JPS6081289A - Electrostatic desalination unit - Google Patents
Electrostatic desalination unitInfo
- Publication number
- JPS6081289A JPS6081289A JP19125583A JP19125583A JPS6081289A JP S6081289 A JPS6081289 A JP S6081289A JP 19125583 A JP19125583 A JP 19125583A JP 19125583 A JP19125583 A JP 19125583A JP S6081289 A JPS6081289 A JP S6081289A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- treated
- electrode
- tank
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrostatic Separation (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、静電気力による分離作用を2−1」用して不
純物(水及び夾雑物)全除去する静電脱塩装置に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic desalination device that completely removes impurities (water and other impurities) by using a separation effect based on electrostatic force.
一般に、天然原油あるいは合成原油中に含まれるナトリ
ウム、カリウム等の塩類を脱塩する場合及び水を脱水す
る場合、あらかじめ水注入して静電気によシ分離してい
る。従来の静電脱塩装置を第1図及び第2図にもとづい
て説明する。Generally, when desalting salts such as sodium and potassium contained in natural crude oil or synthetic crude oil, and when dehydrating water, water is injected in advance and separated by static electricity. A conventional electrostatic desalination apparatus will be explained based on FIGS. 1 and 2.
この装置は、静電脱塩柳1の下部に被処理油導入管2を
取付けて槽内の分配管3に接続し、更に槽内に接地電極
4と高電圧電極5とを配置し、また槽内上部に集油管6
を配置している。In this device, an oil to be treated introduction pipe 2 is attached to the lower part of an electrostatic desalination willow 1 and connected to a distribution pipe 3 in the tank, and a ground electrode 4 and a high voltage electrode 5 are arranged in the tank. Oil collection pipe 6 at the top of the tank
are placed.
なお図中7は変圧器、8は碍子、9は界面計。In the figure, 7 is a transformer, 8 is an insulator, and 9 is an interface meter.
10は排水口、11は絶縁ブッシングである。10 is a drain port, and 11 is an insulating bushing.
この装置では、次のようにして静電脱塩する。This device performs electrostatic desalination as follows.
まず被処理油を熱交換器によシ約70度以上の温度に加
熱し、その後洗浄水を数係混入し、適切な圧力差(約i
kmm )で混合弁を通過させて、油と水を混合する
。次いで水を混入した被処理油を、被処理油導入管2を
経て分配管3から静電脱塩槽1内に均一に尊大する。静
電脱塩槽1では、接地電極4と高電圧電極5との間に高
電圧を印加して、電界を形成している。油中に混入した
微小水滴は、この電界中で相互に合体を繰シ返し、粒径
か大きくなって重力沈降する。更に油中のナトリウム、
カリウムは、油中に混合された微小水滴にとけだして油
から一部分離されており、この微小水滴が、この電界中
で合体を繰シ返し、粒径が大きくなって重力沈降する。First, the oil to be treated is heated to a temperature of approximately 70 degrees or higher using a heat exchanger, and then several parts of cleaning water are mixed in to create an appropriate pressure difference (approximately i
km) through a mixing valve to mix the oil and water. Next, the treated oil mixed with water is uniformly introduced into the electrostatic demineralization tank 1 from the distribution pipe 3 via the treated oil introduction pipe 2. In the electrostatic demineralization tank 1, a high voltage is applied between a ground electrode 4 and a high voltage electrode 5 to form an electric field. The microscopic water droplets mixed in the oil repeatedly coalesce with each other in this electric field, increase in particle size, and settle due to gravity. Furthermore, sodium in oil,
Potassium is dissolved into minute water droplets mixed in the oil and partially separated from the oil, and these minute water droplets coalesce repeatedly in this electric field, increasing in particle size and settling by gravity.
しかしこの装置では、上昇する油と沈降した水滴が接触
して一旦洗浄水中に分離された塩類を再び同伴する。こ
のため被処理油中の塩類濃度が増加し、これを電界中で
再び処理しなければならず、又洗浄水中に油分が混入し
、その再処理が必要になるという欠点を有している。However, in this device, the rising oil and the settled water droplets come into contact and re-entrain the salts that were once separated into the wash water. This increases the concentration of salts in the oil to be treated, which has to be treated again in an electric field, and also has the disadvantage that oil is mixed into the cleaning water, making it necessary to reprocess it.
更に電界中で合体を繰シ返して犬さくなった水滴は、一
定の粒子径まで大きくなってはじめて沈降するため、水
滴の分離時間が相当かかる欠点を有していた。Furthermore, water droplets that have become smaller due to repeated coalescence in an electric field will settle only when they have grown to a certain particle size, which has the disadvantage that it takes a considerable amount of time to separate the water droplets.
本発明は、この欠点全解消すべくなされたもので、その
目的とするところは、静電気力による分離作用を効果的
におこなって、不純物を良好に除去できる静電脱塩装置
を得んとするものである。The present invention has been made to eliminate all of these drawbacks, and its purpose is to provide an electrostatic desalination device that can effectively remove impurities by effectively performing a separation action using electrostatic force. It is something.
