[go: up one dir, main page]

JPS6098390A - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JPS6098390A
JPS6098390A JP58205764A JP20576483A JPS6098390A JP S6098390 A JPS6098390 A JP S6098390A JP 58205764 A JP58205764 A JP 58205764A JP 20576483 A JP20576483 A JP 20576483A JP S6098390 A JPS6098390 A JP S6098390A
Authority
JP
Japan
Prior art keywords
hydrazine
condensate
water
nuclear power
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205764A
Other languages
Japanese (ja)
Inventor
保坂 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58205764A priority Critical patent/JPS6098390A/en
Publication of JPS6098390A publication Critical patent/JPS6098390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Steroid Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力発電プラントに関し、さらに訂しくはプ
ラント内に配置された装@a3よび配管内面のrg4食
が抑制された原子力発電プラン1−に関Jる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a nuclear power plant, and more particularly to a nuclear power generation plan 1- in which RG4 corrosion on the inside of the equipment and piping placed in the plant is suppressed. Seki Juru.

〔発明の技術的背景とその問題点) 一般に沸騰水形原子炉(B W R)を備え/j原子力
発電設備では、その−次冷却系にお()る復水系および
給水系の装置および配管内面に錆等の腐食生成物が光生
じ、それが散開化されて系統水内を循環Jるため、系統
全体が汚染され、運転員等の被爆51吊を増加させてい
た。
[Technical background of the invention and its problems] Generally, nuclear power generation facilities equipped with a boiling water reactor (BWR) require equipment and piping for the condensate system and water supply system in the secondary cooling system. Corrosion products such as rust were formed on the inner surface, which spread out and circulated within the system water, contaminating the entire system and increasing the number of people exposed to radiation by operators and others.

この被爆線量の増加を防止づるために、従来の[3W 
+<では復水1112 ’塩基の下流に酸素注入して所
定の酸素を溶解させ、それににり配管内面に安定な酸化
皮膜を形成させて腐食生成物の梵1−を抑制・)る方法
がとられていた。
In order to prevent this increase in exposure dose, the conventional [3W
In the case of +<, there is a method of injecting oxygen downstream of the condensate 1112' base to dissolve a certain amount of oxygen, thereby forming a stable oxide film on the inner surface of the pipe and suppressing corrosion products. It had been taken.

しかしながら、上記の給水系酸素注入(・(よ、iIJ
水脱塩堝上流側での腐食生成物の発生を防止できず、一
般に復水中の鉄il1度(約301111)の3り%程
度(給水中鉄淵度10ppb Pi!度)が復水脱塩j
ハ下流にリークしていた。したがって、従来の方法では
このリーク分が原子炉にそのままもも込まれ、運転員の
被爆線■を大幅に低減することはできなかった。
However, the above water supply system oxygen injection (・(yo, iIJ
It is not possible to prevent the generation of corrosion products on the upstream side of the water desalination tank, and generally about 3% of the iron 1 degree (approx. 301111) in the condensate water (iron depth 10 ppb Pi! degree in the feed water) j
It was leaking downstream. Therefore, with conventional methods, this leakage is directly leaked into the reactor, making it impossible to significantly reduce radiation exposure to operators.

(発明の目的) 本発明は上記問題点を解消するためになされたもので、
その目的とするところは一次冷却系における復水11;
2塩塔上流側および原子炉内にJ3いてし腐食生成物の
発生を抑制でき、系内の被爆線量を大幅に低減Jること
のできる原子力光電ブラン1−を提供づることである。
(Object of the invention) The present invention has been made to solve the above problems.
Its purpose is to condensate 11 in the primary cooling system;
It is an object of the present invention to provide a nuclear photoelectric power plant 1- which can suppress the generation of corrosion products on the upstream side of a salt tower and inside a nuclear reactor, and can significantly reduce the exposure dose within the system.

