JPS609542B2 - Radiographic image conversion method - Google Patents
Radiographic image conversion methodInfo
- Publication number
- JPS609542B2 JPS609542B2 JP53084740A JP8474078A JPS609542B2 JP S609542 B2 JPS609542 B2 JP S609542B2 JP 53084740 A JP53084740 A JP 53084740A JP 8474078 A JP8474078 A JP 8474078A JP S609542 B2 JPS609542 B2 JP S609542B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- image conversion
- radiation image
- radiation
- crab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 46
- 230000005855 radiation Effects 0.000 claims description 73
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 239000012190 activator Substances 0.000 claims description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- NYZGMENMNUBUFC-UHFFFAOYSA-N P.[S-2].[Zn+2] Chemical class P.[S-2].[Zn+2] NYZGMENMNUBUFC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 claims 1
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical class [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 19
- 230000035945 sensitivity Effects 0.000 description 12
- 108091008695 photoreceptors Proteins 0.000 description 6
- -1 cerium- and samarium-activated strontium sulfide Chemical class 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- NRZZLYODXDSLEK-UHFFFAOYSA-N (6-ethoxy-6-oxohexyl) 3,5-diacetamido-2,4,6-triiodobenzoate Chemical compound CCOC(=O)CCCCCOC(=O)C1=C(I)C(NC(C)=O)=C(I)C(NC(C)=O)=C1I NRZZLYODXDSLEK-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0838—Aluminates; Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7734—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/661—Chalcogenides
- C09K11/662—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K2/00—Non-electric light sources using luminescence; Light sources using electrochemiluminescence
- F21K2/005—Non-electric light sources using luminescence; Light sources using electrochemiluminescence excited by infrared radiation using up-conversion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2012—Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C5/00—Photographic processes or agents therefor; Regeneration of such processing agents
- G03C5/16—X-ray, infrared, or ultraviolet ray processes
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K4/00—Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/64—Circuit arrangements for X-ray apparatus incorporating image intensifiers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Measurement Of Radiation (AREA)
- Radiography Using Non-Light Waves (AREA)
- Luminescent Compositions (AREA)
- Lasers (AREA)
- Conversion Of X-Rays Into Visible Images (AREA)
Description
【発明の詳細な説明】
本発明は放射線像変換方法、さらに詳しくは輝尽性蟹光
体を利用した放射線像変換方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting a radiation image, and more particularly to a method for converting a radiation image using a photostimulable crab photoreceptor.
従来、放射線画像を得るために銀塩を使用した、いわゆ
る放射線写真が利用されているが、近年、特に地球規模
における銀資源の枯渇等の問題から銀塩を使用しないで
放射線像を画像化する方法が望まれるようになった。Traditionally, so-called radiography, which uses silver salts, has been used to obtain radiographic images, but in recent years, due to problems such as the depletion of silver resources on a global scale, radiographic images have been developed without using silver salts. A method has become desirable.
上述の放射線写真法にかわる方法として、被写体を透過
した放射線を蟹光体に吸収せしめ、しかる後この受光体
をある種のエネルギーで励起してこの蟹光体が蓄積して
いる放射線エネルギーを蟹光として放射せしめ、この蟹
光を検出して画像化する方法が考えられている。As an alternative to the radiographic method described above, the radiation transmitted through the object is absorbed by a crab photoreceptor, and then this photoreceptor is excited with some kind of energy to transfer the accumulated radiation energy to the crab photoreceptor. A method is being considered in which the crab light is emitted as light, and this crab light is detected and imaged.
具体的な方法として姿光体として熱姿光性蟹光体を用い
、励起エネルギーとして熱エネルギーを用いて放射線像
を変換する方法が提唱されている(英国特許第1462
769号および特関昭51−2988針号)。この変換
方法は支持体上に熱後光性溝光体層を形成したパネルを
用い、このパネルの熱蟹光性蟹光体層に被写体を透過し
た放射線を吸収させて放射線の強弱に対応した放射線エ
ネルギーを蓄積させ、しかる後この熱蟹光性後光体層を
加熱することによって蓄積された放射線エネルギーを光
の信号として取り出し、この光の強弱によって画像を得
るものである。しかしながらこの方法は蓄積された放射
線エネルギーを光の信号に変える際に加熱するので、パ
ネルが耐熱性を有し、熱によって変形、変質しないこと
が絶対的に必要であり、従ってパネルを構成する熱努光
性蟹光体層および支持体の材料等に大きな制約がある。
このように蟹光体として熱蟹光性蟹光体を用い、励起エ
ネルギーとして熱エネルギーを用いる放射線像変換方法
は応用面で大きな難点がある。一方、励起エネルギーと
して可視光線および赤外線から選ばれる電磁波を用いる
放射線像変換方法もまた知られている(米国特許第38
59527号)。As a specific method, a method has been proposed in which a radiation image is converted by using a thermophotogenic crab light body as a light body and using thermal energy as excitation energy (UK Patent No. 1462).
