reliably, and the break as well as the break position can be detected without picking up any environmental vibrations. It is an object of the present invention to provide an excellent structural failure prediction method that can detect the progress of fatigue at an early stage and predict failure, thereby benefiting the field of safe use in the civil engineering and construction industry, and a failure prediction device that can be directly used in the method. It is something to do.
〈問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの出願の発明の構成
は、前述問題点を解決するために、高速道路のコンクリ
ート橋桁等の構造物の内部に両側端から一体埋設しであ
るPC鋼線等の抗張力線の撚り線の初断線を検出するに
、該構造物の表面、乃至は、表面内側の表面部位に圧1
!素子等のたわみ形振動子を付設し、而して、該構造物
の載架荷重が繰り返し印加されると、構造物内部に張設
しである上記PC鋼線等の撚り線の抗張力線に当該載架
荷重による張力が印加され、構造物に生ずる疲労とリニ
アに破断張力が作用し、遂には、当該抗張力線の撚り線
の最も大きな張力を受けたものが初断線として破断し、
その破断時に生ずる超音波の弾性波は構造物内を伝播し
、持続的な反射波となり、その伝播波は構造物内を通っ
て上記たわみ形振動子に伝達されて該たわみ形振動子が
複数個取付部位を異にして付設されている場合にはその
到達時間に差を生じ、而して、該たわみ形振動子が弾性
波を電気振動に変換して破壊予知装置のフィルタに入り
、該フィルタは当該初析線の弾性波以外の環境雑音振動
を除去して波形記憶装置に入力され、更に、記録器に記
録され、経時計測装置の時計により上記伝播時間差によ
る初断線の発生部位を検出し、このような検出状態を鑑
視することにより、当該、初析線発生以後の構造物の疲
労破壊の進行を鑑視し、不測の事態に至る前に所定の対
処措置を講することが出来るようにした技術的手段を講
じたものである。<Means/effects for solving the problem> In order to solve the above-mentioned problem, the structure of the invention of this application, which is based on the scope of the above-mentioned patent claims, is to solve the above-mentioned problem. To detect the initial breakage of a stranded wire such as a PC steel wire that is integrally buried inside a structure from both ends, a pressure of 1
! When a flexible vibrator such as an element is attached, and the loading load of the structure is repeatedly applied, the tensile strength wire of the stranded wire such as the above-mentioned PC steel wire stretched inside the structure will Tension due to the loading load is applied, and the breaking tension acts linearly with the fatigue generated in the structure, and finally, the one that receives the greatest tension among the strands of the tensile strength wire breaks as the first breakage wire,
The elastic wave of the ultrasonic wave generated at the time of the rupture propagates within the structure and becomes a continuous reflected wave.The propagating wave is transmitted through the structure to the above-mentioned flexible transducer, and the plurality of flexible transducers are transmitted to the flexible transducer. If they are attached to different mounting points, there will be a difference in the arrival time, and the flexible vibrator converts the elastic wave into electric vibration and enters the filter of the failure prediction device. The filter removes environmental noise vibrations other than elastic waves from the pro-eutectoid line, which is then input to the waveform storage device, which is further recorded in the recorder, and the time measurement device's clock detects the location where the first break occurs due to the above propagation time difference. However, by observing such a detection state, it is possible to observe the progress of fatigue failure of the structure after the occurrence of the pro-eutectoid line, and to take prescribed countermeasures before an unexpected situation occurs. This was achieved by taking technical measures to make it possible.
〈実施例−構成〉
次に、この出願の発明の1実施例を図面に基づいて説明
すれば以下の通りである。<Embodiment - Configuration> Next, one embodiment of the invention of this application will be described below based on the drawings.
図示実施例は高速道路のコンクリート橋桁を構造物とし
た場合の破壊予知の態様であり、当該実施例においては
、説明の都合上、例えば、7本の撚り線から成る抗張力
線としての”PC鋼線1を3本一体埋設してプレストレ
スを付与されたコンクリート橋桁2が対象とされている
。The illustrated embodiment is a mode of failure prediction when a concrete bridge girder of an expressway is used as a structure. The target is a concrete bridge girder 2 that is prestressed by burying three wires 1 together.