〔発明の概要] 本発明は上述の目的を達成するためになされたもので、
原子炉圧力容器の系統水流出口と系統水流入口どの間に
タービン、復水器、復水1B2 JX、t j?!Uお
よび給水加熱器を配管により順次接続させて設置した一
次冷7JI系を有J゛る原子力光電プラントにおいて、
復水脱jn塔下流側にヒドラジン、13よびノlンモニ
ア注入装置を設けて、系統水中にヒドラジンおよびアン
モニアを注入するようにしたことを1−■徴とするもの
である。
[Summary of the invention] The present invention has been made to achieve the above objects,
Between the reactor pressure vessel system water outlet and system water inlet, turbine, condenser, condensate 1B2 JX, t j? ! In a nuclear photoelectric plant that has a primary cooling 7JI system in which U and feed water heaters are connected sequentially through piping,
The feature 1-2 is that a hydrazine, 13, and ammonia injector is installed downstream of the condensate removal tower to inject hydrazine and ammonia into the system water.

本発明においてヒドラジンは脱flli素剤として加え
るものであり、アンモニアはpl−1調整剤としく加え
るものである。このヒドラジンJ3J、びアンしニアが
注入された系統水は溶存酸素がほと/Vど0になり++
 Hは10〜11程度になる。原子力光電ノ−ノントの
主要構成材である炭素鋼、ステンレス鋼(よ高渇水中に
おいて溶存酸素の存在にJ、り応力腐食割れ(SCC)
を発生ずるので、系統水の水室を口のJ:うに調整づる
ことによって、−次冷却系IJおりる腐食生成物の発生
を阻止することがでさ、被爆線量を大幅に低減りること
がCきる。
In the present invention, hydrazine is added as a flll removal agent, and ammonia is added as a pl-1 regulator. The system water injected with Hydrazine J3J and Bianshinia has almost no dissolved oxygen/V0++
H will be about 10-11. Carbon steel and stainless steel, which are the main constituent materials of nuclear power optoelectronics, suffer from stress corrosion cracking (SCC) due to the presence of dissolved oxygen in high drought conditions.
Therefore, by adjusting the water chamber of the system water to the top of the cooling system, it is possible to prevent the generation of corrosion products that flow into the secondary cooling system, greatly reducing the exposure dose. C is cut.

(発明の実施例) 本発明を実施例により説明りる。(Example of the invention) The present invention will be explained by examples.

第1図は本発明の実施例である原子力発電シラン1〜の
一次冷却系を示す系統図である。
FIG. 1 is a system diagram showing the primary cooling system of nuclear power generation silane 1 to which is an embodiment of the present invention.

第1図に示すように、本発明の一次冷1.II系は原子
炉圧力容器(1)の系統水流11冒]<14>と系統水
流人口(15)との間に順に高圧タービン(2)。
As shown in FIG. 1, primary cooling 1. The II system is a high-pressure turbine (2) in order between the system water flow 11 [14] of the reactor pressure vessel (1) and the system water flow population (15).

低圧タービン(3)、主復水器(4)、低1f復水ポン
プ(5)、復水脱塩塔(6)、高圧復水ポンプ(7)、
低圧給水加熱器(8)、給水ポンプ(9)’J3よび高
圧給水加熱器(10)が配置され、復水脱塩塔(6)と
高圧復水ポンプ(7)との間にヒドラジンおよびアンモ
ニア?主人装買(11)が設置されている。該注入装置
はヒドラジンおJ、ひアンモニj′それぞれの薬注タン
クとプランジ17一式桑注ポンプどから構成されてい(
,81測Hii!i’り12)がこれに接続されている
Low pressure turbine (3), main condenser (4), low 1f condensate pump (5), condensate desalination tower (6), high pressure condensate pump (7),
A low pressure feed water heater (8), a feed water pump (9)'J3 and a high pressure feed water heater (10) are arranged, and hydrazine and ammonia are placed between the condensate demineralization tower (6) and the high pressure condensate pump (7). ? Main equipment (11) is installed. The injection device consists of chemical injection tanks for hydrazine and ammonium, and a plunge 17 mulberry injection pump.
, 81 measurement Hii! i'ri 12) is connected to this.

