JPS609121A - Evaluation of exposure pattern data - Google Patents
Evaluation of exposure pattern dataInfo
- Publication number
- JPS609121A JPS609121A JP58117310A JP11731083A JPS609121A JP S609121 A JPS609121 A JP S609121A JP 58117310 A JP58117310 A JP 58117310A JP 11731083 A JP11731083 A JP 11731083A JP S609121 A JPS609121 A JP S609121A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- data
- patterns
- energy intensity
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electron Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(al 発明の技術分野
本発明は、電子ビーム露光による露光パターンデータの
評価方法に関し、特に、近接効果の補正結果の評価方法
に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for evaluating exposure pattern data obtained by electron beam exposure, and more particularly to a method for evaluating correction results for proximity effects.
tbl 従来技術と問題点
電子ビーム露光により高精度のパターンを形成するには
、所謂、近接効果を補正することが、不可欠である周知
の如く、近接効果は、被露光物上に塗布されたレジスト
膜中での電子ビーム散乱(前方散乱)及び被露光物であ
る基板からの電子ビーム散乱(後方散乱)によって、描
画後のレジストパターンが、電子ビーム照射バクーンよ
り大きく広がるという現象である。このため、パターン
間の間隔が凡そ2μm以下になると結果的にパターン形
状の著しい歪が生じ、パターン積度が低1:する。tbl Prior Art and Problems In order to form high-precision patterns by electron beam exposure, it is essential to correct the so-called proximity effect.As is well-known, the proximity effect is caused by This is a phenomenon in which the resist pattern after drawing spreads out more than the electron beam irradiation due to electron beam scattering (forward scattering) in the film and electron beam scattering (backward scattering) from the substrate, which is the object to be exposed. For this reason, when the distance between the patterns is approximately 2 μm or less, the pattern shape is significantly distorted as a result, and the pattern density becomes low.
そこで、露光パターン毎に、電子ビーム散乱強度分布と
パターン形状及び隣接パターンからの影響を考處して、
最適な照射量をあらかじめ、各パターン毎に設定したり
、あるいは、描画パターンを変形してお・くという方法
により近接効果を補正している。Therefore, for each exposure pattern, we considered the electron beam scattering intensity distribution, pattern shape, and influence from adjacent patterns.
Proximity effects are corrected by setting the optimum dose for each pattern in advance, or by modifying the drawing pattern.
一方、露光パターンの微細化、複雑化につれて、近接効
果の補正が、信実になされているかを検証する必要がま
すます増大している。On the other hand, as exposure patterns become finer and more complex, there is an increasing need to verify whether correction of the proximity effect is being performed reliably.
しかしながら、パターン数が、105〜10’個のオー
ダーの大規模かつパターン形状の複雑な集積回路装置(
IC)パターンを、人手により検証することは不可能で
ある。However, the number of patterns is large-scale on the order of 105 to 10' and the pattern shape is complex (integrated circuit devices).
IC) patterns cannot be verified manually.
又、集積回路装置の高集積化に供なし)、露光ノミター
ンの微細化が進み、サブミクロンのノくターン幅及びス
ペース幅からなるICパターンの露光が必要となってい
る。In addition, as integrated circuit devices become more highly integrated (integrated circuit devices become more highly integrated), exposure chimney turns become increasingly finer, and it becomes necessary to expose IC patterns having submicron turn widths and space widths.
従来、2〜3μ汀lの設計パターンルールは、最小パタ
ーン間隔を設定し、デザイン/l/ − /しの検証を
行なっていた。しかし、1μm以下のノ々ターンルール
の際には、同じパターン間隔でも、レジストの解像度等
の露光条件及びパターン条件により、IW像する場合と
しない場合があり、露光条件及びパターン条件を考慮し
たデザインルールの検iiEが、必要である。Conventionally, for the design pattern rule of 2 to 3 μl, the minimum pattern spacing was set and the design/l/−/l was verified. However, when using a no-turn rule of 1 μm or less, even if the pattern spacing is the same, IW images may or may not be formed depending on the exposure and pattern conditions such as the resolution of the resist. Examination of the rules is necessary.