769 and Tokusekki Sho 51-2988 needle number). This conversion method uses a panel in which a thermally reflective grooved light layer is formed on a support, and the thermally reflective grooved light layer of this panel absorbs the radiation that has passed through the subject, responding to the intensity of the radiation. Radiation energy is accumulated, and then the accumulated radiation energy is extracted as a light signal by heating the thermophotonic backlight layer, and an image is obtained based on the intensity of this light. However, since this method heats the accumulated radiation energy when converting it into a light signal, it is absolutely necessary that the panel be heat resistant and not deformed or altered by heat. There are major restrictions on the materials of the photochromic layer and the support.
As described above, the radiation image conversion method using a thermal crab photon as the crab photon and thermal energy as the excitation energy has major drawbacks in terms of application. On the other hand, radiation image conversion methods using electromagnetic waves selected from visible light and infrared rays as excitation energy are also known (US Pat. No. 38
No. 59527).
この方法は上述の方法のように蓄積された放射線エネル
ギーを光の信号に変える際に加熱しなくてもよく、従っ
てパネルは耐熱性を有する必要はなく、この点からより
好ましい放射線像変換方法と言える。しかしながらこの
方法に使用される蟹光体としてはわずかにセリウムおよ
びサマリウム付活硫化ストロンチウム蟹光体(SrS:
Ce,Sm)、/ユーロピゥムおよびサマリウム付活硫
化ストロンチウム蟹光体(SrS:Eu,Sm)、ユー
ロピウムおよびサマリウム付活硫化ランタン麓光体(い
20ぶ:E↓Sm)、マンガンおよびハロゲン付活硫化
亜鉛、カドミウム後光体〔(Zn,Cd)S:Mn,X
、但し、Xはハロゲンである〕等が知られている程度に
すぎず、またこれらの蟹光体を用いた方法の感度は著し
く低いものであって実用的な面から感度の向上が望まれ
ている。Unlike the above-mentioned method, this method does not require heating when converting the accumulated radiation energy into a light signal, so the panel does not need to be heat resistant, and from this point of view it is a more preferred radiation image conversion method. I can say it. However, only a few cerium- and samarium-activated strontium sulfide photons (SrS) are used in this method.
Ce, Sm), / europium and samarium activated strontium sulfide phosphor (SrS:Eu,Sm), europium and samarium activated lanthanum sulfide phosphor (E↓Sm), manganese and halogen activated sulfide Zinc, cadmium halo [(Zn,Cd)S:Mn,X
, However, X is a halogen. ing.
本発明は被写体を透過した放射線を蟹光体に吸収せしめ
、しかる後、この蟹光体を可視光線および赤外線から選
ばれる電磁波で励起してこの蟹光体が蓄積している放射
線エネルギーを蟹光として放射せしめ、この蟹光を検出
する放射線像変換方法において、感度の著しく高い実用
的な放射線像変換方法を提供することを目的とするもの
である。In the present invention, the radiation that has passed through the object is absorbed by the crab light body, and then this crab light body is excited with electromagnetic waves selected from visible light and infrared rays, and the radiation energy accumulated in the crab light body is absorbed into the crab light body. The object of the present invention is to provide a practical radiation image conversion method with extremely high sensitivity in a radiation image conversion method for detecting this crab light.
本発明者等は上記目的を達成するために上記方法に使用
可能な蟹光体を探索してきた。In order to achieve the above object, the present inventors have been searching for crab photons that can be used in the above method.
