[go: up one dir, main page]

JPS6093746A - Electron ray deflector - Google Patents

Electron ray deflector

Info

Publication number
JPS6093746A
JPS6093746A JP58200899A JP20089983A JPS6093746A JP S6093746 A JPS6093746 A JP S6093746A JP 58200899 A JP58200899 A JP 58200899A JP 20089983 A JP20089983 A JP 20089983A JP S6093746 A JPS6093746 A JP S6093746A
Authority
JP
Japan
Prior art keywords
signal
axis
deflecting
lens
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58200899A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Mori
森 弘義
Kashio Kageyama
甲子男 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58200899A priority Critical patent/JPS6093746A/en
Publication of JPS6093746A publication Critical patent/JPS6093746A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To enable signals from the sample to be easily analyzed by displaying the scanning angle by the coil current of the electron lens and the signal of the deflecting system. CONSTITUTION:The amplitude of the signal produced in an X-axis-deflecting-signal-producing circuit 7 is controlled by a microcomputer 10. The signal is also subjected to current amplification in an X-axis-deflecting circuit 5 to drive an X-axis deflecting coil 2. In the same way, the amplitude of the signal produced in a Y-axis-deflecting-signal-producing circuit 8 is controlled by a computer 10. The signal is alos subjected to current amplification in a Y-axis-deflecting circuit 6 to drive a Y-axis-deflecting coil 2. The standard voltage of an electron-lens- driving circuit 9 is controlled by a computer 10 to drive an electron lens 3. The scanning angle of electron rays is obtained by computing the coil current (Il) of the lens 3 and the currents (Ix) and (Iy) of the coil 2 by the computer 10 before being displayed on an angle displayer 11. By the mechanism mentioned above, the scanning angle is automatically displayed and it is possible to easily analyze the signal from a sample 4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は走査電子顕微鏡による制限視野回折像の観察等
に有効な電子線偏向装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improvement of an electron beam deflection device effective for observation of selected area diffraction images using a scanning electron microscope.

〔発明の背景〕[Background of the invention]

走査電子顕微鏡を用いて試料の微小領域からの制限視野
回折像を得るためには、平行度の良い電子1Illを分
析目的とする試料の微小領域を中心に角度走査する。従
来は制限視野回折像を観察することにより走査角度をめ
ていた。しかし、未知のまた既知の回折像の場合でも標
準的な回折像の走査角度をめた表と照合しなければなら
ないという欠点があった。
In order to obtain a selected area diffraction image from a minute area of a sample using a scanning electron microscope, 1Ill of well-paralleled electrons are angularly scanned around the minute area of the sample targeted for analysis. Conventionally, the scanning angle was determined by observing a selected area diffraction image. However, there is a drawback in that even in the case of unknown or known diffraction images, it is necessary to compare them with a table containing the scanning angles of standard diffraction images.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、対物レンズのコイル電流と偏向系の信
号とにより、自動的に走査角度を表示する電子線偏向装
置を提供することにある。
An object of the present invention is to provide an electron beam deflection device that automatically displays a scanning angle using a coil current of an objective lens and a signal of a deflection system.

〔発明の概要〕[Summary of the invention]

本発明は、制限視野回折像の走査角度を電子レンズのコ
イル電流と偏向系の信号とにより等節約に算出し表示す
るようにしたものである。
According to the present invention, the scanning angle of a selected area diffraction image is calculated and displayed equally economically using the coil current of the electron lens and the signal of the deflection system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。第1
図はマイクロコンピュータを用いて偏向系9成子レンズ
系をf(tU御する例である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows an example of controlling f(tU) of a nine-element deflection lens system using a microcomputer.

X軸偏向信号発生回路7で発生した信号は、マイクロコ
ンピュータloにより振幅を1fflJ御され、X軸偏
向回路5で電流増幅され、Xl1II偏向コイルを駆動
する。同様に、Y軸偏向信号発生回路8で32# I−
+ イIj4)1rf ? I 、り r’t M ’
/ W’ −+ J ff /’l Itr I−k振
幅を制御され、Y軸偏向回路6で電流増幅され、Y軸偏
向コイルをノ駆動する。
The signal generated by the X-axis deflection signal generation circuit 7 has an amplitude controlled by 1fflJ by the microcomputer lo, is current amplified by the X-axis deflection circuit 5, and drives the Xl1II deflection coil. Similarly, in the Y-axis deflection signal generation circuit 8, 32# I-
+ Ij4)1rf? I, r't M'
/W'-+Jff/'lItrIk The amplitude is controlled, the current is amplified by the Y-axis deflection circuit 6, and the Y-axis deflection coil is driven.

