[go: up one dir, main page]

JPS6088306A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS6088306A
JPS6088306A JP19632083A JP19632083A JPS6088306A JP S6088306 A JPS6088306 A JP S6088306A JP 19632083 A JP19632083 A JP 19632083A JP 19632083 A JP19632083 A JP 19632083A JP S6088306 A JPS6088306 A JP S6088306A
Authority
JP
Japan
Prior art keywords
circuit
light
signal
sensor
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19632083A
Other languages
Japanese (ja)
Inventor
Seiichiro Tamai
誠一郎 玉井
Masao Murata
村田 正雄
Keiichi Kobayashi
圭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19632083A priority Critical patent/JPS6088306A/en
Publication of JPS6088306A publication Critical patent/JPS6088306A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform a highly accurate and highly reliable sensing under an environment with a large disturbing noise by employing a received light signal as effective data subject to being below a specified value in the quantity of light received with a photoelectric sensor when a specified modulated light is projected to an object. CONSTITUTION:A modulated light above 10kHz is projected to a welding work 1 from a light source 10 through a projector controlling circuit 9 and mode to form a spot image 11 on a photoelectric sensor (PSD) 13 through a condenser 12. Light current signals X1 and X2 obtained from electrodes at both ends of the sensor 13 are inputted into an arithmetic circuit 17 via an amplification circuit 15 and a band pass filter 16 and a difference signal is divided by a sum signal to determine the image formation position, which is inputted into a signal processing circuit 18. On the other hand, the sum S of outputs X1' and X2' of the circuit 15 is obtained with an addition circuit 19 and is compared with the reference signal S0 from a reference setting circuit 20 with a comparator circuit 21. An image formation position signal detected for the time tS smaller than the value S0 is employed by the circuit 18. Thus, the sensing under the environment with a large disturbing noise can be done at a high accuracy and with a high reliability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加工2組立、検査などの製造工程の自動化のた
めに産業用ロボ1.トに使用する光学センサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to industrial robots 1. for automating manufacturing processes such as processing, assembly, and inspection. The present invention relates to optical sensors used in applications.

従来の光学センサの問題点の一つは、光ノイズの影響を
受け検出精度が低下することである。例えば、アーク溶
接用の光学センサの場合、アーク光ノイズにより、溶接
線や開先形状の検出が困難であった。
One of the problems with conventional optical sensors is that detection accuracy is reduced due to the influence of optical noise. For example, in the case of optical sensors for arc welding, it is difficult to detect weld lines and groove shapes due to arc light noise.

第1図は光学センサによる溶接線検出の従来例を示すも
のである。1は溶接ワーク、2は開先中心線(溶接線)
、3はスリ・ント状の光を投光する投光器、4は前記投
光器3を制御する制御回路、6は溶接ワーク1上に投光
した投光光像、6は前記投光光像6を撮影するITvカ
メラ、7は前記ITVカメラ6の映像信号を2値化し、
投光光像5を抽出するための前処理回路、8はマイクロ
コノピュータなどで構成した画像処理回路で、前処理回
路7の信号から溶接線2の位置を検出する。そして、ア
ーク溶接の自動化の場合、この溶接線2の検出は、溶接
を行いながらリアルタイムに行うことが要求される。従
来のこのような光学センサ(センシング装置)では、ア
ーク光に対し、検出信号のS/Nf:あげるため、検出
位置をアーク発生煮から遠ざけ、複雑な画像処理を行う
必要があった・それ故に、センシング後の熱歪みなどで
、検出データが使用できないことやロボット、などへの
フィードバック制御か複雑化した仄光学センザそのもの
か大きくなり、かつきわめて高価になるなどの問題点が
あり、光学センサの適用を阻害する大きな原因になって
いた。
FIG. 1 shows a conventional example of weld line detection using an optical sensor. 1 is the welding workpiece, 2 is the groove center line (welding line)
, 3 is a light projector that emits a slit-shaped light, 4 is a control circuit that controls the projector 3, 6 is a projected light image projected onto the welding work 1, and 6 is a projecting light image 6 that is projected onto the welding workpiece 1. The ITv camera 7 for photographing binarizes the video signal of the ITV camera 6,
A preprocessing circuit 8 for extracting the projected light image 5 is an image processing circuit composed of a microcomputer or the like, and detects the position of the welding line 2 from the signal of the preprocessing circuit 7. In the case of automation of arc welding, detection of this weld line 2 is required to be performed in real time while welding is being performed. With conventional optical sensors (sensing devices) like this, in order to increase the S/Nf of the detection signal for arc light, it was necessary to move the detection position away from the arc and perform complex image processing. There are problems with optical sensors, such as the inability to use detected data due to thermal distortion after sensing, feedback control for robots, etc., and complex optical sensors themselves, which are large and extremely expensive. This was a major cause of hindering its application.