その結果{a’鋼及び鉛付活硫化亜鉛蟹光体(ZnS:
Cu,Pb)、他一般式:Ba0・AI2Q:Euで表
わされるユーロピウム付活アルミン酸バリウム鮫光体、
及び【c’一般式:MOO・xSi02:A(但し、M
OOはCa0,Sの,Zn0又は母○,AはC8,Tb
,Eu.Pb,Mhの内の少なくとも1つ、0.5三×
三2.5)で表わされるアルカリ士額金属珪酸塩系蟹光
体から選ばれる少なくとも1つの蟹光体を用いれ‘よ、
上記万法は極めて高感度となることを見出し、本発明を
なすに至った。これらの蟹光体における付活剤の含有量
(付活剤が2種以上の元素からなる蟹光体についてはそ
れら付活剤元素の合計量)は蟹光体の母体1モルに対し
て10‐6〜5×10‐3グラム原子である。本発明の
放射線像変換方法は被写体を透過した放射線を上記Zn
S;Cu,Sb蟹光体、Bao・N203:Eu蟹光体
およびMOO・xSi02:A蟹光体に含まれる蟹光体
の1種もしくは2種以上である蟹光体に吸収せしめ、し
かる後、この蜜光体を50肌m以上の長波長可視光線お
よび赤外線から選ばれる電磁波で励起してこの蟹光体が
蓄積している放射線エネルギーを姿光として放出せしめ
、この蟹光を検出することを特徴とする。As a result, {a' steel and lead-activated zinc sulfide phosphor (ZnS:
Cu, Pb), and other europium-activated barium aluminate shark photons represented by the general formula: Ba0.AI2Q:Eu,
and [c' general formula: MOO・xSi02:A (however, M
OO is Ca0, S, Zn0 or mother ○, A is C8, Tb
, Eu. At least one of Pb, Mh, 0.5×
Use at least one phosphor selected from the alkali metal silicate phosphors represented by 32.5);
It has been discovered that the above-mentioned method provides extremely high sensitivity, and the present invention has been completed. The content of activator in these crab photons (for crab photons where the activator is composed of two or more elements, the total amount of those activating elements) is 10 to 1 mole of the crab photon matrix. -6 to 5 x 10-3 gram atoms. The radiation image conversion method of the present invention converts the radiation transmitted through the object into the Zn
S; Cu, Sb crab photon, Bao.N203:Eu crab photon and MOO. , to excite this nectary body with electromagnetic waves selected from long-wavelength visible light of 50 skin meters or longer and infrared rays, to emit the radiation energy accumulated in this nectary body as full-body light, and to detect this crab light. It is characterized by
本発明の放射線像変換方法を概略図を用いて具体的に説
明する。The radiation image conversion method of the present invention will be specifically explained using schematic diagrams.
第1図において、11は放射線発生装置、12は被写体
、13は可視ないし赤外陣尽性蜜光体層を有する放射線
像変換パネル、14は放射線像変換パネルの放射線潜像
を蟹光として放射させるための励起源としての光源、1
5は放射線像変換パネルより放射された蟹光を検出する
光電変換装置、16は15で検出された光電変換信号を
画像として再生する装置、17は再生された画像を表示
する装置、18は光源14からの反射光をカットし、放
射線像変換パネル13より放射された光のみを透過させ
るためのフィルターである。15じ汎降は13からの光
情報を何らかの形で画像として再生できるものであれば
よく、上記に限定されるものではない。In FIG. 1, 11 is a radiation generating device, 12 is a subject, 13 is a radiation image conversion panel having a visible or infrared exhaustible nectar layer, and 14 is a radiation image conversion panel for emitting a radiation latent image as crab light. A light source as an excitation source for, 1
5 is a photoelectric conversion device that detects the crab light emitted from the radiation image conversion panel; 16 is a device that reproduces the photoelectric conversion signal detected by 15 as an image; 17 is a device that displays the reproduced image; and 18 is a light source. This is a filter for cutting the reflected light from the radiation image conversion panel 14 and transmitting only the light emitted from the radiation image conversion panel 13. The 15th display may be of any type as long as it can reproduce the optical information from 13 as an image in some form, and is not limited to the above.
第1図に示されるように、被写体12を放射線発生装置
11と放射線像変換パネル13の間に配置し、放射線を
照射すると、放射線は被写体12の各部の放射線透過率
の変化に従って透過し、その透過像(すなわち放射線の
強弱の像)が放射線像変換パネル13に入射する。As shown in FIG. 1, when a subject 12 is placed between the radiation generator 11 and the radiation image conversion panel 13 and irradiated with radiation, the radiation passes through each part of the subject 12 according to changes in radiation transmittance. A transmitted image (that is, an image of the intensity of radiation) enters the radiation image conversion panel 13 .
この入射した透過像は放射線像変換パネル13の蟹光体
層に吸収され、これによって蜜光体層中に吸収した放射
線量に比例した数の電子または正孔が発生し、これが蟹
光体のトラツブレベルに蓄積される。すなわち放射線透
過像の蓄積像(一種の潜像)が形成される。次にこの潜
像を光エネルギーで励起して顕在化する。すなわち50
仇蛇以上の長波長可視光線および赤外線から選ばれる電
磁波を蟹光体層に照射してトラップレベルに蓄積された
電子または正孔を造出し、蓄積像を蟹光として放射せし
める。この放射される蟹光の強弱な蓄積された電子また
は正孔の数、すなわち放射線像変換パネル13の蟹光体
層に吸収された放射線エネルギーの強弱に比例しており
、この光信号を例えば光電子増情管等の光電変換装置1
5で電気信号に変換し、画像再生装置16によって画像
として再生し、画像表示装置17によってこの画像を表
示する。次に本発明の放射線像変換方法において用いら
れる放射線像変換パネルおよび蓄積像を蟹光として放射
せしめるための励起光源について詳しく説明する。This incident transmitted image is absorbed by the crab phosphor layer of the radiation image conversion panel 13, and a number of electrons or holes are generated in proportion to the amount of radiation absorbed in the phosphor layer. Accumulated at the Tratsub level. That is, an accumulated radiographic image (a kind of latent image) is formed. This latent image is then excited with light energy to become visible. i.e. 50
Electromagnetic waves selected from long-wavelength visible light and infrared rays, which are longer than those of the enemy, are irradiated onto the crab light layer to create electrons or holes accumulated at the trap level, and the accumulated image is emitted as crab light. The strength of this emitted light is proportional to the number of accumulated electrons or holes, that is, the strength of the radiation energy absorbed by the light body layer of the radiation image conversion panel 13, and this optical signal is converted into, for example, a photoelectron. Photoelectric conversion device 1 such as an intensifying tube
5, it is converted into an electrical signal, reproduced as an image by an image reproduction device 16, and this image is displayed by an image display device 17. Next, the radiation image conversion panel used in the radiation image conversion method of the present invention and the excitation light source for emitting the accumulated image as crab light will be described in detail.