原子炉圧力容器(1)で核加熱にJ、り光at、/、:
蒸気は、高圧タービン(2)に送られ、さらに低圧ター
ビン(3〉に供給される。この但月−ターヒン(3)で
タービン買を回転させた蒸気は、主復水器(4)に送ら
れ凝縮脱気される。
J, light at, /, for nuclear heating in the reactor pressure vessel (1):
The steam is sent to the high-pressure turbine (2) and further supplied to the low-pressure turbine (3).The steam that rotates the turbine in this Ta-Tahin (3) is sent to the main condenser (4). It is condensed and degassed.

主復水器(4)で凝縮された復水は、低圧復水ホン7 
(5) 、 復水lB21M塔(6) ニmラレ、ll
12 jN処理される。復水脱塩塔(6)で脱塩された
復水は高圧復水ポンプ(7)によって低圧給水加熱器〈
8)に送られ、加熱される。低圧給水加熱器(8)で加
熱された給水は、原子炉給水ボン/(9)によって高圧
給水加熱器(10)を経(、原子炉圧力容器(1)に供
給される。以上の一次冷uJ系において、復水脱塩塔(
6)の干流ひヒドラジンおよびアンモニアの注入装置(
11)から系XJc水に所定濃度のヒドラジンとアン七
ニノ7が?」−人されるようになっている。
The condensate condensed in the main condenser (4) is transferred to the low pressure condensate phone 7
(5) , Condensate lB21M tower (6) Nimrare, ll
12 jN processes. The condensate desalinated in the condensate desalination tower (6) is sent to the low pressure feed water heater by the high pressure condensate pump (7).
8) and heated. The feedwater heated by the low-pressure feedwater heater (8) is supplied to the reactor pressure vessel (1) via the high-pressure feedwater heater (10) by the reactor feedwater tank (9). In the uJ system, the condensate desalination tower (
6) Drainage hydrazine and ammonia injection device (
11) From system ” - people are becoming popular.

ヒドラジンおよびアンモニアを含有した系統ホは、計測
装置(12)によりヒドラジンWi石おJ、び1)ト1
が測定される。この計測装置は導電率81,1111f
ilJ3J、び酸化還元電極方式のヒドラジン分(ハ、
11で構成されており、系統水中の導電率(μレイm)
、11+1.ヒドラジン1Ii311を連続測定し、イ
の出力信号をヒドラジン−アンモニア注入装置(11)
にフィードバックし、水中のμ岨イm、 p l−1、
ヒ1〜ラジンH&を所定値にコン1へロールする。
The system containing hydrazine and ammonia is measured by the measuring device (12).
is measured. This measuring device has a conductivity of 81,1111f
ilJ3J, and hydrazine component of redox electrode method (c,
It is composed of 11, and the electrical conductivity in the system water (μray m)
, 11+1. Continuously measure hydrazine 1Ii311, and output the output signal of 1 to the hydrazine-ammonia injection device (11).
and give feedback to μ岨i m, p l−1 in water,
Roll Hi1 to Radin H& to a predetermined value to Con1.

このにうに所定濃度のヒドラジンJ3よびアンしニアを
含有した系統水は低圧給水加熱器(8)を経て原子炉給
水ポンプ(9)によって畠月−給水加熱器(10)およ
び原子炉圧力容器(1)に供給される。
The system water containing a predetermined concentration of hydrazine J3 and anhydride passes through the low-pressure feedwater heater (8) and is then pumped by the reactor feedwater pump (9) to the Hatatsuki feedwater heater (10) and the reactor pressure vessel ( 1).

原子炉圧力容器(1)に供給された系統水は原子炉水と
混合され、原子炉中の溶存酸素濃度(0011度)をは
どんどOとし、1)11を10・〜11に調整する。そ
の反応式は下記のとおりである。
System water supplied to the reactor pressure vessel (1) is mixed with reactor water, and the dissolved oxygen concentration (0011 degrees) in the reactor is gradually brought to O, and 1) 11 is adjusted to 10.~11. The reaction formula is as follows.