そして、当該実施例は試験態様を対象とするものであっ
て、該3本のρC鋼線1.1.1は所定の等間隔で埋設
されており、コンクリート橋桁2は所定スパンで支持体
3.3′上に載置されて上方より図示しない適宜所定の
アクチュエータによって繰り返し載架荷重F%Fを印加
されるようにされている。This example is intended for a test mode, and the three ρC steel wires 1.1.1 are buried at predetermined equal intervals, and the concrete bridge girder 2 is connected to the support body 3 at a predetermined span. .3', and a mounting load F%F is repeatedly applied from above by an appropriate predetermined actuator (not shown).
而して、5は破壊予知装置であってこの出願の発明の一
つの要旨を成すものであり、コンクリート橋桁2に添設
される検出部6と該検出部6に電気的に接続された測定
部7とから成り、該検出部θは該コンクリート橋桁2の
底面に接着剤を介して接着固定されている3個のたわみ
形振動子8、&、8であって上記コンクリート橋桁2に
一体的に埋設されている3本のPC鋼線1.1.1に沿
って長手方向同一位置であり、幅方向は各Pc゛鋼wA
1の下側に設けられている。Reference numeral 5 denotes a fracture prediction device, which constitutes one of the gist of the invention of this application, and includes a detection section 6 attached to the concrete bridge girder 2 and a measurement device electrically connected to the detection section 6. The detection section θ consists of three flexible vibrators 8, &, 8 fixed to the bottom surface of the concrete bridge girder 2 via an adhesive, and is integral with the concrete bridge girder 2. The position is the same in the longitudinal direction along the three PC steel wires 1.1.1 buried in the
It is provided below 1.
そして、各たわみ形振動子8は、例えば、チタン酸バリ
ウム等の圧電素子であり、通常に市販されているもので
あって数Hzから数百キロHzの多数の基本振動数を存
しており、非共振振動で動作された場合に可聴音域の音
響周波数から数百キロHzに至る幅広い周波数の弾性波
の波動を受信してその圧電作用により電気信号を変換す
ることが出来るようにされており、コネクタ10がら上
記測定装置7に検出振動を送信することが出来るように
されて、該圧電素子9とコネクタ10はケース11によ
ってユニット化されて該コンクリート橋桁2の底面に上
述設定間隔位置で添着固定されているものである。Each flexible vibrator 8 is a piezoelectric element made of barium titanate or the like, which is commonly commercially available, and has a large number of fundamental frequencies ranging from several Hz to several hundred kilohertz. When operated with non-resonant vibrations, it is capable of receiving elastic waves of a wide range of frequencies, from acoustic frequencies in the audible range to several hundred kilohertz, and converting them into electrical signals through the piezoelectric effect. , the piezoelectric element 9 and the connector 10 are made into a unit by a case 11 and attached to the bottom surface of the concrete bridge girder 2 at the above-described set interval positions. It is fixed.
したがって、図示する様に、該各たわみ形振動し8.8
.8の設定位置添設によって3本のPC鋼線1.1.1
のいづれか1本の内の、更にその最初の1本の東線が初
断線した場合に、第2図に示す様に、当咳初断線からの
破断によって生ずるところの弾性波の超音波がコンクリ
ート橋桁2内を直接、或は、反射波として伝播し、各た
わみ形振動子8に到達する時間のずれによってコンクリ
ート橋桁2の幅方向は勿論、長さ方向においてもどのρ
C鋼線1に初断線が発生したかを測定部1によって検出
することが出来るようにされているものである。Therefore, as shown in the figure, each deflection type vibrates 8.8
.. 1.1.1 Three PC steel wires attached by setting position of 8
If the first east line of any one of the lines breaks for the first time, as shown in Figure 2, the ultrasonic waves of elastic waves generated by the break from the first break will cause damage to the concrete. Due to the time difference between propagating within the bridge girder 2 directly or as a reflected wave and reaching each flexible oscillator 8, any ρ in the length direction as well as the width direction of the concrete bridge girder 2
The measurement unit 1 is configured to detect whether or not a first break has occurred in the C steel wire 1.