(Cl 発明の目的
本発明の目的は、かかる事情にj,監めで、近接効果が
、適切に補正されているか否かを、又ある露光条件のも
とで、露光パターンが、解像可能かどうかを、事前に比
較的簡単に検証し得る電子ビーム露光パターンデータの
評価方法を提供することにある。(Cl. Purpose of the Invention The purpose of the present invention is to monitor such circumstances and determine whether the proximity effect is properly corrected or not, and whether the exposure pattern can be resolved under certain exposure conditions. It is an object of the present invention to provide a method for evaluating electron beam exposure pattern data that can be relatively easily verified in advance.
(dl 発明の構成
本発明の特徴は、複数の露光すべきパターンの設計デー
タに対し、近接効果補正を施してそれぞれ該パターンの
露光データを決定した後、隣接する該パターン間の所定
位置における電子ビームにより受けるエネルギー強度を
め、該エネルギー強度が所定範囲内か否かを判別して該
露光データの適否を評価することにある。(dl Structure of the Invention The feature of the present invention is that after applying proximity effect correction to the design data of a plurality of patterns to be exposed and determining the exposure data of each of the patterns, electrons at predetermined positions between the adjacent patterns are The object of the present invention is to evaluate the appropriateness of the exposure data by measuring the energy intensity received by the beam and determining whether the energy intensity is within a predetermined range.
(Ql 発明の実施例
以下、本発明の一実施例を図面を用いて具体的に説明す
る。(Ql Embodiment of the Invention Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
第1図は、上記一実施例に用いる電子ビーム露光装置の
制御システムの要部を示すブロック図で1は中央処理袋
! (CP.U)、2は、設計パターンデータを格納す
るための主記憶装置(メモリ)hは、近接効果を補正す
るための露光データを生成する補正演算回路,4は上記
露光データを格納するための第1のバッファメモリ (
バッファl)。FIG. 1 is a block diagram showing the main parts of the control system of the electron beam exposure apparatus used in the above embodiment, and 1 is a central processing bag! (CP.U), 2 is a main storage device (memory) for storing design pattern data; h is a correction calculation circuit that generates exposure data for correcting the proximity effect; 4 is a storage unit for storing the exposure data. The first buffer memory for (
buffer l).
5ば、露光パターンのパターン間の中点でのエネルギー
強度を算出し、該エネルギー強度が、設定範囲内にある
かどうかを比較,検査する検査演算回路,6は検査演算
の結果の出力を格納するための第2のバッファメモリ
(バッファ■)、7ば表示装置,8はデータバスである
。5, an inspection calculation circuit that calculates the energy intensity at the midpoint between the patterns of the exposure pattern, and compares and inspects whether the energy intensity is within a set range; 6, stores the output of the inspection calculation result; Second buffer memory for
(buffer ■), 7 is a display device, and 8 is a data bus.
第2図〜第4図は本発明の原理を示す図で、以下、第1
図を参照しながら本実施例を説明する。Figures 2 to 4 are diagrams showing the principle of the present invention.
This embodiment will be described with reference to the drawings.
ffi2図において実線は設計パターンを示し、この設
計パターンデータばあらかじめメモリ2に格納しておく
。破線のパターンは、上記設計パターンを得るために、
近接効果を補正し、実際に電子ビームを照射する領域(
以下これを照射パターンと略記する)を示す。In the ffi2 diagram, solid lines indicate design patterns, and this design pattern data is stored in the memory 2 in advance. The dashed line pattern is to obtain the above design pattern.
The area where the proximity effect is corrected and the electron beam is actually irradiated (
Hereinafter, this will be abbreviated as the irradiation pattern).
本実施例の露光パターンデータの評価を行うには、まず
CPUIの指令によりメモリ2から上記設計パターンデ
ータを読み出し、fili正演算正路算回路3てあらか
しめ定められた補正方法に基づいてiili正演算全演
算い、補正量を算出する。たとえば、各パターンに一M
のそれぞれについて各辺上にサンプル点を設定し、他の
パターンからの影響を算出する。サンプル点としては例
えば、各辺の2等分点を選ぶ。このとき、パターンLの
ように形状の複雑なパターンは単純な矩形パターンに分
割して補正を行なう。In order to evaluate the exposure pattern data of this embodiment, first, the above design pattern data is read out from the memory 2 according to a command from the CPUI, and the fili positive calculation positive path calculating circuit 3 performs the fili positive calculation based on a predetermined correction method. Perform all calculations and calculate the correction amount. For example, one M for each pattern.