N、H,十鈑02→N、+ 21−120 (1)2N
よH6−+N2+H□+2.NH,(2)ヒドラジンl
iL第2図に示すように 183℃C゛分解をはじめ、
温度の上昇にともなつ”(分解率か1%:11くなるの
で、炉内におい゛C一部分解しC(2)式のようにアン
モニアに変化づる。
N, H, ten plates 02 → N, + 21-120 (1) 2N
YoH6-+N2+H□+2. NH, (2) hydrazine l
As shown in Figure 2 of iL, starting with decomposition at 183℃,
As the temperature rises, the decomposition rate becomes 1%:11, so C is partially decomposed in the furnace and changes to ammonia as shown in equation (2).

炉水環境に83イT ハ、S CC(7) ll I:
1:ハ主1.J l) 0i11度とC11li1度に
よって決定されるので、D Oil1度を減少するどC
1淵度をかなり訂容てさることとなり、S (’、 C
発生の可能性は非7+fに少なくなる。
In the reactor water environment 83 IT Ha, S CC (7) ll I:
1: Lord 1. J l) Since it is determined by 0i11 degree and C11li1 degree, if D Oil1 degree is decreased, C
This means that the 1-deep degree has been considerably revised, and S (', C
The probability of occurrence is reduced to non-7+f.

つぎに原子炉水中のヒドラジン、アンモニアは第3図に
示すような気液分配で主蒸気配管(13)を通り高圧タ
ービン(2)J5よび低圧タービン(3)に送られる。
Next, hydrazine and ammonia in the reactor water are sent to the high pressure turbine (2) J5 and the low pressure turbine (3) through the main steam pipe (13) in a gas-liquid distribution manner as shown in FIG.

第3図はアンモニアの気液分配率とボイラー圧力との関
係を示Jグラノである。
Figure 3 shows the relationship between the gas-liquid distribution ratio of ammonia and the boiler pressure.

アンモニア濃度を示す。)を表わし、4rAIIIII
Iはボイラー圧力(kg7cm”)を表わづ。
Indicates ammonia concentration. ), 4rAIII
I represents boiler pressure (kg7cm").

この主蒸気中に含有したヒドラジンおよびノ′ンモニj
7は、湿り蒸気となったタービン蒸気中の1゜レン水に
溶解し、タービントレン水の溶存酸素イルさ瓜を減少さ
せる。このタービンドレン水中の1)0澗度を減少さけ
る作用は、タービンのS CC防11のため非常に効果
がある。低圧タービン(3)ニ送られたヒドラジンおよ
びアンモニア (よ二119水燕(4)で復水中に回収
され、復水中のl) Oi2度を減少さけ、復水中のl
)Hを上昇させる。これにJ、す、復水器内小ツトウエ
ルの壁面J>J、び復水配電にお【ノる腐食生成物の発
生を抑制りることか(く\る。
The hydrazine and monomony contained in this main steam
7 is dissolved in 1°L water in the turbine steam that has become wet steam, and reduces the amount of dissolved oxygen in the turbine train water. This action of reducing 1) 0 degrees in the turbine drain water is very effective for SCC prevention 11 of the turbine. Hydrazine and ammonia sent to the low-pressure turbine (3) (recovered in condensate by Yoji 119 Mizuen (4), l in condensate)
) Increase H. In addition, it is possible to suppress the generation of corrosion products on the wall of the small well in the condenser and on the condensate power distribution.