そして、該測定部1では、一旦PC鋼線に初断線が生ず
ると、そのトリガー動作の弾性波のみを検出して周囲の
環境雑振動を除去するフィルタとしてのバイパス、或は
、バンドパスのフィルタ12が上記各たわみ形振動子に
電気的に接続され、該フィルタ12は更に該トリガー動
作が連続してかがる波形記憶装置13が接続されており
、該波形記憶装置+13は記録装置14、及び、経時計
測装置の時計15に電気的に接続されており、トリガー
動作を生じた時間を記録するようにされている。Once the first break occurs in the PC steel wire, the measurement unit 1 detects only the elastic wave of the trigger operation and uses a bypass or bandpass filter as a filter to remove surrounding environmental noise vibrations. 12 is electrically connected to each of the above-mentioned flexible transducers, and the filter 12 is further connected to a waveform storage device 13 in which the trigger operation is continuously performed, and the waveform storage device +13 is connected to a recording device 14, It is electrically connected to a clock 15 of the time measuring device, and is configured to record the time at which the trigger operation occurs.
尚、この経時計測装置の時計15は繰り返し載架荷重F
4の載架回数を記録するカウンターとして用いることも
出来る。In addition, the clock 15 of this time measuring device is repeatedly loaded on the rack F.
It can also be used as a counter to record the number of times No. 4 is placed on the shelf.
そして、上記記録装置14では、第3.4図に示す様に
、図示しないドラムに巻かれた記録用紙16が低速で走
行し、図示しない記録ペンが上記3つのたわみ形振動子
8.8.8からの検出弾性波の波形を記録するようにさ
れている。In the above record device 14, as shown in the 3.4 Figure 3.4, the record paper 16 wrapped in a drum that is not shown runs at a low speed, and the recorded pen that is not shown is the above three deflection mobility. The waveform of the detected elastic wave from 8 is recorded.
そして、設計によっては任意のPC鋼線1からのその撚
り線の初断線からの最初のトリが−動作超音波が発生し
た時に記録装置14が動作して連続するトリが一動作の
弾性波を記憶するように設計されても良い。Depending on the design, the recording device 14 operates when the first breakage of the stranded wire from any PC steel wire 1 - motion ultrasonic wave is generated, and successive waves record one motion of elastic waves. It may also be designed to remember.
〈実施例−作用〉
上述構成において、コンクリート橋桁2に対して上方よ
り所定のアクチュエータにより繰り返し載架荷重F4が
反復して印加されると(当該載架荷重の繰り返し印加状
況は当然のことながら他の記録測定装置により測定記録
されている)、載架荷重の増加により所定タイミングで
いづれか1本のPC[1111,1,1)mすmノ1
本ニWIIitmカ生じ、その破断時の超音波による弾
性波は、爾2図に図示する様に、コンクリート橋桁内を
伝播し、その直接波、及び、反射波はコンクリート橋桁
2内を伝播して各たわみ形振動子8の圧電素子9に到達
して受信される。<Example - Effect> In the above-described configuration, when the repeated loading load F4 is repeatedly applied to the concrete bridge girder 2 from above by a predetermined actuator (the repeated application situation of the said loading load is of course dependent on other ), one of the PCs [1111, 1, 1) m sum no 1 at a predetermined timing due to an increase in the load on the rack.
The elastic wave caused by the ultrasonic wave generated at the time of rupture propagates within the concrete bridge girder 2, and its direct wave and reflected wave propagate within the concrete bridge girder 2. The signal reaches the piezoelectric element 9 of each flexible vibrator 8 and is received.
したがって、当該初断線の発生前には、トリガー振動は
ないために記録装置14の記録用紙16には、第3図に
示す様に、振動が発生しない。Therefore, since there is no trigger vibration before the first wire breakage occurs, no vibration occurs in the recording paper 16 of the recording device 14, as shown in FIG. 3.