発明の目的 本発明は、前記従来の欠点を除去するもので、特にアー
ク光などのように外乱光ノイズが大きい環境下での光学
センンングを可能にすることを目的とするものである。
OBJECTS OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks of the prior art, and particularly to enable optical sensing in an environment with large disturbance light noise such as arc light.

発明の構成 この目的を達成するため、本発明は、物体に光を投光し
、その投光光像を光電センサで検出して前記物体の位置
、形状を検知する光学センサにおいて、前記投光光の変
調周波数を10 KHz以上にする投光器制御回路を設
け、前記光電センサの受光光量が予め定めた値以下の場
合の受光信号を有効データとして採用する信号処理回路
を設けたものである。
Structure of the Invention In order to achieve this object, the present invention provides an optical sensor that projects light onto an object and detects the projected light image with a photoelectric sensor to detect the position and shape of the object. A light emitter control circuit is provided to set the modulation frequency of light to 10 KHz or more, and a signal processing circuit is provided to use a light reception signal when the amount of light received by the photoelectric sensor is less than a predetermined value as valid data.

実施例の説明 以下、本発明の実施例につき図面の第2図〜第6図に沿
って説明する。1,2は従来と同様の酸液ワーク、溶接
線、9は半導体レーザなどの投光光源を10 KHz以
上の周波数に変調制御する投光器制御回路、1oは半導
体ンーザなどの光臨とその光をスポット状に絞る光学系
を有する投光器である。ところで、第3図の実線Aはア
ーク溶接のアーク光の周波数分析を行った結果を示す特
性曲線である。これよりアーク光は1o KHz以上の
低周波成分が多いことが判明した。したがって、投光光
として10 KHz以上、例えば第3図の波線Bて示す
ような60 KHzに変調した光を用いると、投光信号
(第3図Ia)とアーク光ノイズ(第3図Ib )との
S/N(−一/Ib)は、犬IJに向上する。これが本
発明で投光光を10 Kl(z以上に変調する理由であ
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 2 to 6 of the drawings. 1 and 2 are the same acid liquid work and welding line as in the past, 9 is a floodlight control circuit that modulates and controls a light source such as a semiconductor laser to a frequency of 10 KHz or higher, and 1o is a light source such as a semiconductor laser and the spot light. This is a floodlight with an optical system that narrows down to a shape. By the way, solid line A in FIG. 3 is a characteristic curve showing the result of frequency analysis of arc light in arc welding. It was found from this that the arc light has many low frequency components of 10 KHz or higher. Therefore, if a light modulated at 10 KHz or higher, for example 60 KHz as shown by the dotted line B in Fig. 3, is used as the emitted light, the light emitted signal (Ia in Fig. 3) and the arc light noise (Ib in Fig. 3) The S/N (-1/Ib) is improved to that of dog IJ. This is the reason why the projected light is modulated to 10 Kl (z or more) in the present invention.

つぎに、溶接ワーク1に投光したスポット光像11を、
集光レンズ12を介して、光電センサ13で検出するよ
うな第2図の一点鎖線で示すセンサヘッド14を構成す
ると、スポット光像11の位置は、光電センサ13上の
スポット光像11の結像位置に対応するので、この結像
位置を検出すれば、センサヘッド14からワーク面上ス
ポット光像11丑での距離をめることができる。またこ
のセンサヘッド14を溶接線2に直角方向にスキャンす
ると、センサヘッド14がらワーク面までの距離パター
ンが得られ、これから溶接線2や開先形状を計測するこ
とは容易である。また光電センサとして、光半導体装置
センサ(PSD・・・。
Next, the spot light image 11 projected onto the welding workpiece 1 is
When the sensor head 14 shown by the dashed line in FIG. Since it corresponds to the image position, by detecting this image formation position, the distance from the sensor head 14 to the spot light image 11 on the work surface can be determined. Furthermore, by scanning this sensor head 14 in a direction perpendicular to the welding line 2, a distance pattern from the sensor head 14 to the work surface is obtained, and it is easy to measure the welding line 2 and the groove shape from this. Also, as a photoelectric sensor, there is a photo semiconductor device sensor (PSD...).