一方、電子レンズ駆動回路9はマイクロコンピュータl
0VCより基準′M工圧が制御され、電子レンズ3’i
i−駆動している。
On the other hand, the electronic lens drive circuit 9 is operated by a microcomputer l.
The standard 'M working pressure is controlled from 0VC, and the electronic lens 3'i
I-drive.

各々の偏向コイル、電子レンズの電流をIxlIア+I
tという記号で表わす。
The current of each deflection coil and electron lens is IxlIa+I
It is represented by the symbol t.

第2図は、第1図の電子光学系の部分のみを抽出した図
である。
FIG. 2 is a diagram in which only the electron optical system portion of FIG. 1 is extracted.

電子線1は、偏向コイル2により偏向されて電子レンズ
4の軸外に入射する。すると電子レンズ4の屈折力によ
り屈折され試料4の一点に照射される。
The electron beam 1 is deflected by the deflection coil 2 and enters the electron lens 4 off-axis. Then, it is refracted by the refractive power of the electron lens 4 and irradiated onto one point on the sample 4.

1iIII向コイルに流す電流をi、、Iアとすると、
第2図のCIi式(1)で表わさ!Lる。
If the current flowing through the coil in the 1iIII direction is i, , Ia, then
Expressed by CIi equation (1) in Figure 2! L.

C= K+ a (Il!2+IF” ) ・・・”■
(1)次に′nL子レンズの焦点距離fは、 で表わせる。また電子レンズのレンズ電流Itと焦点距
離fとの関係は で表わせる。
C= K+ a (Il!2+IF")..."■
(1) Next, the focal length f of the 'nL child lens can be expressed as follows. Further, the relationship between the lens current It of the electron lens and the focal length f can be expressed as follows.

これらの式により、走査角度θ(rad )はθ=ja
n−1− となる。式(4)において、Iz+Iy+Itはマイク
ロコンピュータにより制御されており既知であり、aF
i幾可幾重学的法によって足首る定数である。よって式
(4)によりθをマイクロコンピュータによって計算し
、角度表示器11に表示することができる。なお式(4
)においてK1.に2は装置固有のものであり、実験に
よI)前もってgべておけばよい。
According to these formulas, the scanning angle θ (rad) is θ=ja
It becomes n-1-. In equation (4), Iz+Iy+It is controlled by a microcomputer and is known, and aF
i is a constant determined by the geometric method. Therefore, θ can be calculated by the microcomputer using equation (4) and displayed on the angle display 11. Furthermore, the formula (4
) in K1. 2) is unique to the device, and can be determined in advance by experiment.

式(4)において角度θが微小角の場合と近似できる。In equation (4), the angle θ can be approximated as a small angle.

こうすれば、走査角度の計算が式(4)に比較し容易に
算出できる効果がある。
This has the effect that the scanning angle can be calculated more easily than equation (4).

走査角度を表示する方法としてはいろいろ考えられる。Various methods can be considered for displaying the scanning angle.

最大の走査角度、時々刻々の走査角度、あるいは、走査
電子顕微鏡の場合、像観察、写真撮影に用いる陰極線管
(CR,T)上にスケールと数値を表示するなどがある
The maximum scanning angle, the momentary scanning angle, or in the case of a scanning electron microscope, a scale and numerical values are displayed on the cathode ray tube (CR, T) used for image observation and photography.

以上、電子レンズを用いて容易に角度走査を得る場合に
ついて述べたが、次に大きく角度走査した場合の収差補
正機能を有した装置についても、同様にして角度表示が
できることを説明する。
The case where angular scanning is easily obtained using an electronic lens has been described above, but it will be explained next that angular display can be performed in the same way with a device having an aberration correction function when performing large angular scanning.

第3図において、電子線が電子レンズ3の軸外を通る場
合、成子レンズ電流を一定にしておくと、球面収差のた
めに中心軸の近傍を通る場合Aと遠傍を通る場合Bとで
は、試料に入射する位置が異なってしまい試料上の一点
で角度走査する条件が満足されない。これは走査角度が
小さい場合は問題にならないが、大きくなると重要な問
題忙なる。
In Fig. 3, when the electron beam passes off-axis of the electron lens 3, if the Nariko lens current is kept constant, due to spherical aberration, there is a difference between A when it passes near the central axis and B when it passes far away. , the incident position on the sample differs, and the condition for angle scanning at one point on the sample is not satisfied. This is not a problem when the scan angle is small, but becomes a significant problem when it becomes large.