放射線像変換/ゞネルの構造は第2図−aに示されるよ
うに支持体21とこの支持体21の片面上に形成された
蜜光体層22よりなる。The structure of the radiation image converter/channel consists of a support 21 and a phosphor layer 22 formed on one side of the support 21, as shown in FIG. 2-a.
この蟹光体層22は上記Z鷹:Cu,Pb蜜光体、Ba
0・山203:Eu蟹光体およびMOO・xSi02:
A姿光体から選ばれる蟹光体の1種もしくは2種以上か
ら形成されている。次に放射線像変換パネルの製造方法
の一例を以下に示す。This crab phosphor layer 22 is made of the above-mentioned Z hawk: Cu, Pb phosphor, Ba
0・Mountain 203: Eu crab light body and MOO・xSi02:
It is formed from one or more types of crab photons selected from A-type photons. Next, an example of a method for manufacturing a radiation image conversion panel will be shown below.
まず蟹光体8重量部と硝化線1重量部とを溶剤(アセト
ン、酢酸エチルおよび酢酸ブチルの混液)を用いて混合
し、粘度がおよそ50センチストークスの塗布液を調製
する。次にこの塗布液を水平に置いたポリエチレンテレ
フタレートフィルム(支持体)上に均一に塗布し、一昼
夜放置し自然乾燥することによって約300山の総光体
届を形成し、放射線像変換パネルとする。支持体として
は例えば透明なガラス板やアルミニウムなどの金属薄板
等を用いても良い。なお、放射線像変換パネルは第2図
−bに示されるような2枚のガラス板等の透明な基板2
3,24間に蟹光体を狭みこんで任意の厚さの蟹光体層
22とし、その周囲を密封した構造のものでも良い。First, 8 parts by weight of crab phosphatide and 1 part by weight of nitrification wire are mixed using a solvent (mixture of acetone, ethyl acetate, and butyl acetate) to prepare a coating solution having a viscosity of about 50 centistokes. Next, this coating solution is uniformly applied onto a horizontally placed polyethylene terephthalate film (support), and left to dry naturally for a day and night to form a total of about 300 light beams, which is used as a radiation image conversion panel. . As the support, for example, a transparent glass plate or a thin metal plate made of aluminum or the like may be used. Note that the radiation image conversion panel consists of two transparent substrates 2 such as glass plates as shown in FIG. 2-b.
It is also possible to have a structure in which a crab light layer 22 is sandwiched between 3 and 24 to form a crab light layer 22 of an arbitrary thickness, and the periphery of the crab light layer 22 is sealed.
本発明の放射線像変換方法において上述の放射線像変換
パネルにの蟹光体層を励起する光エネルギーの光源とし
ては、50仇皿以上の長波長可視領域および赤外領域の
一方また両方にバンドスペクトル分布をもった光を放射
する光源の他にHe−Neレーザー光(63仇m)、Y
AGレーザー光(1064mm)、ルビーレーザー光(
694nm)等の単一波長の光を放射する光源が使用さ
れる。In the radiation image conversion method of the present invention, the light source for the light energy that excites the photoluminescent layer of the radiation image conversion panel described above has a band spectrum in one or both of the long wavelength visible region and the infrared region. In addition to light sources that emit light with a distribution, He-Ne laser light (63 m), Y
AG laser light (1064mm), ruby laser light (
A light source is used that emits light of a single wavelength, such as 694 nm).