x2)は微弱であるので、これを増l]回路15により
増1フし、電圧信号に変換する。この変換した信号(X
1′、X2′)を変調周波数のバンドパスフィルタ16
に入力し、アーク光成分をカットし、変調信号のみを取
出す。この信号(X1″、X2″)をさらに演算回路1
7に入力し、ここで石”、X2′の和と差をとり、この
差を和で割算して、PSD上でのスポット光像11の結
像位置(X)をめ1、マイクロコンピュータなどで構成
した信号処理回路18に入力する。ところで、アーク光
の投光光と同じ周波数成分は、アーク光強度が強くなる
程、大きくなるので前記S/Nはそ八だけ低下する。
Since x2) is weak, it is amplified by 1 in the amplification circuit 15 and converted into a voltage signal. This converted signal (X
1',
, the arc light component is cut, and only the modulated signal is extracted. This signal (X1″,
7, then take the sum and difference of stone ", X2', divide this difference by the sum, and find the imaging position (X) of the spot light image 11 on the PSD. 1. Incidentally, the same frequency component of the arc light as the projected light increases as the intensity of the arc light increases, so the S/N decreases by eight.

これを防ぐために、本実施例では、第4図に示すように
、センサの受光光量Sが予め定めた値S。
In order to prevent this, in this embodiment, as shown in FIG. 4, the amount of light received by the sensor S is set to a predetermined value S.

よりも小さい期間(1,3)で検出した信号を有効な信
号として採用する。このだめの回路として、例えば第2
図に示すように、加算回路19で、信号X1’lX2’
の和Sをとり、このSと基準値設定回路20で設定した
値S。とを比較回路21に入園に示すように、フィルタ
回路22を増11コ回路16とバンドパスフィルタ16
との間に設け、ある程度アーク光ノイズの低周波成分を
カットした信号(X1LLJ 、 X2′LI)からめ
ることも有効である。寸だ信号処理回路18は比較回路
21の信号にもとついて、演算回路17の信号の選択を
行うとノーもに、この選択した信号をもとにして、セン
サヘッド14から溶接ワーク1tでの距離データに変換
する処理も行う。
A signal detected in a period shorter than (1, 3) is adopted as a valid signal. As a circuit for this failure, for example, the second
As shown in the figure, in the adder circuit 19, the signal X1'lX2'
The sum S is taken, and this S is combined with the value S set by the reference value setting circuit 20. As shown in FIG.
It is also effective to use signals (X1LLJ, X2'LI) that are provided between the arc light noise and the low frequency components of the arc light noise are cut to some extent. The signal processing circuit 18 selects the signal of the arithmetic circuit 17 based on the signal of the comparison circuit 21, and based on this selected signal, the signal processing circuit 18 selects the signal of the welding workpiece 1t from the sensor head 14. It also performs processing to convert it into distance data.

なお、光電センサ13としてPSDを使用した実施例を
説明したが、本発明はこれに限定されるものではなく他
の光学センサへも適用可能である。
Although an example in which a PSD is used as the photoelectric sensor 13 has been described, the present invention is not limited to this and can be applied to other optical sensors.

同様に、投光光の形状についても、これをスポット状に
限定するものではない。
Similarly, the shape of the projected light is not limited to a spot shape.

次に第2図の実施例をアーク溶接の溶接線検出KHzの
半導体レーザと、レーザ光を0.5胴ψのスポットに絞
るコリノートレンズで構成し、受光器は干渉フィルタと
組み合わせた集光レンズとPSDとで構成した。検出処
理回路としては、第2図のブロック図の通りであるが、
具体的には、オペアンプを主体に構成し、特に信号処理
回路18には、8ビツトマイクロコンピユータを用いた
Next, the embodiment shown in Fig. 2 is composed of a KHz semiconductor laser for arc welding weld line detection, a Collinault lens that narrows the laser beam to a spot of 0.5 cylinder ψ, and a light receiver that is a condensing laser combined with an interference filter. It consists of a lens and a PSD. The detection processing circuit is as shown in the block diagram in Figure 2.
Specifically, it is mainly composed of an operational amplifier, and in particular, an 8-bit microcomputer is used for the signal processing circuit 18.