(発明の効果) 本発明によれば、原子力発電プラン1〜の系統水中にヒ
ドラジンおよびアンモニアが復水脱塩塔l・流側におい
て注入されるので、系統水中のl) O11iffi度
をはどlυどOとし、かつp(−1を10・〜11に調
整りることができる。前記したように、高渇水中におい
てはステンレス鋼の応力腐食割れは溶存酸素濃度および
C1イAン濃度が高い場合に箸しくなるので、本発明の
原子力光電プランl−cはI) 0濶度を0としたこと
により′3A置内面のIII I’Sを抑制ηることが
(・さ、シしたClfA度をか41リム′1容(゛さる
こととなる。
(Effects of the Invention) According to the present invention, hydrazine and ammonia are injected into the system water of nuclear power generation plans 1 to 1 on the condensate desalination tower l/stream side, so that the l) O11iffi degree in the system water can be reduced. and p(-1 can be adjusted to 10-11. As mentioned above, stress corrosion cracking of stainless steel occurs due to high dissolved oxygen concentration and C1 ion concentration in high drought conditions. In this case, the nuclear power photoelectric plan l-c of the present invention can suppress the IIII'S on the surface of the '3A position by setting the I)0 degree to 0. The degree will be 41 rims'1 volume.

したがつU * lF、明の原子力光電ブラン1〜M 
iljいては、系統水中の腐食生成物の発生が抑制され
、運転員等の被爆線用を大幅に低減りることかできる。
Gakatsu U * IF, Ming Nuclear Photoelectric Buran 1~M
In this case, the generation of corrosion products in the system water can be suppressed, and the exposure to radiation for operators and the like can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子力発電ブラン1〜の一実施例の系
統図、第2図はヒドラジンの分解と温石どの関係を承り
グラフ、第33図はアンモニアの気液分配率と圧力との
関係を示す−グラノ(・ある。 1・・・・・・1皇子炉圧力容器、2・・・・・・高圧
タービン、3・・・・・・低圧タービン、 4・・・・
・・主復水器、5・・・・・・低圧復水ポンプ、6・・
・・・・復水脱塩1ハ、7・・・・・・高圧復水ポンプ
、8・・・・・・低LL給水加熱器、9・・・・・・原
子炉給水ポンプ、 10・・・・・・高圧給水加熱器、 11・・・・・・ヒドラジンおよびアンモニア14入装
買、12・・・・・・K1測装置、14・・・・・・系
統水流出11゜15・・・・・・系統水流入口
Figure 1 is a system diagram of one embodiment of the nuclear power generation system 1 to 1 of the present invention, Figure 2 is a graph showing the relationship between the decomposition of hydrazine and hot stone, and Figure 33 is the relationship between the gas-liquid partition ratio of ammonia and pressure. Indicates - Grano (There is. 1...1 Oji Reactor Pressure Vessel, 2...High Pressure Turbine, 3...Low Pressure Turbine, 4...
...Main condenser, 5...Low pressure condensate pump, 6...
...Condensate desalination 1c, 7...High pressure condensate pump, 8...Low LL feed water heater, 9...Reactor feed water pump, 10. ... High pressure water heater, 11 ... Hydrazine and ammonia 14 charged, 12 ... K1 measuring device, 14 ... System water outflow 11゜15. ...System water inlet

Claims (1)

【特許請求の範囲】 り1)原子炉圧力容器の系統水流出[二1と系統水流入
口との間にタービン、復水器、復水脱Ii塔および給水
加熱器を配管により順次接続さIIC設置した一次冷f
JI系を有づる原子力発電プランI〜において、復水1
1ti ja塔下流側にヒドラジンおよび)7ンしニア
)主人装!6を設置したことを特徴とするIlj子力光
電プラン1〜。 (2)ヒドラジンおよびアンモニア注入装置は各薬剤用
の薬注タンクとプランジ1ノ一式薬注ポンプとから構成
′されている特i′F請求範囲第1項記載の原子力発電
プランlへ。 (3)ヒドラジンおよびアンモニア注入装置にはヒト9
929度およびpHを測定Jるための泪測装置が接続さ
れている特許請求範囲第1項記載の原子力発電プラン1
−0
[Scope of Claims] 1) A turbine, a condenser, a condensate removal column, and a feed water heater are sequentially connected by piping between the system water outflow [21] and the system water inlet of the reactor pressure vessel. Installed primary cooling f
In nuclear power generation plan I~ with JI system, condensate 1
Hydrazine on the downstream side of the tower and near) main equipment! Ilj photoelectric plan 1~ is characterized in that 6 is installed. (2) The hydrazine and ammonia injection device is comprised of a chemical injection tank for each chemical and a plunge 1 chemical injection pump. (3) The hydrazine and ammonia injection device is
Nuclear power generation plan 1 according to claim 1, in which a measuring device for measuring 929 degrees and pH is connected.
-0
JP58205764A 1983-11-04 1983-11-04 Nuclear power plant Pending JPS6098390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205764A JPS6098390A (en) 1983-11-04 1983-11-04 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205764A JPS6098390A (en) 1983-11-04 1983-11-04 Nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6098390A true JPS6098390A (en) 1985-06-01