そこで、いづれか1本のpcm線1の撚り線の1本の初
断線が生ずると、当該実施例においては、3錫のたわみ
形振動子8.8.8のトリガー振動受信に応じてその時
間差に応じて各々直ちに弾性波を電気信号に変換してフ
ィルタ12を通り波型記憶装置213に送信する。Therefore, when the first breakage of one of the strands of one of the PCM wires 1 occurs, in this embodiment, the time difference is adjusted according to the reception of the trigger vibration of the tri-tin flexible vibrator 8.8.8. Accordingly, each elastic wave is immediately converted into an electric signal and transmitted through the filter 12 to the waveform storage device 213.
そして、該フィルタ12においては、コンクリート橋桁
2に対する他の測定装置や周辺機器からの雑音振動や外
乱振動を除去して波形記憶装置13において設定電圧を
越えると、一旦信号を記憶するようにされる。Then, in the filter 12, noise vibrations and disturbance vibrations from other measuring devices and peripheral equipment for the concrete bridge girder 2 are removed, and once the set voltage is exceeded in the waveform storage device 13, the signal is stored once. .
そして、受信された弾性波信号は記憶装W114に士、
第4図に示す様に、トリガー振動発生からトリガー信号
の持続する波形を正確に記録するが、その記録状態は、
例えば、中央のPC鋼線の撚り線の1本の初断線が生ず
ると、該第4図に糸す様に、各たわみ形振動子8.8.
8に対する弾性波の伝播の差に従ってt、t’ 、t’
の記録時間差が生じて記録される。The received elastic wave signal is then stored in the storage device W114.
As shown in Figure 4, the continuous waveform of the trigger signal from the occurrence of trigger vibration is accurately recorded, but the recording state is as follows.
For example, when the first breakage of one of the strands of the central PC steel wire occurs, as shown in FIG. 4, each flexible vibrator 8.8.
t, t', t' according to the difference in propagation of elastic waves for 8
are recorded with a recording time difference.
又、前述の如く、波形記憶装@13に入力された信号は
経時計測装置15の時計によりその時間差が記憶されて
、当該時間差に従ってどのPC鋼線1の撚り線に最初の
撚り線に初断線が生じたかを図示しないコンピュータに
より直ちに計算することが出来て、その位置決めを破断
位置を決めることが出来る。In addition, as mentioned above, the time difference of the signal input to the waveform storage device @13 is stored by the clock of the time measuring device 15, and according to the time difference, it is determined which strand of the PC steel wire 1 has the first strand break. It is possible to immediately calculate by a computer (not shown) whether or not this has occurred, and the position of the fracture can be determined.
当該破断位置の決定は検出測定される最初のトリガー動
作弾性波の受信記録により長手方向は勿論、横方向の位
置も決めることが出来るものである。The fracture position can be determined not only in the longitudinal direction but also in the lateral direction by recording the reception record of the first trigger action elastic wave that is detected and measured.
したがって、第3図の状態から第5図の状態に検出され
た弾性波の波形がほとんどない状態からスパイク状態に
連続して受信記録されると、コンクリート橋桁2におい
て直接目視することが出来ない内部PCwI線の撚り線
の初断線を直ちに検出することが出来、それにより、コ
ンクリート橋桁2の疲労破壊を非破壊的にすることが出
来る。Therefore, if the detected elastic wave waveform is continuously received and recorded from the state shown in Fig. 3 to the state shown in Fig. 5, from a state where there is almost no wave to a state where there are spikes, the inside of the concrete bridge girder 2 that cannot be directly observed is detected. The first break in the stranded PCwI wire can be detected immediately, thereby making fatigue failure of the concrete bridge girder 2 non-destructive.
尚、この出願の発明の実施態様は上述実施例に限るもの
でないことは勿論であり、例えば、上述実施例はたわみ
形振動子を横方向に配列したが、縦方向に配列したり、
或は、横方向、及び、縦方向に平面的に配列するように
して一体的に複数のPC鋼線の初断線を検出測定するこ
とが出来るようにする種々の態様が採用可能である。It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments. For example, in the above-mentioned embodiments, the flexible vibrators are arranged in the horizontal direction, but they may be arranged in the vertical direction,
Alternatively, various embodiments may be adopted in which the initial breaks of a plurality of PC steel wires can be integrally detected and measured by arranging them in a plane in the horizontal and vertical directions.