さて、溶接ワーク1として、■開先、ギヤツブ巾1.0
mのものを使用し、センサヘッド14の下の面と溶接ワ
ーク1の面までの距離を120Mに固定し、投光位置後
方dm+qのところでCO2アークをたき、その溶接電
流と検出可能距離dとの関係をめた。ここで、検出可能
距離dとは、演算処理してめた溶接ワーク1とセンサヘ
ッド14間のffi離の変動が±0.6駒以内のアーク
・センシング間の最小距離をいう。この結果を第6図に
示す。
Now, as welding work 1, ■ groove, gear lug width 1.0
m, the distance between the lower surface of the sensor head 14 and the surface of the welding workpiece 1 is fixed at 120M, a CO2 arc is lit at dm+q behind the light projection position, and the welding current and detectable distance d are calculated. We had a relationship. Here, the detectable distance d refers to the minimum arc-sensing distance within which the ffi distance between the welding workpiece 1 and the sensor head 14 determined by calculation processing varies within ±0.6 frames. The results are shown in FIG.

これより、変調周波数I KHz でセンサデータのサ
ンプリング制限制御を行わない場合(P)に比し、本実
施例の光学センサの方(曲線l)か耐アーク性に優れて
いることがわかる。
From this, it can be seen that the optical sensor of the present example (curve 1) has superior arc resistance compared to the case (P) in which sampling restriction control of sensor data is not performed at the modulation frequency I KHz.

つぎに、本実施例のセンサヘッド14を溶接線2に直角
にスキャン(パルスモータを用い、スキそれを他のマイ
クロコンピュータで処理して開先中心位置やギヤツブ巾
を開側したところ、アーク光条件として、d = 20
 mn、溶接電流20OAの場合、それぞれ±0.3+
++mの検出精度を得ることかできた。
Next, the sensor head 14 of this embodiment was scanned perpendicularly to the weld line 2 (using a pulse motor, and the gap was processed by another microcomputer to determine the center position of the groove and the gear width on the open side, and the arc light As a condition, d = 20
mn, in the case of welding current 20OA, each ±0.3+
We were able to obtain a detection accuracy of ++m.

発明の効果 以上のように本発明によれば、非接触で物体の位置や形
状の検知が可能で、特にアーク溶接などのように外乱光
ノイズの影響が大きい環境下でのセンシングに特に有効
であり、従来から困難祝されていたアーク光近傍の溶接
線や開先形状のセンシングが高精度、高信頼、コンパク
トかつ低コストで可能となり、アーク溶接の大巾な自動
化、ロボット化が図れることや他の光ノイズ環境下での
視覚センシング分野への展開が図れる優れた効果を奏す
るものである・
Effects of the Invention As described above, according to the present invention, it is possible to detect the position and shape of an object without contact, and it is particularly effective for sensing in environments where the influence of ambient light noise is large, such as in arc welding. This has made it possible to sense the weld line and groove shape near the arc light with high precision, high reliability, compactness, and low cost, which has been difficult to achieve in the past, and it is possible to achieve extensive automation and robotization of arc welding. It has excellent effects that can be applied to the field of visual sensing under other optical noise environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶接線検出用の光学センサの説明図、第
2図は本発明の実施例における光学センサの説明図、第
3図はアーク光の周波数分析結果を示す特性図、第4図
は同光学センサにおけるデータサノプル期間の説明図、
第6図は同光学センサの池の実施例を示す一811回路
図、第6図は同光学センサの耐アーク光特性図である。 ア ト・・・痕培今−クー 2・・・・溶接線、9・・・投
光器制御回路、10・・・・投光器、11・・・ ・ス
ポット光像、12 ・・集光レンズ、13−・−巻電セ
ンサ、14 ・・センサヘッド、15・・・・・・増1
〕回路、16・・ バンドパスフィルタ、17・・・・
演算回路、1sイルク回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第3図 11M179.(kH2J 第 45!I 第 5 図 /ゾ 第6図 Aし琲習浦
Fig. 1 is an explanatory diagram of a conventional optical sensor for detecting welding lines, Fig. 2 is an explanatory diagram of an optical sensor in an embodiment of the present invention, Fig. 3 is a characteristic diagram showing the results of frequency analysis of arc light, and Fig. 4 The figure is an explanatory diagram of the data sampling period for the same optical sensor.
FIG. 6 is a circuit diagram showing an embodiment of the optical sensor, and FIG. 6 is a diagram showing arc light resistance characteristics of the optical sensor. 2. Welding line, 9. Floodlight control circuit, 10. Floodlight, 11. Spot light image, 12. Condensing lens, 13- - Winding sensor, 14...Sensor head, 15...Additional 1
] Circuit, 16... Bandpass filter, 17...
Arithmetic circuit, 1s circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 3 11M179. (kH2J No. 45! I No. 5 / Zo No. 6 A