これを補正するためにさまざまな方法が考えられている
。たとえば、第3図に示したように、電子線がBのよう
に電子レンズに入射した場合、電子レンズの電流を少な
くして、電子レンズ通過後Cに示したようにすれば、試
料上の一点に入射することKなる。この場合においても
、式(3)に示す焦点距離fは、電子ビームが中心軸の
近傍を通るときの電子レンズ電流Itを用いればまった
く同じようKしてめられ、走査角度θも式(4)によっ
て算出できることがわかる。
Various methods have been considered to correct this. For example, as shown in Figure 3, if the electron beam is incident on the electron lens as shown in B, if the current of the electron lens is reduced and the electron beam passes through the electron lens as shown in C, then the It is K that the light is incident on one point. In this case as well, the focal length f shown in equation (3) can be determined by K in exactly the same way by using the electron lens current It when the electron beam passes near the central axis, and the scanning angle θ can also be determined by equation (4 ) can be calculated.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、偏向系と電子レン
ズの軸外部を使用して角度走査する装置において、その
走査角度が自動的に表示され、試料からの信号を容易に
解析できるという効果がある。
As described above, according to the present invention, in a device that performs angular scanning using a deflection system and an off-axis part of an electron lens, the scanning angle is automatically displayed, and signals from a sample can be easily analyzed. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のブロック図、第2図は、
第1図において電子光学系の部分のみを書き出した図、
第3図は、角度走査の角度を太きくした場合に起こる現
象を説明する図である。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
A diagram in which only the electron optical system part in Figure 1 is drawn out,
FIG. 3 is a diagram illustrating a phenomenon that occurs when the angle of angular scanning is widened.

Claims (1)

【特許請求の範囲】[Claims] 1、電子線を偏向系により電子レンズの軸外へ入射させ
て前記電子線が試料の予め定められた点を中心として角
度走査するようになした装置において、前記電子レンズ
のコイル電流と前記偏向系の信号とにより前記走査の角
度を表示するように構成したことを特徴とした電子線偏
向装置。
1. In an apparatus in which an electron beam is incident off-axis of an electron lens by a deflection system so that the electron beam scans an angle centering on a predetermined point on a sample, the coil current of the electron lens and the deflection are An electron beam deflection device characterized in that the scanning angle is displayed based on a system signal.
JP58200899A 1983-10-28 1983-10-28 Electron ray deflector Pending JPS6093746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200899A JPS6093746A (en) 1983-10-28 1983-10-28 Electron ray deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200899A JPS6093746A (en) 1983-10-28 1983-10-28 Electron ray deflector

Publications (1)

Publication Number Publication Date
JPS6093746A true JPS6093746A (en) 1985-05-25

Family

ID=16432100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200899A Pending JPS6093746A (en) 1983-10-28 1983-10-28 Electron ray deflector

Country Status (1)

Country Link
JP (1) JPS6093746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961647B2 (en) 2006-10-27 2015-02-24 Orrvilon, Inc. Atomized picoscale composition aluminum alloy and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961647B2 (en) 2006-10-27 2015-02-24 Orrvilon, Inc. Atomized picoscale composition aluminum alloy and method thereof
US9551048B2 (en) 2006-10-27 2017-01-24 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
US10202674B2 (en) 2006-10-27 2019-02-12 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
US10676805B2 (en) 2006-10-27 2020-06-09 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof
US12226829B2 (en) 2006-10-27 2025-02-18 Tecnium, Llc Atomized picoscale composition aluminum alloy and method thereof

Similar Documents

Publication Publication Date Title
JPS60115906A (en) Automatic precise focusing method and apparatus for optical apparatus
JP5153212B2 (en) Charged particle beam equipment
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
US4608491A (en) Electron beam instrument
JPS6134221B2 (en)
JPS55121259A (en) Elelctron microscope
JPH0982257A (en) Astigmatism correction and focusing method for charged particle optical tube
JPS6093746A (en) Electron ray deflector
JP2000228162A (en) Electron beam device
US7060985B2 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
JPH0234139B2 (en)
JP3400608B2 (en) Scanning electron microscope
JPH0756786B2 (en) Electron microscope focusing device
JPH0624109B2 (en) Phase contrast electron microscope for magnetic domain observation
JPS5911179B2 (en) Electron beam deflection device
JPS60243951A (en) Axis alignment method in electron beam equipment
JPH08148108A (en) Automatic focus adjustment
JPS6125043A (en) Crystal-orientation determining method by scanning electron microscope and scanning electron microscope employed
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
SU1243046A1 (en) Electron microscope
JPH027506B2 (en)
JPH0238367Y2 (en)
JPS5945173B2 (en) scanning electron microscope
JPS5820098B2 (en) Electron beam deflection scanning device
JPH0571903B2 (en)