JPS609082B2 - Spheroidized zinc grain manufacturing method - Google Patents
Spheroidized zinc grain manufacturing methodInfo
- Publication number
- JPS609082B2 JPS609082B2 JP57100788A JP10078882A JPS609082B2 JP S609082 B2 JPS609082 B2 JP S609082B2 JP 57100788 A JP57100788 A JP 57100788A JP 10078882 A JP10078882 A JP 10078882A JP S609082 B2 JPS609082 B2 JP S609082B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- gas
- temperature
- metal
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
Landscapes
- Glanulating (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【発明の詳細な説明】
本発明は、金属粒の製造方法に関するものであり、特に
は微細な球状金属粒を簡易効率的に製造する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal particles, and particularly to a method for producing fine spherical metal particles simply and efficiently.
球状の金属粒を製造する方法としては、冷却媒体への滴
下法或いは気体噂霧により得られた金属粒をスパイラル
管を通して気流搬送することにより形状修正を行なう物
理的球状化法が提唱されている。As a method for manufacturing spherical metal particles, a physical spheroidization method has been proposed in which the shape is modified by dropping metal particles into a cooling medium or by transporting metal particles obtained by gaseous mist through a spiral tube. .
しかしながら、冷却媒体への滴下法で金属粒を製造する
場合には、粒寸の小さいものが得られず、例えば100
メッシュ以上の粒が90%近くまでも占め、100メッ
シュ以下の微細な金属粒の製造方法としては適当でない
。However, when producing metal particles by dropping into a cooling medium, small particle sizes cannot be obtained;
The particles with a mesh size or larger account for nearly 90%, and this method is not suitable as a method for producing fine metal particles with a mesh size of 100 mesh or smaller.
また、上託した金属漆体と気体贋露したスパイラル管を
通過させる方法は、尖鋭突起を無くする点である程度の
効果があるとは云え、球状と言えるにはまだ尚不足して
おり、加えて装置の構造が複雑となるばかりか、操業管
理が煩雑である。In addition, although the method of passing the entrusted metal lacquer and the spiral tube exposed to gas has some effect in eliminating sharp protrusions, it is still insufficient to be called spherical. This not only complicates the structure of the equipment but also complicates operational management.
従って、従来からの提唱方法は、微細な球状金属粒を得
ることには満足すべきものと言い難い。ところで、近時
、亜鉛、カドミウム、鉛、銅等の金属粒において微細な
球状形態のものを製造することが、粉末成形体の品質向
上等の目的から、強く要望されている。例えばアルカリ
電池においては、最近ますます小型化及び薄型化に進む
傾向があり、電池寿命を長くする対策として電極成形型
体に用いられる亜鉛が微粒子であり且つ球状であること
が要望されている。このような微粒球状の金属粒製造は
上記のような方法では得ることが難しく、新たな方法の
確立が必要である。本発明は、上記従来技術の欠点を解
消すると共に、斯界での要望に答えるべく微粒の球状金
属粒を容易に製造する方法を確立したものである。Therefore, the conventionally proposed methods cannot be said to be satisfactory in obtaining fine spherical metal particles. Incidentally, in recent years, there has been a strong demand for producing fine spherical particles of metal such as zinc, cadmium, lead, copper, etc. for the purpose of improving the quality of powder compacts. For example, alkaline batteries have recently become increasingly smaller and thinner, and as a measure to extend battery life, it is desired that the zinc used in electrode moldings be fine particles and spherical. It is difficult to produce such fine, spherical metal particles using the methods described above, and it is necessary to establish a new method. The present invention has established a method for easily manufacturing fine spherical metal particles in order to eliminate the drawbacks of the above-mentioned prior art and to meet the demands in this field.