Family

ID=16512277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205764A Pending JPS6098390A (en) 1983-11-04 1983-11-04 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6098390A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820473A (en) * 1984-11-06 1989-04-11 Hitachi, Ltd. Method of reducing radioactivity in nuclear plant
US4940564A (en) * 1986-10-20 1990-07-10 Hitachi, Ltd. Suppression of deposition of radioactive substances in boiling water type, nuclear power plant
JP2005291815A (en) * 2004-03-31 2005-10-20 Hitachi Ltd Methods for preventing corrosion and thinning of carbon steel
JP2013092392A (en) * 2011-10-24 2013-05-16 Toshiba Corp Anticorrosion system of nuclear power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820473A (en) * 1984-11-06 1989-04-11 Hitachi, Ltd. Method of reducing radioactivity in nuclear plant
US4940564A (en) * 1986-10-20 1990-07-10 Hitachi, Ltd. Suppression of deposition of radioactive substances in boiling water type, nuclear power plant
JP2005291815A (en) * 2004-03-31 2005-10-20 Hitachi Ltd Methods for preventing corrosion and thinning of carbon steel
JP2013092392A (en) * 2011-10-24 2013-05-16 Toshiba Corp Anticorrosion system of nuclear power plant

Similar Documents

Publication Publication Date Title
JPH0658437B2 (en) Radioactivity reduction methods for nuclear power plants
CN106191846B (en) Using the generating set Laying-up Protection of Thermal System guard method of octadecylamine
JPS6098390A (en) Nuclear power plant
JP3080820B2 (en) Gas injection equipment for nuclear power plants
JPS58205893A (en) Method and device for controlling ph of pwr type reactor coolant
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JPS6151758B2 (en)
JPH055077B2 (en)
US20240312652A1 (en) Method for treating a metal part of a primary circuit of a water-cooled nuclear reactor
Umer et al. Inhibitors for eliminating corrosion in steam and condensate lines
JPH02157503A (en) Water supply treatment method for steam power plants
Burrill Modeling flow-accelerated corrosion in candu
Guseva et al. Medium pressure boiler water chemistry optimization using neutralizing amines mixture reagent AMINAT™ PK-2 at CEPP “Borovichi Refractories Plant” of JSC “BKO”
JPS59143996A (en) Initial oxidation operation method for nuclear reactor plants
JPS59119296A (en) Oxygen injection system for bwr type power plant
JPS5953517B2 (en) Reactor coolant sampling device
JPS62140099A (en) Corrosion protective film formation method of nuclear power plant and device thereof
Andres Corrosion in the Boiler
JPS5495804A (en) Cold corrosion preventing method of forced circulating boiler equipment
JPS5562183A (en) Corrosion preventing method for recirculation system piping at boiling water type nuclear reactor plant
JPS642919B2 (en)
JPS5844390A (en) Reactor water sampling device prevented adhesion in pipe
CN118702257A (en) A method and system for regulating the quality of wastewater detected by a marine low-pressure boiler
JPS6261842B2 (en)
JPH1048386A (en) How to reduce chromium concentration in water supply system