特にレーザー光を用いる場合には高い励起エネルギーを
得ることが出来る。し−ザー光の中でも特にHe−Ne
レーザー光を用いるのがより好ましい。第3図は本発明
の放射線像変換方法の放射線像変換パネルの蟹光体層に
用いられるZnS:Cu,Pb蟹光体に管電圧80KV
pのX線を照射した後、波長の異なる光エネルギーを与
えた時放射される総光の強度変化を示すもの(いわゆる
励起スペクトル)であるが、第3図から明らかなように
ZnS:Cu,Pb蟹光体の場合、励起可能な波長範囲
は500〜150仇伽の範囲にあるが75仇m付近の励
起光を用いるのが、放射される蟹光の強度が強く、本発
明の目的である感度向上のためには良いことがわかる。
すなわちZnS:Cu,Pb蟹光体の場合最適励起波長
は600〜95仇mの間にあることが認められる。本発
明の放射線像変換方法に用いられる各蟹光体の有効励起
波長を示すと第1表の通りであるが、これら蟹光体はそ
の励起スペクトルが500〜150仇血にわたって2つ
のバンドをもち、特にその短波長側の励起バンドのピー
ク強度が強い。このことから励起に用いられる光エネル
ギーは100仇m以下であるのがより好ましい。第1表
第4図はZnS:Cu,Pb蟹光体に管電圧80KVp
のX線を照射した後餐光体試料を分割し、照射直後から
一定時間毎に75皿mおよび130仇mの励起光で励起
した時に放射される姿光量の変化を相対的に示したもの
であり、曲線aが130仇mで励起した場合、曲線bが
75仇mで励起した場合である。Particularly when using laser light, high excitation energy can be obtained. Among the laser lights, especially He-Ne
More preferably, laser light is used. FIG. 3 shows a tube voltage of 80 KV applied to the ZnS:Cu,Pb crab light body used in the crab light body layer of the radiation image conversion panel of the radiation image conversion method of the present invention.
This shows the change in the intensity of the total light emitted when light energy of different wavelengths is applied after irradiation with p X-rays (so-called excitation spectrum).As is clear from Fig. 3, ZnS:Cu, In the case of Pb light, the wavelength range that can be excited is in the range of 500 to 150 meters, but using excitation light around 75 meters is preferable because the intensity of the emitted light is strong, and for the purpose of the present invention. It turns out that this is good for improving certain sensitivity.
That is, in the case of the ZnS:Cu,Pb crystal, the optimum excitation wavelength is found to be between 600 and 95 m. Table 1 shows the effective excitation wavelengths of the various photons used in the radiation image conversion method of the present invention, and these photons have two bands in their excitation spectrum ranging from 500 to 150 nm. , the peak intensity of the excitation band on the shorter wavelength side is especially strong. For this reason, it is more preferable that the light energy used for excitation is 100 m or less. Table 1, Figure 4 shows a tube voltage of 80 KVp for the ZnS:Cu, Pb light body.
The graph shows the relative change in the amount of light emitted when a photoluminescent sample irradiated with X-rays is divided and excited with excitation light of 75 m and 130 m at regular intervals from immediately after irradiation. Curve a is for excitation at 130 m, and curve b is for excitation at 75 m.
この第4図から明らかなように130瓜mで励起した場
合(曲線a)の方が75皿血で励起した場合(曲線b)
より退行性(フェーディング)が大きい。これは赤外線
で放射される領域のトラップが浅く、退行性(フェーデ
イング)現象が顕著なためであり、従って情報の保存期
間が短かく、実用上は余り好ましくない。例えば画像を
得るに際してパネルの蟹光体層を赤外線でスキャンニン
グして励起し、放射される光を電気的に処理する操作を
取り入れることが度々行なわれるが、蟹光体層の全面ス
キャンニングにはある程度の時間がかかるため、同じ放
射線量が照射されていても始めの議出し値と最後の議出
し値にずれが生じる恐れがある。このような理由からも
本発明の放射線像変換方法に用いる蟹光体としてはトラ
ップが深く、より高エネルギーの光、すなわちできるだ
け短波長の光で効率よく励起されるものがより望ましい
が、上述のごとく、本発明の方法に用いられる各蟹光体
は好ましい励起波長範囲が100仇m以下の領域にあり
、従ってフェーディングが少なく蟹光体層に蓄積された
放射線潜像の蓄積保存館が高いものである。本発明にお
いて、光エネルギーによって励起された結果、蟹光体層
より放出される蜜光を検出することを要するが、この際
、放出される蟹光と励起光の反射光とを分離することが
S/N比を向上せしめる上で必要である。As is clear from Fig. 4, the case of excitation with 130 melons (curve a) is better than the case of excitation with 75 dishes of blood (curve b).