本発明者は、金属溶体を階霧気体により紬滴に分散させ
る気体燈霧法について、詳細な検討を加えた結果、階霧
気体により溶体金属を噴霧化して溶滴として分散せしめ
るに際しての噂霧気体の温度が球状化に重要な影響を持
っていることが判明した。従釆、靖霧気体の温度は常温
とされ、その温度を高めることは溶滴の凝固を遅らせむ
しろ有害であると一般に信ぜられてきた。贋霧化されて
生成した溶適は金属粒回収ホッパ内を落下しつつその間
に凝固してホッパ底にて捕集されるのであるが、最初の
鰭霧化時の溶滴の性状がその球状化の成否に決定的影響
を及ぼす。金属溶体が常温の噴霧気体に曝され、頃霧化
作用を受けると、一つの推論ではあるが、頃霧溶滴が急
冷され局所的な凝固とそれに伴なう粘性変化によりその
後の球状化に悪影響を及ぼすように思われる。従って、
頃霧気体の温度を昇温する方がむしろ好ましい。但し、
咳霧気体をあまりに高温にすることは、溶滴の凝固を遅
らせるのでかえって逆効果となる。加えて、金属溶滴の
生成から凝固までの全期間中、金属と酸素との結びつく
機会を所定限以下に抑えることによって球状化が好適に
進行することも見出された。このためには、噂霧気体中
の酸素濃度はもちろんのこと、金属粒回収ホッパ内雰囲
気の酸素濃度をも所定限度以下に維持する必要がある。
酸素濃度の上限は対象とむる金属に依存はするが、一般
的に8%とされている。このような酸素濃度管理を上記
昇温された贋霧気体の使用と併用することにより一層球
状化された金属粒を製造することが可能となる。斯くし
て、本発明は、金属済体を頃霧気体により紬滴に分散せ
しめ、そして金属粒回収ホッパ内を落下せしめて瓶集す
ることから成る金属粒製造方法において、昇温された噴
霧気体を使用することを特徴とするものである。As a result of a detailed study on the gas atomization method in which a metal solution is dispersed into droplets using a layer mist gas, the inventors have discovered that the method of atomizing a metal solution into droplets using a layer mist gas results in the discovery of a method for dispersing a metal solution into droplets using a layer mist gas. It was found that the temperature of the gas has an important influence on spheroidization. Accordingly, the temperature of the mist gas is considered to be room temperature, and it has been generally believed that raising the temperature slows down the solidification of the droplets and is rather harmful. The droplets produced by the atomization fall through the metal particle collection hopper, solidify during that time, and are collected at the bottom of the hopper. It has a decisive influence on the success or failure of development. One theory is that when a metal solution is exposed to room-temperature atomized gas and subjected to the atomizing action, the atomized droplets are rapidly cooled, resulting in local solidification and subsequent spheroidization due to the accompanying viscosity change. It seems to have a negative effect. Therefore,
It is rather preferable to raise the temperature of the mist gas. however,
Raising the temperature of cough fog gas too high may have the opposite effect, as it delays the solidification of the droplets. In addition, it has also been found that spheroidization progresses suitably by suppressing the opportunity for metal and oxygen to bond to a predetermined limit or less during the entire period from the generation of metal droplets to their solidification. For this purpose, it is necessary to maintain not only the oxygen concentration in the mist gas but also the oxygen concentration in the atmosphere within the metal particle collection hopper below a predetermined limit.
The upper limit of oxygen concentration depends on the metal being treated, but is generally set at 8%. By using such oxygen concentration control in conjunction with the use of the above-mentioned heated atomized gas, it becomes possible to produce metal particles that are more spherical. Thus, the present invention provides a method for producing metal grains, which comprises dispersing a finished metal body into droplets using atomized gas, and dropping the metal particles into droplets in a metal grain collection hopper to collect them in a bottle. It is characterized by the use of
更に、本発明は、昇温された頃霧気体を使用すると共に
、贋霧気体中の酸素濃度及び金属粒回収ホッパ内雰囲気
の酸素濃度を8%以下とすることを特徴とする。以下、
本発明について詳細に述べる。Furthermore, the present invention is characterized in that the fog gas is used when the temperature is raised, and the oxygen concentration in the fog gas and the oxygen concentration in the atmosphere inside the metal particle recovery hopper are set to 8% or less. below,
The present invention will be described in detail.
本発明において対象とする金属は噴霧法により金属粒を
製造しうる金属一般のすべて含むものであるが、特に酸
素との親和力の高い、例えば亜鉛、カドミウム、鉛或い
はこれらの合金等の金属が対象とされる。The target metals in the present invention include all metals in general from which metal particles can be produced by a spraying method, but in particular metals with high affinity for oxygen, such as zinc, cadmium, lead, or alloys thereof, are targeted. Ru.