Claims (2)

【特許請求の範囲】[Claims] (1)物体に光を投光し、その投光光像を光電センサで
検出して前記物体の位置、形状を検知する光学センサに
おいて、前記投光光の変調周波数を10 lo(z以上
にする投光器制御回路を設け、前記光電センサの受光光
量が予め定めた値以下の場合の受光信号を有効データと
して採用する信号処理回路を設けた光学センサ。
(1) In an optical sensor that projects light onto an object and detects the projected light image with a photoelectric sensor to detect the position and shape of the object, the modulation frequency of the projected light is set to 10 lo (z or more). 1. An optical sensor comprising: a light emitter control circuit for controlling the optical sensor; and a signal processing circuit for employing a light reception signal when the amount of light received by the photoelectric sensor is less than or equal to a predetermined value as valid data.
(2)投光光としてレーザ光を、光電センサとして光半
導体装置センサをそれぞれ用いた特許請求の範囲第(1
)項記載の光学センサ。
(2) Claim No. 1 (1) in which a laser beam is used as the projected light and an optical semiconductor device sensor is used as the photoelectric sensor.
Optical sensor described in ).
JP19632083A 1983-10-20 1983-10-20 Optical sensor Pending JPS6088306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19632083A JPS6088306A (en) 1983-10-20 1983-10-20 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19632083A JPS6088306A (en) 1983-10-20 1983-10-20 Optical sensor

Publications (1)

Publication Number Publication Date
JPS6088306A true JPS6088306A (en) 1985-05-18

Family

ID=16355851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19632083A Pending JPS6088306A (en) 1983-10-20 1983-10-20 Optical sensor

Country Status (1)

Country Link
JP (1) JPS6088306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168006A (en) * 1986-01-20 1987-07-24 Nachi Fujikoshi Corp Shape recognizing device
JPS62213945A (en) * 1986-03-12 1987-09-19 Toshiba Mach Co Ltd Thermal displacement correcting device for machine tool
JP2011247872A (en) * 2010-04-27 2011-12-08 Denso Corp Distance measurement device, distance measurement method, and distance measurement program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168006A (en) * 1986-01-20 1987-07-24 Nachi Fujikoshi Corp Shape recognizing device
JPS62213945A (en) * 1986-03-12 1987-09-19 Toshiba Mach Co Ltd Thermal displacement correcting device for machine tool
JP2011247872A (en) * 2010-04-27 2011-12-08 Denso Corp Distance measurement device, distance measurement method, and distance measurement program

Similar Documents

Publication Publication Date Title
JPH10227609A (en) Distance measuring device for outdoor
JPS60189517A (en) Position controller
JPS6088306A (en) Optical sensor
JPH08184431A (en) Distance measuring equipment
JP2502533B2 (en) Welding robot with sensor
JPH05644B2 (en)
JPH10172093A (en) Vehicle detector
JPH07286811A (en) Optical device
JPS614907A (en) Detector for sectional area of welding groove
JPH05164569A (en) Run road detector of traveling vehicle
JPS60220888A (en) Optical sensor
JPS61191905A (en) Beveling position detecting device
JPH0412804B2 (en)
JPS6357150B2 (en)
JP2840146B2 (en) Automatic welding equipment
JPS5928608A (en) Detector for weld line
JPH04295703A (en) Method for detecting position of side edge part of applied film
JPH0117524B2 (en)
JPH0820227B2 (en) Width between work and step detector
JPS62162911A (en) Measuring device
JPH05180618A (en) Position-recognizing method for object
JPS61247910A (en) Distance measuring method
JPH03237311A (en) Inage input device
JPS63256271A (en) Bevel detection device
JPH0465750B2 (en)