Set sample points on each side for each, and calculate the influence from other patterns. For example, a bisecting point on each side is selected as the sample point. At this time, a pattern with a complicated shape such as pattern L is divided into simple rectangular patterns for correction.
即ち、パターンLの場合は、パターンLl及びパターン
L2とに分割し、それぞれについ“ζ上述の如く、各辺
上にサンプル点を設定する。That is, in the case of pattern L, it is divided into pattern Ll and pattern L2, and sample points are set on each side of each of them as described above.
電子ビーム散乱強度分布f (r)は、周知の如く、外
部から照射するビーム中心からの距離rので表わされる
。+1)式において、第1項目は、前方散乱を第2項目
は後方散乱を示す。上式中A−Cは、それぞれレジスト
の感度や厚さ,あるいは基板材料等の条件によって定ま
る定数でありあらかじめ与えられている。As is well known, the electron beam scattering intensity distribution f (r) is expressed as the distance r from the center of the beam irradiated from the outside. +1) In the equation, the first term indicates forward scattering and the second term indicates backward scattering. In the above formula, A-C are constants determined by the sensitivity and thickness of the resist, the substrate material, etc., and are given in advance.
この(1)式を用いて、各照射パターンについて、積分
することにより他のパターンからの影響分を算出し、各
サンプル点での露光強度が一定になるように連立方程式
を解く等により寸法及び照射量に対する補正量をめる。Using this equation (1), for each irradiation pattern, the influence from other patterns is calculated by integrating, and the dimensions and Calculate the correction amount for the irradiation amount.
第2図の実線で示す設計パターンを上記補正量を用いて
補正することにより破線で示す照射パターンが得られる
。By correcting the design pattern shown by the solid line in FIG. 2 using the above correction amount, the irradiation pattern shown by the broken line is obtained.
上述の本実施例の近接効果の補正は、各辺について一個
のサンプル点を選び、このサンプル点を各辺の代表点と
して補正量を決定した平均的な補正方法である。従って
パターン条件により各パターンの全域にわたって適切に
補正されているとは限らない。The proximity effect correction in this embodiment described above is an average correction method in which one sample point is selected for each side and the amount of correction is determined using this sample point as the representative point of each side. Therefore, depending on the pattern conditions, it is not always the case that the entire area of each pattern is appropriately corrected.
なお、近接効果の補正を各辺毎に、それぞれ1個のサン
プル点について行なったが、これば、サンプル点の数を
増すと、所要時間が卵重に多くなり、実用的でないため
である。Note that the proximity effect correction was performed for one sample point on each side, but this is because increasing the number of sample points would increase the time required, which is not practical.
又、レジストの解像度の限界によりあらゆるパターン条
件について適切に補正されているとは限らない。Furthermore, due to the limits of resist resolution, it is not always possible to appropriately correct all pattern conditions.
そこで、第3図に示すように、照射パターンのパターン
間の中心位置における照射電子ビームより受りるエネル
ギー強度に着目し、パターン間隔の中心Pのエネルギー
強度をEpとする。Therefore, as shown in FIG. 3, attention is paid to the energy intensity received from the irradiation electron beam at the center position between the patterns of the irradiation pattern, and the energy intensity at the center P of the pattern interval is set as Ep.
パターン間隔がI/lv像する時のEpをEopとする
と、
Ep<Eop・・・パターン間隔解像
Ep≧Eop・・・解像しない ・・・・・・(2)以
上の様な関係を用いて、補正パターンにおいて解像しな
い場所の抽出が可能となる。If Eop is Eop when the pattern spacing is I/lv, Ep<Eop...pattern spacing resolution Ep≧Eop...no resolution...(2) The above relationship is established. Using this method, it becomes possible to extract unresolved locations in the correction pattern.
すなわち、第4図に示すように照射パターンのパターン
間の中点P、Q、Rをサンプル点と設定し、各サンプル
点でのエネルギー強度を算出する。That is, as shown in FIG. 4, the midpoints P, Q, and R between the irradiation patterns are set as sample points, and the energy intensity at each sample point is calculated.