金属溶体は、金属粒回収ホッパ上に設置された溜め容器
において所定の温度に維持されつつその底に設けられた
ノズルを通して放出され、放出直後頃霧気体によって細
滴に分散される。The metal solution is maintained at a predetermined temperature in a storage container installed on the metal particle collection hopper and released through a nozzle provided at the bottom of the storage container, and immediately after release, it is dispersed into fine droplets by a mist gas.
分散した紬滴はホッパ内を落下しつつ凝固し、そしてホ
ッパ底において金属粒として補集される。金属溶体の温
度は、融点にできるだけ近いほどよいが、項霧化が可能
な範囲の温度にあるときを要する。The dispersed pongee droplets solidify as they fall within the hopper, and are collected as metal particles at the bottom of the hopper. The temperature of the metal solution should be as close to the melting point as possible, but it must be within a temperature range that allows atomization.
例えば、電池用の亜鉛粒製造の場合には、最純亜鉛(9
9.99%Zn)ぎ用いられ、溶体温度は450〜60
0qoとされる。溶体の温度は噴霧化紬滴の凝固時間と
相関するから、紬滴がホッパ壁に衝突する際充分に凝固
していないと衝撃によって扇平化或いは歪曲化しやすい
ので、ホッパ壁への衝突までに充分の凝固が得られるよ
う、設備の他の因子を考慮して溶体温度を選定すること
が望まれる。ホッパの容積が大きく、ホッパ壁に分散紬
滴が衝突するまでの時間が比較的長くとれる場合には、
溶体温度を高くすることができる。しかし、大形のホッ
パの使用は設備がかさむ点で好ましくないので、港体温
度を低目にすることが好ましい。ホッパの側壁は曲面を
呈することが好ましい。For example, in the case of manufacturing zinc particles for batteries, the purest zinc (9
9.99% Zn) was used, and the solution temperature was 450-60
It is assumed to be 0qo. Since the temperature of the solution is correlated with the solidification time of the atomized pongee droplets, if the pongee droplets are not sufficiently solidified when they collide with the hopper wall, they are likely to flatten or become distorted due to the impact. In order to obtain sufficient solidification, it is desirable to select the solution temperature in consideration of other factors of the equipment. If the hopper has a large volume and the time required for the dispersed pongee droplets to collide with the hopper wall is relatively long,
The solution temperature can be increased. However, since the use of a large hopper is undesirable because the equipment becomes bulky, it is preferable to keep the port body temperature low. Preferably, the side walls of the hopper exhibit a curved surface.
これは、前述したように頃霧化金属が側壁に当るまでに
充分冷却されていないと変形しやすいので、曲面とする
ことによって衝撃を少しでも緩らげるためである。噴霧
気体圧力は、細粒を得るには高い程良いが、あまり高く
しすぎると側壁等に分散溶滴が当って変形したり或いは
圧力衝撃によって溶滴が鳥平になるのでかえって好まし
くない。This is because, as mentioned above, if the atomized metal is not sufficiently cooled before it hits the side wall, it is likely to deform, so the curved surface is used to soften the impact as much as possible. The higher the atomizing gas pressure is, the better in order to obtain fine particles, but if it is set too high, the dispersed droplets may hit the side walls and the like and be deformed, or the droplets may become flattened due to pressure impact, which is not preferable.
なるだけ一様なそして微細な頃霧化効果が得られるよう
溜め容器底の放出ノズル寸法等をも勘案して適正な圧力
を選定する必要がある。例えば、亜鉛の場合では、一般
に1〜5k9/地の範囲とされ、2k9/めが好ましい
。本発明に従えば、噴霧気体は常温ではなく昇温下で使
用される。In order to obtain as uniform and fine atomization effect as possible, it is necessary to select an appropriate pressure, taking into consideration the dimensions of the discharge nozzle at the bottom of the reservoir, etc. For example, in the case of zinc, it generally ranges from 1 to 5k9/m2, with 2k9/m2 being preferred. According to the invention, the atomizing gas is used at elevated temperature rather than at normal temperature.