又、上述実施例は試験、及び、実験のための態様である
が、実際に構築されている高速道路のコ心 ンク
リート橋桁に所定間隔にこの出願の発明の装置を付設し
て測定したり、或は、経時的に異なるタイミングで所定
部位付設して検出したりすることも出来ることは勿論で
あり、又、高速道路のコンクリート橋桁以外の抗張力線
を埋設した構造物に適用することも可能である。Furthermore, although the above-described embodiments are for testing and experimentation, measurements may be taken by attaching the apparatus of the invention of this application at predetermined intervals to the core concrete bridge girder of an actually constructed expressway. Alternatively, it is of course possible to attach it to a predetermined location and detect it at different times over time, and it is also possible to apply it to structures with buried tensile strength lines other than concrete bridge girders on expressways. be.
〈発明の効果〉
以上、この出願の発明によれば、基本的に高速道路のコ
ンクリート橋桁等のPC鋼線等の抗張力線を一体埋設し
た構造物の疲労破壊が非破壊的に極めて早期に検出測定
することが出来、致命的な疲労破壊にならないうちにこ
れを検知して所定の補修修理等に対処することが出来る
優れた効果が奏される。<Effects of the Invention> As described above, according to the invention of this application, fatigue failure of structures in which tensile strength wires such as PC steel wires are integrally buried, such as concrete bridge girders of expressways, can be detected non-destructively at an extremely early stage. This has the advantage of being able to detect fatigue failure before it becomes a fatal fatigue failure and to take appropriate measures such as repair.
而して、非破壊的な検査であるために、コンクリート橋
桁等の構造物本体に何等損傷を与えることなく、又、通
常の使用状態を維持しながら検査測定することが出来る
という効果も秦される。Since it is a non-destructive inspection, it also has the advantage that it does not cause any damage to the structure itself, such as concrete bridge girders, and can be inspected and measured while maintaining normal usage conditions. Ru.
又、内部に一体埋設している抗張力線の撚り線等の最初
の1本の初断線がその構造物内部を伝播する弾性波を検
出することによって特定の周波数の弾性波のみを検出出
来るために、環境雑振動や外乱振動等のみを検出するこ
とが出来るために、その検査測定は極めて正確に行える
という優れた効果が奏される。In addition, by detecting the elastic waves that propagate inside the structure when the first one of the strands of tensile strength wires that are buried inside the structure is detected, only elastic waves of a specific frequency can be detected. Since it is possible to detect only environmental noise vibrations, disturbance vibrations, etc., the excellent effect that inspection and measurement can be performed extremely accurately is achieved.
しかも、たわみ形振動子は市販一般の圧電素子等を利用
してこれを構造物の所定外側面に接着等の手段によって
付設するだけで良いので、その検出作業もし易いという
優れた効果が奏され、検出装置も比較的易く出来るとい
うメリットもある。In addition, the flexible vibrator has the advantage of being easy to detect, since it is only necessary to use a commercially available piezoelectric element and attach it to a predetermined outer surface of the structure by adhesive or other means. Another advantage is that the detection device is relatively easy to construct.
而して、装置においては、たわみ形振動子が電気的にフ
ィルタに接続されているために、外乱撮動等を除去する
ことが出来、更に、記録装置が設けられているためにそ
の検査測定が目視出来、これによってもそのデータが他
の検査測定に利用出来る効果もあり、正確な対処が出来
るという効果も奏される。In this device, since the flexible vibrator is electrically connected to the filter, it is possible to remove disturbances such as imaging, and furthermore, since the device is equipped with a recording device, inspection and measurement can be easily performed. can be visually observed, which also has the effect that the data can be used for other inspection and measurement, and that accurate measures can be taken.