たとえば、サンプル点Pにお番Jるエネルギー強度B
pは以下の式でめられる。For example, the energy intensity B applied to the sample point P
p can be calculated using the following formula.
rzp、=Q、F+ (rl ) 十〇z Fz (r
z ) →−Q3 F3 (r5 ) +QtIFu
(r4t) ・・・・・・(3)ごこでQi(i=1〜
4)、ば、パターンに、Ll。rzp, = Q, F+ (rl) 10z Fz (r
z ) →−Q3 F3 (r5 ) +QtIFu
(r4t) ・・・・・・(3) Gokode Qi (i=1~
4),B,in the pattern,Ll.
I、λの電子ビーム照射量であり、Fi (ri)(i
−1〜4)は各パターンのサンプル点Pに及ばず影響強
度である。又Fi(ri)は、散乱強度分布式(1)を
照射パターンについて和分することにより得られる。is the electron beam irradiation amount of I, λ, and Fi (ri) (i
−1 to 4) are influence strengths that are not as high as the sample point P of each pattern. Moreover, Fi(ri) can be obtained by integrating the scattering intensity distribution formula (1) for the irradiation pattern.
かくして、各サンプル点におけるエネルギー強度が、条
件(2)の設定範囲内にあるかどうかを比較することに
より補正パターンにおいて、解像しない場所の抽出を行
なうことができる。抽出したパターンデータは、第2の
バッファメモリ6に格納される。Thus, by comparing whether the energy intensity at each sample point is within the set range of condition (2), it is possible to extract unresolved locations in the correction pattern. The extracted pattern data is stored in the second buffer memory 6.
上述のようにして得られたパターンデータは、表示装置
7に表示される。この表示装置7には、必要に応じて設
計パターン照射パターン等を表示させることも勿論可能
である。The pattern data obtained as described above is displayed on the display device 7. It is of course possible to display a design pattern irradiation pattern or the like on the display device 7 as required.
このように、本実施例によれば、比較的容易に近接効果
が適切に補正されているか否かを、又、ある露光条件の
もとて露光パターンが、解像可能かどうかを事前に検証
し得る。In this way, according to this embodiment, it is relatively easy to verify in advance whether or not the proximity effect has been appropriately corrected, and whether or not the exposure pattern can be resolved under certain exposure conditions. It is possible.
(fl 発明の詳細
な説明した如く、本発明によれば近接効果の補正結果を
容易に検証することができ、従って、パターン精度の向
上及び歩留り向上が図られる。(fl) As described in detail, according to the present invention, it is possible to easily verify the correction result of the proximity effect, thereby improving pattern accuracy and yield.
第1図は、本発明に関わる電子ビーム露光装置の制御シ
ステムの要部を示すブロック図、第2図〜第4図は、本
発明の一実施例を説明するための図である。
図において1はCPU、2はメモリ、3は?ili正演
算回路、5は検査演算回路、に、1.、、Mはパターン
、P、Q、Rばパターン間の中点を示す。
第3回
第4■FIG. 1 is a block diagram showing essential parts of a control system for an electron beam exposure apparatus according to the present invention, and FIGS. 2 to 4 are diagrams for explaining one embodiment of the present invention. In the figure, 1 is the CPU, 2 is the memory, and 3 is the ? ili positive arithmetic circuit; 5 is an inspection arithmetic circuit; 1. , , M indicates the pattern, and P, Q, R indicate the midpoint between the patterns. 3rd 4th ■
Claims (1)
果補正を施してそれぞれ該パターンの露光データを決定
した後、隣接する該パターン間の所定位置における電子
ビームにより受けるエネルギー強度をめ、該エネルギー
強度が所定範囲内か否かを判別して該露光データの適否
を評価することを特徴とする露光パターンデータの評価
方法。After applying proximity effect correction to the design data of a plurality of patterns to be exposed and determining the exposure data of each pattern, calculate the energy intensity received by the electron beam at a predetermined position between the adjacent patterns, and calculate the energy intensity. 1. A method for evaluating exposure pattern data, characterized in that the suitability of the exposure data is evaluated by determining whether or not the exposure data is within a predetermined range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117310A JPH063792B2 (en) | 1983-06-29 | 1983-06-29 | Method of evaluating exposure pattern data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58117310A JPH063792B2 (en) | 1983-06-29 | 1983-06-29 | Method of evaluating exposure pattern data |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS609121A true JPS609121A (en) | 1985-01-18 |
JPH063792B2 JPH063792B2 (en) | 1994-01-12 |
Family