先にも述べたように、溜め容器の底ノズルから流下する
溶体は加圧された贋霧気体の頃霧化作用に先ず曝される
。この際、常温の贋霧気体を使用すると生成溶滴が急に
冷えすぎ、恐らくは部分的凝固が生ずる等の理由で自然
な球状化作用の針行が妨げられる。従って、金属溶体を
最初にあまりに急激な冷却作用下に置かないように、頃
霧気体を昇温する必要がある。加熱温度は溶体金属温度
に応じて変わることが、常温以上溶体金属温度近くまで
可能である。しかし、贋霧気体温度をあまりに上げすぎ
ると、溶滴の凝固を遅らせ、不十分な凝固のままホッパ
壁に金属粒が衝突して、変形される恐れが出てくる。溶
体温度、ホッパ設計寸法、噂霧気体圧力等を総合的に勘
案して適度な頃霧気体加熱温度を選定することが好まし
い。例えば亜鉛の場合100〜350qo位が適当であ
る。更には、贋霧気体の酸素濃度は8%以下に抑制する
ことが好ましい。As previously mentioned, the solution flowing down from the bottom nozzle of the reservoir is first exposed to the atomizing action as a pressurized atomizing gas. At this time, if a mist gas at room temperature is used, the resulting droplets will cool down too quickly, possibly resulting in partial solidification, which will prevent the natural spheroidization process. Therefore, it is necessary to raise the temperature of the mist gas so that the metal solution is not initially subjected to too rapid a cooling effect. The heating temperature can vary depending on the temperature of the solution metal, and can range from room temperature to near the temperature of the solution metal. However, if the temperature of the mist gas is raised too much, the solidification of the droplets will be delayed, and there is a risk that the metal particles will collide with the hopper wall and be deformed while the droplets are not fully solidified. It is preferable to select an appropriate mist gas heating temperature by comprehensively considering the solution temperature, hopper design dimensions, mist gas pressure, etc. For example, in the case of zinc, 100 to 350 qo is appropriate. Furthermore, it is preferable to suppress the oxygen concentration of the false mist gas to 8% or less.
これは、噴霧化に際して金属溶体と酸素との接触する機
会をできる限り少なくして酸化物の生成を最小限にする
ためである。噂霧気体としては、窒素ガス、C02ガス
、アルゴンその他の不活性ガスが用いられる。加えて、
贋霧化後溶瓶が未凝固状態で滞留する金属粒回収ホッパ
内の雰囲気の酸素濃度とも8%以下に併せて管理するこ
とが好ましい。This is to minimize the chance of contact between the metal solution and oxygen during atomization to minimize the formation of oxides. As the mist gas, nitrogen gas, CO2 gas, argon, or other inert gas is used. In addition,
It is preferable that the oxygen concentration of the atmosphere in the metal particle collection hopper, where the molten bottle remains in an unsolidified state after atomization, is controlled to be 8% or less.
そのためには、ホッパ内部が周囲雰囲気と密閉性のよい
ように設備を設計する必要がある。金属溶体溜めとホツ
パとの連結部や金属粒回収口に適宜のシール手段を設け
ねばならない。上記8%の上限値は、各種金属に対して
カサ比重を測定すること及び顕微鏡観察により球状化の
程度の把握することにより為された。For this purpose, it is necessary to design the equipment so that the inside of the hopper is well sealed from the surrounding atmosphere. Appropriate sealing means must be provided at the connection between the metal solution reservoir and the hopper and at the metal particle collection port. The above upper limit of 8% was determined by measuring bulk specific gravity of various metals and understanding the degree of spheroidization through microscopic observation.
例えば酸素との親和力の強い亜鉛の場合、次のような結
果が得られた。カサ密度は、金属粒が整粒のものであり
且つ球状化する程大きくなり、金属粒の性状に関してき
わめて明確なめやすを与えるものであり、本発明と関連
しては3.20を超えるのが優秀と判定された。For example, in the case of zinc, which has a strong affinity for oxygen, the following results were obtained. The bulk density increases as the metal grains become more uniform and spherical, and provides a very clear indication of the properties of the metal grains. It was judged to be excellent.
次に、亜鉛漆湯を使用しての実施例並びに比較例を述べ
る。例1
550%に保持された亜鉛港湯に対して贋霧気体として
階霧圧力2k9/地圧力の空気を使用して亜鉛粒の製造
を行った。Next, examples and comparative examples using zinc lacquer bath will be described. Example 1 Zinc grains were produced using air having a floor fog pressure of 2k9/earth pressure as a mist gas for a zinc port hot water maintained at 550%.
空気温度は、常温、150℃、及び30000の三種を
使用した。生成粒のカサ密度を測定した。空気温度
カサ比重室 温
2.8150午0
3.2530030
3.25得られた粒は
100〜200メッシュの範囲のものが多かつた。Three air temperatures were used: room temperature, 150°C, and 30,000°C. The bulk density of the produced grains was measured. air temperature
Umbrella specific gravity room temperature
2.8150pm
3.2530030
3.25 Most of the particles obtained were in the range of 100 to 200 mesh.
例2
例1の空気の代りに窒素ガスを使用し、また回収ホッパ
内雰囲気を酸素濃度1.5%に維持して試験を行った。Example 2 A test was conducted using nitrogen gas instead of the air in Example 1 and maintaining the atmosphere in the recovery hopper at an oxygen concentration of 1.5%.
生成粒のカサ密度は次の通り改善された。窒素温度
カサ比重150q0
4.1030ぴ0
4.12同じく
100〜200メッシュ範囲の粒のものが多くを占めた
。The bulk density of the produced grains was improved as follows. nitrogen temperature
Bulk specific gravity 150q0
4.1030pi0
4.12 Similarly, most of the particles were in the 100-200 mesh range.
実施例に示されるように、曙霧気体の温度を高めそして
好ましくは酸素濃度を低濃度に管理することによって3
.20以上のカサ比重を有する亜鉛粒が生成され、これ
は生成亜鉛粒が整流され且つ球状化されていることを意
味する。As shown in the examples, by increasing the temperature of the dawn mist gas and preferably controlling the oxygen concentration to a low concentration.
.. Zinc particles having a bulk specific gravity of 20 or more are produced, which means that the produced zinc particles are rectified and spheroidized.
また、冷却媒体への滴下法とは対照的に、特にアルカリ
電池に要求される100〜200メッシュ範囲の微細な
ものが高収率で生成される。こうして本発明により生成
された亜鉛粒はカサ比重が従来品より約1.3音程大き
くなるため、アルカリ電池等4・型電池の能力アップに
著しい貢献をなすものである。また、アルカリ電池にお
いては、従来一定の粒径のものが得られず、また細長い
形態のものが大多数であったため、亜鉛線を一定形状の
ものに切断することも行われていたが、本発明により一
定寸の球状のものがそのような面倒な方法に依らず、簡
単な噴霧法によって連続的に製造しうろことも大きなメ
リットである。以上説明した通り、本発明は、従来概念
に反して頃霧気体の温度を高めることによりそして贋霧
化から凝固に至るまでの過程全体を通して酸素濃度上限
の厳密な管理を併用することにより気体頃霧法によって
簡易に且つ効率的に微細な球状金属粒の製造に成功した
ものである。Furthermore, in contrast to the method of dropping into a cooling medium, fine particles in the 100 to 200 mesh range, which are particularly required for alkaline batteries, are produced in high yield. Since the bulk specific gravity of the zinc particles thus produced according to the present invention is about 1.3 pitch higher than that of conventional products, it makes a significant contribution to increasing the capacity of 4-inch batteries such as alkaline batteries. In addition, in the past, alkaline batteries could not be made with a constant particle size, and the majority of batteries were long and thin, so zinc wire was also cut into pieces of a certain shape. Another great advantage of the present invention is that spherical objects of a certain size can be manufactured continuously by a simple spraying method without relying on such troublesome methods. As explained above, the present invention, contrary to the conventional concept, improves the temperature of atomized gas by raising the temperature of the atomized gas, and also by strictly controlling the upper limit of oxygen concentration throughout the entire process from atomization to solidification. We succeeded in producing fine spherical metal particles simply and efficiently using the fog method.
Claims (1)
て亜鉛粒回収ホツパ内を落下せしめて捕集することから
成る亜鉛粒の製造方法において、100〜350℃に昇
温された噴霧気体を使用することにより球状化亜鉛粒を
生成することを特徴とする球状化亜鉛粒製造方法。 2 亜鉛溶体を噴霧気体により細滴に分散せしめ、そし
て亜鉛粒回収ホツパ内を落下せしめて捕集することから
成る亜鉛粒の製造方法において、100〜350℃に昇
温された噴霧気体を使用すると共に、噴霧気体中の酸素
濃度及び亜鉛粒回収ホツパ内雰囲気の酸素濃度を8%以
下とすることにより球状化亜鉛粒を生成することを特徴
とする球状化亜鉛粒製造方法。[Scope of Claims] 1. A method for producing zinc grains, which comprises dispersing a zinc solution into fine droplets using atomized gas, allowing them to fall through a zinc grain collection hopper and collecting them, wherein the zinc solution is heated to 100 to 350°C. A method for producing spheroidized zinc particles, characterized in that spheroidized zinc particles are produced by using atomized gas. 2. In a method for producing zinc grains, which consists of dispersing zinc solution into fine droplets with atomized gas, and allowing the droplets to fall and be collected in a zinc grain collection hopper, the atomized gas heated to a temperature of 100 to 350°C is used. Also, a method for producing spheroidized zinc particles, characterized in that spheroidized zinc particles are produced by controlling the oxygen concentration in the spray gas and the oxygen concentration in the atmosphere in the zinc particle recovery hopper to 8% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57100788A JPS609082B2 (en) | 1982-06-14 | 1982-06-14 | Spheroidized zinc grain manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57100788A JPS609082B2 (en) | 1982-06-14 | 1982-06-14 | Spheroidized zinc grain manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58217608A JPS58217608A (en) | 1983-12-17 |
JPS609082B2 true JPS609082B2 (en) | 1985-03-07 |
Family
ID=14283179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57100788A Expired JPS609082B2 (en) | 1982-06-14 | 1982-06-14 | Spheroidized zinc grain manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS609082B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2510524B2 (en) * | 1986-08-07 | 1996-06-26 | 田中電子工業株式会社 | Method for manufacturing solder powder |
WO2000048260A1 (en) * | 1999-02-09 | 2000-08-17 | N.V. Union Miniere S.A. | Centrifugally atomized zinc alloy powder for alkaline batteries |
JP2007524190A (en) | 2003-06-17 | 2007-08-23 | ザ ジレット カンパニー | Battery anode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4998758A (en) * | 1973-01-05 | 1974-09-18 |
-
1982
- 1982-06-14 JP JP57100788A patent/JPS609082B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4998758A (en) * | 1973-01-05 | 1974-09-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS58217608A (en) | 1983-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3407057A (en) | Molybdenum powder for use in spray coating | |
CN102161098A (en) | Method for preparing low-oxygen content superfine pre-alloyed powder through ultrahigh pressure water and gas combined atomization | |
CN113976876B (en) | Preparation method of hollow metal ball | |
CN105057688A (en) | Method for producing superfine lead-free solder powder | |
JP2004183049A (en) | Method for producing fine metal powder by gas atomization method and apparatus for producing fine metal powder | |
US4606869A (en) | Method of making air atomized spherical zinc powder | |
US5024695A (en) | Fine hollow particles of metals and metal alloys and their production | |
Uslan et al. | Effects of variables on size and characteristics of gas atomised aluminium powders | |
CN109676146A (en) | Metal alloy powders preparation method | |
JPS609082B2 (en) | Spheroidized zinc grain manufacturing method | |
US3063099A (en) | Method for producing metal spheres | |
CN107983374B (en) | Method for preparing high-activity spherical cuprous chloride catalyst by adopting melting atomization system | |
CN105817632A (en) | Preparation device and method for flaky powder | |
WO2021129704A1 (en) | Aluminum alloy powder that is capable of blooming, preparation method therefor, and use thereof | |
Özbilen et al. | Influence of superheat on particle shape and size of gas atomised copper powders | |
CN115121800B (en) | Preparation method of AlTiZr-based multi-principal alloy powder with combustion micro-explosion characteristics | |
JPH11323411A (en) | Low melting point metal powder and its production | |
JP2510524B2 (en) | Method for manufacturing solder powder | |
JPS609081B2 (en) | Manufacturing method of spheroidized subgrain | |
JPH11151434A (en) | Wet granulation method and apparatus | |
JP2022039952A5 (en) | ||
JP4336783B2 (en) | Zinc alloy powder for alkaline batteries and method for producing the same | |
CN109676147A (en) | Metal alloy powders preparation facilities | |
JPH08325603A (en) | Low-melting-point metal grain, its production and producing method | |
CN118635510A (en) | A method for preparing iridium and rhodium ultrafine beads |