More degenerative (fading). This is because the trap in the region emitted by infrared rays is shallow and the fading phenomenon is significant, so the information storage period is short and it is not very desirable in practice. For example, when obtaining an image, it is often done to scan and excite the crab phosphor layer of the panel with infrared rays, and to electrically process the emitted light. Since it takes a certain amount of time, there is a risk that there will be a difference between the initial and final proposed values even if the same radiation dose is irradiated. For these reasons, it is more desirable for the crab photogen used in the radiation image conversion method of the present invention to have deep traps and be efficiently excited by high-energy light, that is, light with a wavelength as short as possible. As shown, the preferable excitation wavelength range of each of the photons used in the method of the present invention is in the region of 100 m or less, and therefore, there is less fading and the storage capacity of the radiation latent image accumulated in the photon layer is high. It is something. In the present invention, it is necessary to detect the honey light emitted from the crab light body layer as a result of being excited by light energy, but in this case, it is necessary to separate the emitted crab light and the reflected light of the excitation light. This is necessary to improve the S/N ratio.
ところで、蟹光体層から放出される蟹光を受光する光電
変換器は、一般に60仇m以下の短波長の光エネルギー
に対して感度が高くなるので、蜜光体層から放出される
蟹光は出来る限り短波長領域にスペクトル分布をもった
ものが望ましい。本発明において用いられる蟹光体はい
ずれもかかる特性を備えている。すなわち、本発明にお
いて用いられる蟹光体はいずれも50皿m以下に主ピー
クを有する発光を示すため、励起光との分離が容易であ
り、受光器の分光感度ともよく一致するので、効率良く
受光できる結果、受像系の感度を高めることが可能とな
る。第5図に本発明に用いられるBaO・Si02:C
e蟹光体に、管電圧80KVpのX線を照射した後、H
e−Neレーザー光で励起した時の発光スペクトルを一
例として示す。第5図から明らかなように、欧0・Si
02:Ceの発光スペクトルのピークは425nmであ
る。第2表は本発明の放射線像変換方法の一例の感度を
SrS:Eu,Sm蚤光体を用いた従来公知の方法の感
度と比較して示すものである。第2表に於て、感度は放
射線像変換パネルに管電圧8雌VpのX線を照射した後
、これをHe−Neレーザー光で励起し、その蜜光体層
から放射される蟹光を受光器(分光感度S−5の光電子
増倍管)で受光した場合の発光強度で表わしたものであ
り、SrS:Eu,Sm蟹光体を用いた従来公知の方法
を1として相対値で示してある。第2表
上記第2表から明らかなように本発明の放射線像変換方
法(No.2〜舵.25)は従来公知の放射線像変換方
法(No.1)よりも高感度である。By the way, a photoelectric converter that receives the crab light emitted from the crab phosphor layer generally has a high sensitivity to light energy with a short wavelength of 60 meters or less. It is desirable to have a spectral distribution in the short wavelength region as much as possible. All of the crab photons used in the present invention have such characteristics. In other words, all of the crab photophores used in the present invention emit light with a main peak at 50 m or less, so they can be easily separated from the excitation light and match well with the spectral sensitivity of the photoreceiver, so they can be efficiently emitted. As a result of being able to receive light, it becomes possible to increase the sensitivity of the image receiving system. Figure 5 shows BaO・Si02:C used in the present invention.
e After irradiating the crab light body with X-rays with a tube voltage of 80 KVp, H
The emission spectrum when excited with e-Ne laser light is shown as an example. As is clear from Figure 5, Europe 0 Si
The peak of the emission spectrum of 02:Ce is 425 nm. Table 2 shows the sensitivity of an example of the radiation image conversion method of the present invention in comparison with the sensitivity of a conventionally known method using SrS:Eu,Sm fluorescent material. In Table 2, the sensitivity is determined by irradiating the radiation image conversion panel with X-rays at a tube voltage of 8 Vp, then exciting it with He-Ne laser light, and collecting the crab light emitted from the phosphor layer. It is expressed as the luminous intensity when received by a photoreceiver (photomultiplier tube with spectral sensitivity S-5), and is expressed as a relative value with the conventionally known method using SrS:Eu,Sm crab photoreceptor set as 1. There is. Table 2 As is clear from the above Table 2, the radiation image conversion methods (No. 2 to Rudder. 25) of the present invention have higher sensitivity than the conventionally known radiation image conversion method (No. 1).
以上説明したように本発明は感度の著しく高い放射線像
変換方法を提供するものであり、従来の放射線写真にか
わる方法としてその工業的利用価値は非常に大きなもの
である。As explained above, the present invention provides a radiation image conversion method with extremely high sensitivity, and has great industrial utility value as a method that replaces conventional radiography.