又、経時計測装置に電気的に波形記憶装置が接続されて
いるために、所定電圧を越えた波形のみが記憶されてい
る特定のトリガー振動のみを検出することが出来ること
によって測定の正確さが維持出来るという優れた効果が
奏され、又、経時計測装置によりどの部位に初断線が発
生したかを知ることが出来、したがって、構造物全体の
疲労破壊の発生部位や発生予測部位が検出することが出
来るために、態様措置が正確に出来るという効果も秦さ
れる。In addition, since the waveform storage device is electrically connected to the time measuring device, it is possible to detect only specific trigger vibrations in which only the waveform exceeding a predetermined voltage is stored, thereby increasing the accuracy of measurement. It has an excellent effect of being able to maintain the structure, and it is also possible to know in which part the first wire breakage has occurred using a time measuring device, and therefore, it is possible to detect the location where fatigue failure has occurred or where it is predicted to occur in the entire structure. Since it is possible to do this, it also has the effect of being able to take precise measures.
図面はこの出願の発明の1実施例の説明図であり、第1
図は疲労破壊の初断線検出部分縦断側面図、第2図は同
横断面図、第3図は初断線の発生のない状態での記録状
態平面図、第4図は初断線によるトリガー波形平面図で
ある。
1・・・抗張力線、 2・・・構造物、8・・・た
わみ形振動子、 12・・・フィルタ、13・・・波
形記憶装置、 14・・・記録装置、15・・・経時
計測装置
出願人 社団法人日本建設機械化協会第3図The drawing is an explanatory diagram of one embodiment of the invention of this application, and the drawing is a first embodiment of the invention of this application.
The figure is a vertical cross-sectional side view of the part where the first wire break of fatigue fracture was detected, Figure 2 is a cross-sectional view of the same, Figure 3 is a plan view of the recording state without the occurrence of the first wire break, and Figure 4 is the trigger waveform plane due to the first wire break. It is a diagram. DESCRIPTION OF SYMBOLS 1... Tensile force line, 2... Structure, 8... Flexible vibrator, 12... Filter, 13... Waveform storage device, 14... Recording device, 15... Time measurement Equipment Applicant Japan Construction Mechanization Association Figure 3
Claims (7)
る構造物の疲労破壊を該素線の初断線を検知することに
よって予知する方法において、該素線の初断線による構
造物内伝播の弾性波を構造物表面部位で検出し鑑視記録
して対処するようにしたことを特徴とする構造物破壊予
知方法。(1) In a method for predicting fatigue failure of a structure in which a tensile strength wire consisting of a plurality of wire aggregates is buried by detecting the first breakage of the wire, A method for predicting structural failure, characterized in that propagating elastic waves are detected on the surface of the structure, visually recorded, and countermeasures are taken.
とを特徴とする上記特許請求の範囲第1項記載の構造物
破壊予知方法。(2) The structure failure prediction method according to claim 1, wherein the detection of the elastic wave is performed by a flexible vibrator.
ようにしたことを特徴とする上記特許請求の範囲第1項
記載の構造物破壊予知方法。(3) The structure failure prediction method according to claim 1, wherein the elastic waves are detected at a plurality of positions on the surface of the structure.
出するようにしたことを特徴とする上記特許請求の範囲
第3項記載の構造物破壊予知方法。(4) The structure failure prediction method according to claim 3, characterized in that the position of the first break in the strand is detected by detecting the elastic wave.
る構造物の疲労破壊を該素線の初断線を検知することに
よって予知する方法に直接使用する装置において、該抗
張力線を埋設している構造物表面部位に付設するたわみ
形振動子がフィルタに電気的に接続され、該フィルタは
記録装置と経時計測装置とに接続される波形記録装置に
電気的に接続されていることを特徴とする構造物破壊予
知装置。(5) In a device directly used for a method of predicting fatigue failure of a structure in which a tensile strength wire consisting of a plurality of wire aggregates is buried by detecting the first breakage of the wire, the tensile strength wire is buried. A flexible vibrator attached to the surface of the structure is electrically connected to a filter, and the filter is electrically connected to a waveform recording device that is connected to a recording device and a time measurement device. Features: Structural destruction prediction device.
徴とする上記特許請求の範囲第5項記載の構造物破壊予
知装置。(6) The structure destruction prediction device according to claim 5, wherein the filter is a bypass filter.