ID=14708578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58117310A Expired - Lifetime JPH063792B2 (en) | 1983-06-29 | 1983-06-29 | Method of evaluating exposure pattern data |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH063792B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221215A (en) * | 1985-07-19 | 1987-01-29 | Fujitsu Ltd | Electron beam exposure method |
JPH053128U (en) * | 1991-07-03 | 1993-01-19 | 和久 井上 | can |
WO2002101802A1 (en) * | 2001-06-07 | 2002-12-19 | Advantest Corporation | Electron beam exposure system, electron beam exposing method, and method for fabricating semiconductor element |
US7041512B2 (en) | 2001-06-07 | 2006-05-09 | Advantest Corp. | Electron beam exposure apparatus, electron beam exposing method, semiconductor element manufacturing method, and pattern error detection method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750433A (en) * | 1980-09-12 | 1982-03-24 | Fujitsu Ltd | Electron beam exposure method |
-
1983
- 1983-06-29 JP JP58117310A patent/JPH063792B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750433A (en) * | 1980-09-12 | 1982-03-24 | Fujitsu Ltd | Electron beam exposure method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221215A (en) * | 1985-07-19 | 1987-01-29 | Fujitsu Ltd | Electron beam exposure method |
JPH053128U (en) * | 1991-07-03 | 1993-01-19 | 和久 井上 | can |
WO2002101802A1 (en) * | 2001-06-07 | 2002-12-19 | Advantest Corporation | Electron beam exposure system, electron beam exposing method, and method for fabricating semiconductor element |
JP2002367892A (en) * | 2001-06-07 | 2002-12-20 | Advantest Corp | Electron beam exposure apparatus and method, and method for manufacturing semiconductor element |
US7041512B2 (en) | 2001-06-07 | 2006-05-09 | Advantest Corp. | Electron beam exposure apparatus, electron beam exposing method, semiconductor element manufacturing method, and pattern error detection method |
Also Published As
Publication number | Publication date |
---|---|
JPH063792B2 (en) | 1994-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000003028A (en) | Mask pattern correcting system and its correcting method | |
US20080183323A1 (en) | System, method and computer program product for evaluating an actual structural element of an eletrical circuit | |
JPS62209304A (en) | Method for measuring dimension | |
KR880010457A (en) | Convergence measurement and calibration determination method and apparatus | |
TWI546534B (en) | Inspection apparatus, computer apparatus and method for database-driven cell-to-cell reticle inspection | |
JPS609121A (en) | Evaluation of exposure pattern data | |
US4527070A (en) | Method and apparatus for inspecting a pattern | |
US4566192A (en) | Critical dimension measurement structure | |
US6727989B1 (en) | Enhanced overlay measurement marks for overlay alignment and exposure tool condition control | |
JPS58218118A (en) | Inspection of light exposure pattern | |
Williams et al. | Fine-Structure Analysis of H 1 α and H 2 α | |
JPS63308317A (en) | Charged beam aligner | |
CN106610564A (en) | Exposure process check method and system, and test mask | |
JPS60117623A (en) | Inspecting method for exposure pattern | |
JPS60117622A (en) | Inspecting method for exposure pattern | |
JP3152776B2 (en) | Exposure calculation method for photolithography | |
US20020028012A1 (en) | Instrument and method for metrology | |
JP3144250B2 (en) | Automatic development method and apparatus | |
JPH04177717A (en) | Charged particle beam exposure device and exposure method | |
JP2888245B2 (en) | Inspection method and inspection device for mask plate | |
Granetz et al. | Is X-ray emissivity constant on magnetic flux surfaces? | |
IL150726A (en) | Method of correcting physically-conditioned errors in the measurement of microscopic objects | |
JPS62115828A (en) | Electron beam exposure method | |
KR20010050123A (en) | Method for ascertaining the radiation dose for a layout | |
JPH118187A (en) | Verification method of electron beam exposure data, forming device thereof and mask forming equipment |