第1図は本発明の放射線像変換方法の概略説明図、第2
図−aおよびbは本発明の放射線像変換方法に用いられ
る放射線像変換パネルの断面図、第3図は本発明の放射
線像変換方法に用いられるZnS:Cu,Pb蟹光体の
励起スペクトルを示すグラフ、第4図は本発明の放射線
像変換方法に用いられるZnS:Cu,Pb蟹光体の退
行性を示すグラフ、第5図は本発明の放射線像変換方法
に用いられる蟹光体の発光スペクトルを示すグラフであ
る。
11・・・・・・放射線発生装置、12・・・・・・被
写体、13・・・・・・放射線像変換パネル、14・・
・・・・光源、15・・・・・・光電変換装置、16・
・・・・・画像再生装置、17・・・・・・画像表示装
置、18・・・・・・フィルター、21・・・・・・支
持体、22・・・・・・後光体層、23,24・・・・
・・透明支持板。
第1図
第2図
第3図
第4図
第5図FIG. 1 is a schematic explanatory diagram of the radiation image conversion method of the present invention, and FIG.
Figures a and b are cross-sectional views of the radiation image conversion panel used in the radiation image conversion method of the present invention, and Figure 3 shows the excitation spectrum of the ZnS:Cu,Pb crab photoreceptor used in the radiation image conversion method of the present invention. 4 is a graph showing the degeneration property of the ZnS:Cu,Pb crab photon used in the radiation image conversion method of the present invention, and FIG. 5 is a graph showing the degeneration property of the crab photon used in the radiation image conversion method of the invention It is a graph showing an emission spectrum. 11...Radiation generator, 12...Subject, 13...Radiation image conversion panel, 14...
...Light source, 15...Photoelectric conversion device, 16.
... Image reproduction device, 17 ... Image display device, 18 ... Filter, 21 ... Support, 22 ... Backlight layer , 23, 24...
...Transparent support plate. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
化亜鉛螢光体(ZnS:Cu,Pb)、(b)一般式:
BaO・Al_2O_3:Euで表わされるユーロピウ
ム付活アルミン酸バリウム螢光体、及び(c)一般式M
IIO・xSiO_2:A(但し、MIIはCaO,SrO
,ZnO又はBaO,AはCe,Tb,Eu,Pb,M
nの内の少なくとも1つ、0.5≦x≦2.5)で表わ
されるアルカリ土類金属珪酸塩系螢光体(但し前記(a
),(b)および(c)の螢光体における付活剤の含有
量は母体1モルに対して10^−^6〜5×10^−^
3グラム原子である)から選ばれる少なくとも1つの螢
光体に吸収せしめ、しかる後この螢光体を500nm以
上の長波長可視光線及び赤外線から選ばれる電磁波で励
起して、螢光体が蓄積している放射線エネルギー螢光と
して放出せしめ、この螢光を検出することを特徴とする
放射線像変換方法。 2 前記電磁波の波長が1000nm以下であることを
特徴とする特許請求の範囲第1項記載の放射線像変換方
法。 3 前記電磁波がレーザー光であることを特徴とする特
許請求の範囲第1項または第2項記載の放射線像変換方
法。 4 前記レーザー光がHe−Neレーザーであることを
特徴とする特許請求の範囲第3項記載の放射線像変換方
法。[Claims] 1. Radiation transmitted through an object is transmitted through (a) copper and lead activated zinc sulfide phosphor (ZnS:Cu,Pb), (b) general formula:
BaO.Al_2O_3: europium-activated barium aluminate phosphor represented by Eu, and (c) general formula M
IIO・xSiO_2:A (However, MII is CaO, SrO
, ZnO or BaO, A is Ce, Tb, Eu, Pb, M
an alkaline earth metal silicate-based phosphor represented by at least one of n, 0.5≦x≦2.5 (provided that
), (b) and (c) The content of the activator in the phosphors is 10^-^6 to 5 x 10^-^ per mole of the base material.