徴とする上記特許請求の範囲第5項記載の構造物破壊予
知装置。(7) The structure failure prediction device according to claim 5, wherein the flexible vibrator is composed of a piezoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221220A JPS61102906A (en) | 1984-10-23 | 1984-10-23 | Method and apparatus for forecasting destruction of structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221220A JPS61102906A (en) | 1984-10-23 | 1984-10-23 | Method and apparatus for forecasting destruction of structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61102906A true JPS61102906A (en) | 1986-05-21 |
JPH0564299B2 JPH0564299B2 (en) | 1993-09-14 |
Family
ID=16763345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59221220A Granted JPS61102906A (en) | 1984-10-23 | 1984-10-23 | Method and apparatus for forecasting destruction of structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61102906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001099760A (en) * | 1999-09-30 | 2001-04-13 | Nkk Corp | Structure health monitoring method and structure health monitoring device |
JP2005106812A (en) * | 2003-09-30 | 2005-04-21 | Tokyo Electric Power Co Inc:The | Method for detecting breakage of tension steel wire in concrete column |
JP2018084507A (en) * | 2016-11-24 | 2018-05-31 | 株式会社Ihi検査計測 | Reinforcing-bar corrosion ae detection method and device |
-
1984
- 1984-10-23 JP JP59221220A patent/JPS61102906A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001099760A (en) * | 1999-09-30 | 2001-04-13 | Nkk Corp | Structure health monitoring method and structure health monitoring device |
JP2005106812A (en) * | 2003-09-30 | 2005-04-21 | Tokyo Electric Power Co Inc:The | Method for detecting breakage of tension steel wire in concrete column |
JP2018084507A (en) * | 2016-11-24 | 2018-05-31 | 株式会社Ihi検査計測 | Reinforcing-bar corrosion ae detection method and device |
Also Published As
Publication number | Publication date |
---|---|
JPH0564299B2 (en) | 1993-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5821430A (en) | Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes | |
Chen et al. | Measurement of tensile forces in a seven-wire prestressing strand using stress waves | |
Xu et al. | Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis | |
Lanza di Scalea et al. | Stress measurement and defect detection in steel strands by guided stress waves | |
US6962082B2 (en) | Device and method for acoustic diagnosis and measurement by pulse electromagnetic force | |
CN112033588B (en) | Vertical stress detection method of epoxy test block based on ultrasonic longitudinal wave reflection | |
US7614303B2 (en) | Device for measuring bulk stress via insonification and method of use therefor | |
US4308751A (en) | Method for investigating an anchored rod-like body having an accessible end, and apparatus for carrying out the method | |
JPH02212734A (en) | Apparatus and method for detecting change in structual integrity of structural member | |
CN106840477B (en) | Device and method for monitoring pre-stress loss of PSC structure for long time | |
JP6241927B2 (en) | Diagnosis method for concrete structures | |
CN108149574A (en) | A kind of intelligent strand tapered anchorage and prestressed monitoring method based on Piezoelectric Impedance method | |
US9176108B2 (en) | Method and device for measuring corrosion metal loss | |
JPH0511895B2 (en) | ||
Dang et al. | Piezoelectric‐based hoop‐type interface for impedance monitoring of local strand breakage in prestressed multi‐strand anchorage | |
JP2014194379A (en) | Impairment length measuring system and impairment length measuring method | |
JPS61102906A (en) | Method and apparatus for forecasting destruction of structure | |
Khante et al. | PZT based smart aggregate for unified health monitoring of RC structures | |
JP4074959B2 (en) | Acoustic diagnosis / measurement apparatus using pulsed electromagnetic force and diagnosis / measurement method thereof | |
Kędra et al. | Damage detection in a bolted lap joint using guided waves | |
JP3850782B2 (en) | Structure damage degree determination method and apparatus by secondary-derived AE sound | |
CN104034803A (en) | Sensing device and monitoring method of active and passive waveguide monitoring bridge cable damage | |
Liu et al. | Metal core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures | |
Kim et al. | Effect of prestress force on longitudinal vibration of bonded tendons embedded in a nuclear containment | |
WO1999053282A1 (en) | Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |