[go: up one dir, main page]

JPS6089979A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6089979A
JPS6089979A JP58198644A JP19864483A JPS6089979A JP S6089979 A JPS6089979 A JP S6089979A JP 58198644 A JP58198644 A JP 58198644A JP 19864483 A JP19864483 A JP 19864483A JP S6089979 A JPS6089979 A JP S6089979A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
etching
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58198644A
Other languages
Japanese (ja)
Inventor
Takashi Mimura
高志 三村
Shigeru Kuroda
黒田 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58198644A priority Critical patent/JPS6089979A/en
Publication of JPS6089979A publication Critical patent/JPS6089979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/161Source or drain regions of field-effect devices of FETs having Schottky gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • H10D62/8161Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
    • H10D62/8162Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
    • H10D62/8164Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation comprising only semiconductor materials 

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置、特に電界効果トランジスタ素子の
ゲート閾値電圧等の均一性と再現性が優れ、かつ高い生
産性を備える化合物半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to a compound semiconductor device which has excellent uniformity and reproducibility of gate threshold voltage of a field effect transistor element, and has high productivity.

(b) 技術の背景 半導体装置の動作速度の向上、消費電力の低減などを目
的として、キャリアの移動度がシリコン(Si)より遥
に大きい砒化ガリウム(GaAS)などの化合物半導体
を用いるトランジスタが多数提案されている。化合物半
導体を用いるトランジスタとしては、電界効果トランジ
スタ(以下FETと略称する)がその製造工程がバイポ
ーラ−トランジスタより簡単であるなどの理由によって
現在主流をなしており、特にショットキーバリア形nT
が多く行なわれている。
(b) Background of the technology In order to improve the operating speed of semiconductor devices and reduce power consumption, many transistors use compound semiconductors such as gallium arsenide (GaAS), which has a much higher carrier mobility than silicon (Si). Proposed. Field-effect transistors (hereinafter abbreviated as FETs) are currently the mainstream transistors that use compound semiconductors, as their manufacturing process is simpler than bipolar transistors.
is being done a lot.

従来の構造の8皿もしくはGaAS等の半導体装置にお
いては、キャリアは不純物イオノが存在している半導体
空間内を移動する。この移動に際し、てギヤリアは格子
振動および不純物イオンによって散乱を受けるが、格子
振動による散乱の確率を小さくするためlこ温度を低下
させると不純物イオンによる散乱の確率が大きくなり、
キャリアの移動度はこれによって制限される。この不純
物散乱効果を排除するために、不純物が添加される領域
とキャリアが移動する領域とをヘテロ接合界面によって
空間的に分離して、特に低温におけるキャリアの移動度
を増大せしめたヘテロ接合形電界効果トランジスタ(以
下へテロ接合形FETと略称する)によって一層の高速
化が実現されている。
In semiconductor devices of conventional structure such as 8-dish or GaAS, carriers move within the semiconductor space where impurity ions are present. During this movement, the gear is subject to scattering by lattice vibrations and impurity ions, but if the temperature is lowered to reduce the probability of scattering due to lattice vibrations, the probability of scattering by impurity ions increases.
Carrier mobility is thereby limited. In order to eliminate this impurity scattering effect, the region where impurities are added and the region where carriers move are spatially separated by a heterojunction interface, and the heterojunction electric field increases the mobility of carriers, especially at low temperatures. Even higher speeds have been realized by effect transistors (hereinafter abbreviated as heterojunction FETs).

(C) 従来技術と問題点 ヘテロ接合形FETの従来の構造の1例を第1図に示す
、1半絶縁性GaAS基板1上に、ノンドープのGaA
s層2と、これより電子親和力が小さくドナー不純物を
含・′、n型の砒化アルミニウムガリウム(AtGaA
s)層3と、n型GaAS層4とが設けられて、n型G
aAS層4を、必要ならばn型AtGaAS層3の1部
をも2選択的に除去してn型AtGaAS層3に接して
ゲート電極7が設けられ、またn型GaAS層4上にソ
ース電極8及びドレイン電極9が設けられているj n
型AtGaAS層3 ([子供給層という)からノンド
ーフΦGaAS層3(チャネル層きいう)へ遷移した電
子lこよって両層のへテロ接合界面近傍に生成される2
次元電子ガス6がチャネルとして機能し、その電子濃度
をゲート電極7に印加する電圧によって制御することに
よって、ソース電極8.−!ニドレイン電極9との間の
インピーダンスが制御される。
(C) Prior art and problems An example of the conventional structure of a heterojunction FET is shown in FIG.
s layer 2 and n-type aluminum gallium arsenide (AtGaA), which has a smaller electron affinity and contains donor impurities.
s) A layer 3 and an n-type GaAS layer 4 are provided, and an n-type GaAS layer 4 is provided.
The aAS layer 4 and, if necessary, a part of the n-type AtGaAS layer 3 are selectively removed to provide a gate electrode 7 in contact with the n-type AtGaAS layer 3, and a source electrode on the n-type GaAS layer 4. 8 and a drain electrode 9 are provided.
Electrons transferred from the type AtGaAS layer 3 (referred to as the child supply layer) to the non-dorfed ΦGaAS layer 3 (referred to as the channel layer) are thus generated near the heterojunction interface between both layers.
The dimensional electron gas 6 functions as a channel, and by controlling its electron concentration by the voltage applied to the gate electrode 7, the source electrode 8. -! The impedance between the NiDrain electrode 9 and the NiDrain electrode 9 is controlled.

以上説明した如き構造を有するペテロ接合形冗Tのノー
ス−ドレイン間電流の飽和値Idss、ゲート闇値電圧
ythなどの基本的な特性は、ゲート電極7とGaAS
チャネル層2との間Iこ介在する半導体層の厚さ及び不
純物濃度によって制御することができる。従来この制御
を実施する手段としては、n型A4GaAs層3の厚さ
を選択的にエツチングするリセス構造が多く行なわれτ
いる。
The basic characteristics such as the saturation value Idss of the north-drain current and the gate dark voltage yth of the Peter junction type redundant T having the structure as explained above are as follows.
It can be controlled by the thickness and impurity concentration of the semiconductor layer interposed between it and the channel layer 2. Conventionally, as a means for implementing this control, a recess structure in which the thickness of the n-type A4GaAs layer 3 is selectively etched is often used.
There is.

先に述べたリセス構造を形成する手段として。As a means of forming the recessed structure mentioned earlier.

従来多くはウェットエツチング方法か行なわれでいる。Conventionally, wet etching has been the most commonly used method.

すなわちリソグラフィ法によってレジストマスクを設は
エツチング液の組成、温度及び彼処3− 理試料の表面の状態等に最大の注意力を集中してエツチ
ング量を制御し、エツチング槽外に取出して行なうソー
ス−ドレイン電極間の電流測定を多数回挿入してエツチ
ング終止点を決定している。
In other words, when a resist mask is set using the lithography method, the amount of etching is controlled by concentrating maximum attention on the composition, temperature, and surface condition of the etching solution, and the source is taken out of the etching bath. The etching end point is determined by measuring the current between the drain electrodes many times.

しかしながらこの様なウェットエツチング方法にょろり
セス形成はその作業が煩雑であるのみならず、エツチン
グ量のばらつきが大きく再現性に問題がある。更にウェ
ットエツチング方法では通常はエツチング方向の選択性
が乏しく、サイドエツチングが大きく進行してパターン
精度が低下する。
However, forming a wet etching process using such a wet etching method is not only complicated, but also involves large variations in the amount of etching, resulting in problems in reproducibility. Furthermore, the wet etching method usually has poor selectivity in the etching direction, and side etching progresses significantly, reducing pattern accuracy.

パターン精度を向上しかつ工程の合理化に適するエツチ
ング方法として、半導体製造工程全般lこおいてドライ
エツチング方法への転換が進められている。ドライエツ
チング方法においてはエツチング室内の雰囲気を例えは
ガス分析2発光分析或いは質量分析などの手段でモニタ
ーすることが既に行なわれているが、先に例示したAl
GaAs層のエツチング終止位置選択など一つの半導体
層の厚さの制御には適しない。従ってドライエツチング
方法においてもソース−ドレイン間の電流測定−4= を実施することが必要となるが、そのために被処理試料
のエツチング室外への取出しを繰返すならば作業時間の
損失が甚だ大きい。
As an etching method suitable for improving pattern precision and rationalizing the process, conversion to dry etching is being made in all semiconductor manufacturing processes. In the dry etching method, the atmosphere inside the etching chamber has already been monitored by means such as gas analysis, emission spectrometry, or mass spectrometry.
This method is not suitable for controlling the thickness of a single semiconductor layer, such as selecting the etching end position of a GaAs layer. Therefore, even in the dry etching method, it is necessary to measure the current between the source and the drain -4=, but if the sample to be processed is repeatedly taken out of the etching chamber for this purpose, the loss of working time is enormous.

更に先に説明したヘテロ接合形FETを素子とする集積
回路装置においては、多くはエンノ・ンスメントモード
とディプリーションモードとの素子が混用され、更に同
一モードであってもゲート閾値電圧ythの異なる素子
を必要とする場合がある。この様に同一半導体基体にゲ
ート閾値電圧ythが異なるヘテロ接合形FETを混在
させる場合には、先に述べた従来の製造方法の煩雑さは
ますます顕著となって、工業的実施は極めて困難である
Furthermore, in integrated circuit devices that use the heterojunction FET described above as an element, in many cases, elements in the enforcement mode and depletion mode are used together, and even in the same mode, the gate threshold voltage yth is different. Different elements may be required. In this way, when heterojunction FETs with different gate threshold voltages yth are mixed on the same semiconductor substrate, the complexity of the conventional manufacturing method described above becomes even more pronounced, making it extremely difficult to implement it industrially. be.

fd) 発明の目的 本発明は以上説明した如き状況に対処して、ゲート閾値
電圧等が相互に異なって設定される電界効果トランジス
タ素子を含む半導体装置を高精度で再現性良く実現する
ことが可能となる構造を提供することを目的とする。
fd) Purpose of the Invention The present invention copes with the above-described situation and makes it possible to realize a semiconductor device including field effect transistor elements in which gate threshold voltages and the like are set to be different from each other with high precision and good reproducibility. The purpose is to provide a structure that

(e) 発明の構成 本発明の前記目的は、電界効果トランジスタのゲートチ
ャネルを形成する半導体層上に、相互に共通しない元素
を少なくとも一方に含む2種の化合物半導体層が交互に
積層され、核半導体積層構造が選択的に除去された面上
にケート電極が設けられてなる半導体装置により達成さ
れる。
(e) Structure of the Invention The object of the present invention is to alternately stack two types of compound semiconductor layers containing at least one element that is not common to each other on a semiconductor layer forming a gate channel of a field effect transistor. This is achieved by a semiconductor device in which a gate electrode is provided on a surface from which a semiconductor stacked structure has been selectively removed.

また該半導体装置は、電界効果トンンジメタのゲートチ
ャネルを形成する半導体層上に、相互に共通しない元素
を少なくとも一方に含む2種の化合物半導体層を交互に
積層し、ドライエツチング方法によって前記半導体積層
構造を選択的にエツチングし、かつ該エツチングにより
生成される気体中の前記共通しない元素を検出して前1
己エツチングを終止し、該エツチング終止面上にゲート
電極を配設する製造方法によって製造することができる
。特に前記2種の各化合物半導体層を所要の誤差以内に
薄くすれば、前記共通しない元素の前記ガス中への出現
回数によって、前記エツチングの終止を極めて容易に制
御することができる。
Further, in the semiconductor device, two types of compound semiconductor layers containing at least one element that is not common to each other are alternately laminated on the semiconductor layer forming the gate channel of the field effect tunnel, and the semiconductor laminated structure is etched by a dry etching method. selectively etching and detecting the non-common elements in the gas generated by the etching.
It can be manufactured by a manufacturing method in which self-etching is terminated and a gate electrode is disposed on the etched surface. In particular, if each of the two types of compound semiconductor layers is thinned within a required tolerance, the termination of the etching can be extremely easily controlled by the number of times the non-common elements appear in the gas.

(f+ 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f+ Embodiments of the Invention The present invention will be specifically described below using embodiments with reference to the drawings.

第2図(al乃至(C)はへテロ接合形I” E Tに
かかる本発明の実施例の主要製造工程における状態を示
す工程順断面図である。
FIGS. 2A to 2C are step-by-step cross-sectional views showing states in the main manufacturing steps of the embodiment of the present invention relating to the heterojunction type I''ET.

第2図(a)参照 半絶縁性GaAS基板ll上に例えば分子線エピタキシ
ャル成長方法によって、ノンドープのQaAs層12全
12例えば300(nm)程度に、ドナー不純物として
例えばシリコン(SL)を2 X 10”(、”’ l
程度に含むn型At0.3Ga0.7AS層13を厚さ
例えば30(nm〕 程度に成長する。更に連続して例
えばSlを2X10 (譚 〕 程度に含むn型QaA
s層14とn型AzO,3GaO,7As層15とを交
互に積層して、各層の厚さを例えばそれぞれl(nm)
程度に成長する。なお本実施例においては、n型GaA
S層14を10層、 n 獄tO3GaO1,s層15
を9層設けている。
Refer to FIG. 2(a) On a semi-insulating GaAS substrate 11, for example, a non-doped QaAs layer 12 is grown to a total thickness of about 300 (nm) by, for example, a molecular beam epitaxial growth method, and silicon (SL), for example, is added as a donor impurity to 2×10”. (,”' l
An n-type At0.3Ga0.7AS layer 13 is grown to a thickness of, for example, about 30 (nm).N-type QaA layer 13 containing, for example, Sl to a thickness of about 2×10 (tan) is grown.
The s-layer 14 and the n-type AzO, 3GaO, 7As layer 15 are alternately stacked, and the thickness of each layer is set to 1 (nm), for example.
grow to a certain extent. Note that in this example, n-type GaA
10 layers of S layer 14, n layer tO3GaO1, s layer 15
There are nine layers.

前記n型At0.3Ga O,7As層13は電子供給
層であるがその不純物濃度と厚さとは、この面上にゲー
ト電極が設けられたときlこゲート閾値電圧の意図する
上限が得られる様に選択することが最も効果的である。
The n-type At0.3GaO,7As layer 13 is an electron supply layer, and its impurity concentration and thickness are such that when a gate electrode is provided on this surface, the intended upper limit of the gate threshold voltage can be obtained. It is most effective to select

またn型GaAS層14とn型At0.3Ga 0.7
As層15との不純物濃度、各層の厚さ及び積層厚さは
ゲート閾値電圧の意図する値の範囲及び許容されるばら
つきの幅に関係して選択されるっ各層の厚さは単原子層
から例えば数10(nm)程度まで。
In addition, the n-type GaAS layer 14 and the n-type At0.3Ga0.7
The impurity concentration with the As layer 15, the thickness of each layer, and the lamination thickness are selected in relation to the intended value range of the gate threshold voltage and the width of allowable variation.The thickness of each layer ranges from a monoatomic layer to a monoatomic layer. For example, up to several tens (nm).

不純物濃度はノンドープから例えば2xlO”(crn
−”)程度まで選択することができる。
The impurity concentration ranges from non-doped to, for example, 2xlO” (crn
−”) can be selected.

第2図(b)及び第3図参照 ゲート領域にリセスを形成する。本実施例においてはア
ルゴン(Ar )イオンビームによるスパッタリングで
エツチングを行なっているが半導体層に損傷を与えない
ためにイオンビームの加速電圧を100(V)l程度と
している。このエツチングによって生成される気体を例
えばSIMS(2次イオン質量分析)法によって分析し
て、これに含まれるアルミニウム(At)の量の時間的
変化を監視する。klの量は第3図に例示する如く変化
し、これによってエツチング深さを精密に知ることがで
きる。例えば第3図に示す例はエツチング深さが17(
nm)である。この□様にエツチング深さ、従って残存
する半導体層の厚さが正確に把握されるために、エツチ
ングを最適位置で終止することが容易に実現する。
Referring to FIGS. 2(b) and 3, a recess is formed in the gate region. In this embodiment, etching is performed by sputtering with an argon (Ar) ion beam, but the acceleration voltage of the ion beam is set at about 100 (V) l to prevent damage to the semiconductor layer. The gas generated by this etching is analyzed, for example, by SIMS (secondary ion mass spectrometry) to monitor temporal changes in the amount of aluminum (At) contained therein. The amount of kl changes as shown in FIG. 3, and thereby the etching depth can be determined precisely. For example, in the example shown in Fig. 3, the etching depth is 17 (
nm). Since the etching depth, and thus the thickness of the remaining semiconductor layer, can be accurately grasped in this way, etching can be easily stopped at the optimum position.

なおエツチング方法としては2選択化学的ドライエツチ
ング法などを適用することも可能でありまた監視方法と
してオージェ電子分光法などを適用することも可能であ
る。
Note that as an etching method, it is also possible to apply a two-selective chemical dry etching method, and as a monitoring method, it is also possible to apply Auger electron spectroscopy.

第2図(e)参照 ソース電極18.ドレイン電極19及びゲート電極17
はそれぞれ従来技術によって形成することができる。ソ
ース電極18及びドレイン電極19も本実施例の如くリ
セス形成後に形成してもよい。
FIG. 2(e) Reference source electrode 18. Drain electrode 19 and gate electrode 17
can each be formed by conventional techniques. The source electrode 18 and the drain electrode 19 may also be formed after the recess is formed as in this embodiment.

直径約5〔備〕のウェハを用いた本実施例において、ゲ
ート閾値電圧Vth=0.IVの標準値に対する標準偏
差σylh=5(mV)が得られている。これは同等の
条件の従来例における標準偏差σV t h =20乃
至30 (II]VIに比較して大きく改善された値で
ある。
In this example using a wafer with a diameter of about 5 mm, the gate threshold voltage Vth=0. A standard deviation σylh=5 (mV) with respect to the standard value of IV is obtained. This value is greatly improved compared to the standard deviation σV t h =20 to 30 (II) VI in the conventional example under the same conditions.

以上の説明はAtGaAs/GaAs系へテロ接合形F
ETを対象としているが、不純物の空間的分離を行なわ
ない従来構造の半導体装置についても同様に適用するこ
とができ、また化合物半導体材料が異なる半導体装置に
ついても2例えば砒化インジウム ガリウム/インジウ
ム燐(■nGaAs/InP )系半導体装置について
砒素(As)を検出することなどによって2本発明を適
用することが可能である。
The above explanation is based on AtGaAs/GaAs heterozygous F.
Although the target is ET, it can be similarly applied to semiconductor devices with conventional structures that do not spatially separate impurities, and can also be applied to semiconductor devices using different compound semiconductor materials. The present invention can be applied by detecting arsenic (As) in nGaAs/InP) based semiconductor devices.

(g) 発明の詳細 な説明した如く本発明によれば、電界効果トランジスタ
素子を含む化合物半導体装置を、ゲート閾値電圧等の特
性のばらつきが少ない優れた再現性と生産性とをもって
提供することが可能となり、超高速、大規模の情報処理
等を促進する効果が得られる。
(g) As described in detail, according to the present invention, a compound semiconductor device including a field effect transistor element can be provided with excellent reproducibility and productivity with little variation in characteristics such as gate threshold voltage. This makes it possible to achieve the effect of promoting ultra-high-speed, large-scale information processing.

【図面の簡単な説明】 第1図はへテロ接合形FETの従来例を示す断面図、第
2図(a)乃至fclは本発明の実施例の工程順断面図
、第3図はドライエツチング中のモニターの例を示す図
である。 図において、11は半絶縁性GaAS基板、12はノン
ドーノ゛のGaAs層、13はn型AtGaAs層、1
4はn型QaAs層、15はn型A tQ a A 8
層16は2次元電子ガス、17はゲート電極、18はソ
ース電極、19はドレイン電極を示す。 第 1 図 亮 ? 図 二σ) −リ
[Brief Description of the Drawings] Fig. 1 is a sectional view showing a conventional example of a heterojunction FET, Fig. 2(a) to fcl are sectional views in order of steps of an embodiment of the present invention, and Fig. 3 is a dry etching It is a figure which shows the example of the monitor inside. In the figure, 11 is a semi-insulating GaAS substrate, 12 is a non-doped GaAs layer, 13 is an n-type AtGaAs layer, 1
4 is an n-type QaAs layer, 15 is an n-type A tQ a A 8
Layer 16 is a two-dimensional electron gas, 17 is a gate electrode, 18 is a source electrode, and 19 is a drain electrode. Figure 1 Ryo? Figure 2 σ) −ri

Claims (2)

【特許請求の範囲】[Claims] (1)電界効果トランジスタのゲートチャネルを形成す
る半導体層上に、相互に共通しない元素を少なくとも一
方に含む2種の化合物半導体層が交互に積層され、該半
導体積層構造が選択的に除去された面上にゲート電極が
設けられてなることを特徴とする半導体装置。
(1) Two types of compound semiconductor layers containing at least one element that is not common to each other are alternately stacked on a semiconductor layer forming a gate channel of a field effect transistor, and the semiconductor stack structure is selectively removed. A semiconductor device characterized in that a gate electrode is provided on a surface.
(2)前記ゲートチャネルを形成する半導体層が。 第1の半導体層と、該第1の半導体層より電子親和力が
小であって該第1の半導体層とへテロ接合を形成しかつ
ドナー不純物を含む第2の半導体層とによって構成され
、該第2の半導体層から遷移する電子によって前記第1
の半導体層の前記へテロ接合界面近傍fこ形成される2
次元電子ガスがゲートチャネルとして機能することを特
徴とする特許請求の範囲第1項記載の半導体装置。
(2) a semiconductor layer forming the gate channel; It is composed of a first semiconductor layer and a second semiconductor layer that has a smaller electron affinity than the first semiconductor layer, forms a heterojunction with the first semiconductor layer, and contains donor impurities, and Electrons transitioning from the second semiconductor layer cause the first
2 is formed near the heterojunction interface of the semiconductor layer of
2. The semiconductor device according to claim 1, wherein the dimensional electron gas functions as a gate channel.
JP58198644A 1983-10-24 1983-10-24 Semiconductor device Pending JPS6089979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198644A JPS6089979A (en) 1983-10-24 1983-10-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198644A JPS6089979A (en) 1983-10-24 1983-10-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6089979A true JPS6089979A (en) 1985-05-20

Family

ID=16394638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198644A Pending JPS6089979A (en) 1983-10-24 1983-10-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6089979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164477A (en) * 1986-12-19 1988-07-07 アメリカン テレフォン アンド テレグラフ カムパニー Manufacture of field effect transistor with self-aligning gate
US5023674A (en) * 1985-08-20 1991-06-11 Fujitsu Limited Field effect transistor
EP0539693A2 (en) * 1991-10-29 1993-05-05 Rohm Co., Ltd. Compound semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023674A (en) * 1985-08-20 1991-06-11 Fujitsu Limited Field effect transistor
JPS63164477A (en) * 1986-12-19 1988-07-07 アメリカン テレフォン アンド テレグラフ カムパニー Manufacture of field effect transistor with self-aligning gate
EP0539693A2 (en) * 1991-10-29 1993-05-05 Rohm Co., Ltd. Compound semiconductor device
EP0539693A3 (en) * 1991-10-29 1994-02-02 Rohm Co Ltd

Similar Documents

Publication Publication Date Title
US4742379A (en) HEMT with etch-stop
EP0119089B1 (en) Gaas semiconductor device and a method of manufacturing it
EP0064370B1 (en) High electron mobility semiconductor device
EP0175437A1 (en) Production of GaAs enhancement and depletion mode HEMT's
KR930000603B1 (en) Metal semiconductor field effect transistor
JP3376078B2 (en) High electron mobility transistor
JPS6089979A (en) Semiconductor device
US5219772A (en) Method for making field effect devices with ultra-short gates
Fink et al. AlInAs/GalnAs/AlInAs MODFETs fabricated on InP and on GaAs with metamorphic buffer-a comparison
JPH0793428B2 (en) Semiconductor device and manufacturing method thereof
JPS6354228B2 (en)
JPH0212927A (en) Manufacture of mesfet
JPS60251671A (en) Field effect transistor and its manufacturing method
JPS6292327A (en) Semiconductor device and its manufacturing method
JPH05259192A (en) Hetero junction type field effect transistor and manufacture thereof
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JPH03211839A (en) Compound semiconductor device and its manufacturing method
KR890003416B1 (en) Semiconductor device and manufacturing method thereof
JPH03159135A (en) Semiconductor device and its manufacturing method
JP3107681B2 (en) Etching control method for recess structure FET
JPH06275786A (en) Complementary compound semiconductor device and its manufacture
JPH0123955B2 (en)
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPH03179782A (en) field effect transistor
JP3395277B2 (en) Magnetoelectric conversion element