3 gram atoms), and then this phosphor is excited with electromagnetic waves selected from long-wavelength visible light of 500 nm or more and infrared rays, so that the phosphor accumulates. 1. A radiation image conversion method characterized by emitting radiation energy as fluorescence and detecting this fluorescence. 2. The radiation image conversion method according to claim 1, wherein the wavelength of the electromagnetic wave is 1000 nm or less. 3. The radiation image conversion method according to claim 1 or 2, wherein the electromagnetic wave is a laser beam. 4. The radiation image conversion method according to claim 3, wherein the laser beam is a He-Ne laser.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53084740A JPS609542B2 (en) | 1978-07-12 | 1978-07-12 | Radiographic image conversion method |
NL7905433A NL7905433A (en) | 1978-07-12 | 1979-07-11 | METHOD AND APPARATUS FOR RECORDING AND DISPLAYING A RADIATION IMAGE |
DE19792928246 DE2928246A1 (en) | 1978-07-12 | 1979-07-12 | METHOD AND DEVICE FOR RECORDING AND PLAYING BACK A RADIATION IMAGE |
US06/057,092 US4236078A (en) | 1978-07-12 | 1979-07-12 | Method and apparatus for recording and reproducing a radiation image |
DE2954341A DE2954341C2 (en) | 1978-07-12 | 1979-07-12 | |
DE2954340A DE2954340C2 (en) | 1978-07-12 | 1979-07-12 | |
DE2954339A DE2954339C2 (en) | 1978-07-12 | 1979-07-12 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53084740A JPS609542B2 (en) | 1978-07-12 | 1978-07-12 | Radiographic image conversion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5512142A JPS5512142A (en) | 1980-01-28 |
JPS609542B2 true JPS609542B2 (en) | 1985-03-11 |
Family
ID=13839084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53084740A Expired JPS609542B2 (en) | 1978-07-12 | 1978-07-12 | Radiographic image conversion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS609542B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317943Y2 (en) * | 1985-09-21 | 1991-04-16 | ||
JPH0352106Y2 (en) * | 1986-12-09 | 1991-11-11 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5925875A (en) * | 1982-08-03 | 1984-02-09 | Nichia Denshi Kagaku Kk | Fluorescent substance for cathode ray tube |
JPS5975200A (en) * | 1982-10-22 | 1984-04-27 | 富士写真フイルム株式会社 | Radiation image conversion and radiation image conversion panel used therefor |
JPS59126531A (en) * | 1983-01-10 | 1984-07-21 | Fuji Photo Film Co Ltd | Laser light scanning optical system |
JPS5915933A (en) * | 1983-04-19 | 1984-01-27 | Konishiroku Photo Ind Co Ltd | Radiographic image reading method |
JPH0682858B2 (en) * | 1983-05-16 | 1994-10-19 | 富士写真フイルム株式会社 | Radiation image detection method |
JPS6035300A (en) * | 1983-07-22 | 1985-02-23 | コニカ株式会社 | Radiation picture converting method |
JPH0616156B2 (en) * | 1983-11-17 | 1994-03-02 | コニカ株式会社 | Radiation image reading method |
US4785183A (en) * | 1985-09-18 | 1988-11-15 | Konishiroku Photo Industry Co., Ltd. | Method for reading radiation image information |
JP3016630B2 (en) * | 1991-07-01 | 2000-03-06 | コニカ株式会社 | Radiation image recording and reading device |
JPH0793703B2 (en) * | 1992-07-28 | 1995-10-09 | 富士写真フイルム株式会社 | Method for energy subtraction of radiographic image and stimulable phosphor sheet laminate used in the method |
KR100263304B1 (en) * | 1993-03-04 | 2000-08-01 | 김순택 | Phosphor composition |
EP1017062A3 (en) | 1998-12-28 | 2001-10-04 | Fuji Photo Film Co., Ltd. | Radiation image conversion panel and method of manufacturing radiation image conversion panel |
JP2003248097A (en) | 2002-02-25 | 2003-09-05 | Konica Corp | Radiation image conversion panel and its production method |
JP2006300647A (en) | 2005-04-19 | 2006-11-02 | Fuji Photo Film Co Ltd | Phosphor panel manufacturing method |
JP2008185568A (en) | 2007-01-31 | 2008-08-14 | Fujifilm Corp | Radiological image conversion panel |
-
1978
- 1978-07-12 JP JP53084740A patent/JPS609542B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0317943Y2 (en) * | 1985-09-21 | 1991-04-16 | ||
JPH0352106Y2 (en) * | 1986-12-09 | 1991-11-11 |
Also Published As
Publication number | Publication date |
---|---|
JPS5512142A (en) | 1980-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5944333B2 (en) | Radiographic image conversion method | |
US4236078A (en) | Method and apparatus for recording and reproducing a radiation image | |
JPH0159566B2 (en) | ||
JPS609542B2 (en) | Radiographic image conversion method | |
JPH0159567B2 (en) | ||
JPS5944339B2 (en) | Radiographic image conversion method | |
EP0102238B1 (en) | Method for converting radiographic images | |
EP0142734B1 (en) | Radiation image recording and reproducing method | |
JP2544697B2 (en) | Radiation image conversion method | |
US4259587A (en) | X-ray luminescent glasses | |
US4740699A (en) | Radiographic image reading method | |
US4931652A (en) | Radiation image recording and reproducing method | |
US4654533A (en) | Method for reading out a radiographic image | |
JPH058237B2 (en) | ||
JPH0546531B2 (en) | ||
JPH06235799A (en) | Method for recording and duplicating irradiated image, device using method thereof, panel for preserving irradiatedimage and light stimulating phospher | |
JPS6144988A (en) | Radiation image conversion method | |
JPH0373840B2 (en) | ||
JPS60217354A (en) | Process for converting image of radiation | |
JPS6249318B2 (en) | ||
JPS6227118B2 (en) | ||
JPH0550719B2 (en) | ||
JPH06130199A (en) | Radiation image conversion panel and radiation image recording and reproducing method | |
JPS58201883A (en) | Radiation image conversion | |
JPH07287328A (en) | Transformation of radiation image and phosphor |