すなわち本発明は、静電脱塩槽内に格子高電圧電極と、
この電極と対をなすとい形状の格子接地電極とを傾斜し
て配置し、一対の電極間で凝集する水滴をとい形状の接
地電極内に流下させて、下部から上昇する被処理油の流
れの影響を受けないようにし、更に被処理油については
、従来の静電脱塩装置と同様に両電極間で沈降する水滴
と逆方向に流路を形成して集油管から排出するようにし
たものである。That is, the present invention includes a grid high voltage electrode in an electrostatic demineralization tank,
This electrode and a pair of lattice-shaped ground electrodes are arranged at an angle, and the water droplets that condense between the pair of electrodes are allowed to flow down into the lattice-shaped ground electrode, thereby controlling the flow of oil to be treated rising from the bottom. In addition, the oil to be treated is discharged from the oil collection pipe by forming a flow path in the opposite direction to the water droplets that settle between the two electrodes, similar to conventional electrostatic desalination equipment. It is.
以下本発明を図示する実施例にもとづいて説明する。第
3図は静電脱塩装置の概略横断面図、第4図は同概略縦
断面図、第5図は第4図のM−7線に沿う断面図である
。この静電脱塩装置は、静電脱塩槽1内に下段、上段の
格子高電圧電極21a、21bと、これに対向した柘子
接地電極22a、22bとを配置している。各電極2’
la、21b、22a、22bは、第4図に示すように
中央部を高く両仰1を低くした屋根状に傾斜して配置さ
れ、このうち接地′@、極22a、22bは、とい形状
に形成されている。The present invention will be described below based on illustrated embodiments. FIG. 3 is a schematic cross-sectional view of the electrostatic desalination apparatus, FIG. 4 is a schematic longitudinal cross-sectional view thereof, and FIG. 5 is a cross-sectional view taken along line M-7 in FIG. 4. This electrostatic desalination apparatus has lower and upper lattice high voltage electrodes 21a, 21b arranged in an electrostatic desalination tank 1, and cypress ground electrodes 22a, 22b opposed thereto. Each electrode 2'
As shown in FIG. 4, the poles 1a, 21b, 22a, and 22b are arranged in a sloping roof-like manner with a high central portion and a low elevation 1, and among these, the grounding poles 22a and 22b are trough-shaped. It is formed.
ここで図示する接地電極22a 、22bは、円筒の半
割形状であるが、電場を攪乱するために他の形状として
もよい。また、油の流れを均一化させるか、不均一化さ
せるかによって接地電極22a、22bを破線の位置と
してもよい。Although the ground electrodes 22a and 22b illustrated here have a cylindrical half-shape, they may have other shapes in order to disturb the electric field. Further, the ground electrodes 22a and 22b may be placed at the positions indicated by the broken lines depending on whether the oil flow is made uniform or uneven.
ここで本発明において、高電圧電極及び接地電極は、2
対に限らず処理性能によって1対又は3対以上の対とす
ることができる。またその格子形状はとくに限定しない
が、水滴の最も肥大する単一の高電圧電極の直下に接地
電極があることが必要である。Here, in the present invention, the high voltage electrode and the ground electrode are 2
The number of pairs is not limited to one, and one pair or three or more pairs may be used depending on the processing performance. Although the shape of the grid is not particularly limited, it is necessary that the ground electrode be located directly below the single high-voltage electrode where the water droplets grow the most.
また最下端の接地型@22aと、分離水面との距離は適
当な値で良いが、最下端に配置した一対の高電圧電極2
1aと接地電極22aの間隔により大きくすることが望
ましい。即ち静電脱塩に際し、静電界中に存在している
不純物が誘電分極を起こし、これが移動することによっ
て電流を形成している。このため火花放電のように電荷
が高電圧電極から対向電極である接地電極へ直接移動す
ることは、電荷担体としての不純物の移動を伴わないた
め、無駄な電力となシ好ましくない。火花放電は、例え
ば平等電界においては、印加電圧を両極間距離で除した
火花開始電界強度を閾値としている。このため、通常印
加電圧は、脱塩率を高く維持するために両電極間で火花
放電を発生しない最大の値を用いている。この時、印加
電圧は、被処理油中の水分値で異なるが、通常]、 c
m当り1〜10 kV程度である。In addition, the distance between the ground type @ 22a at the bottom end and the separated water surface may be an appropriate value, but the distance between the pair of high voltage electrodes 2 placed at the bottom end
It is desirable to increase the distance between 1a and the ground electrode 22a. That is, during electrostatic desalination, impurities present in the electrostatic field cause dielectric polarization, which moves to form a current. For this reason, direct movement of charge from the high-voltage electrode to the ground electrode, which is the opposing electrode, as in spark discharge, does not involve the movement of impurities as charge carriers, and is therefore undesirable as it wastes power. In a spark discharge, for example, in a uniform electric field, the threshold value is the spark initiation electric field strength obtained by dividing the applied voltage by the distance between the two poles. For this reason, the applied voltage is normally set to the maximum value that does not cause spark discharge between the two electrodes in order to maintain a high salt removal rate. At this time, the applied voltage varies depending on the moisture content in the oil to be treated, but usually], c
It is about 1 to 10 kV per m.
なお図中第1図のものと同じ部材2機器については同一
番号を付し、その説明を省略する。Note that the same members and devices in the figure as those in FIG. 1 are given the same numbers, and their explanations will be omitted.
しかしてこの装置は被処理油中の不純物を次のようにし
て除去する。However, the lever device removes impurities from the oil to be treated in the following manner.
被処理油を被処理導入管2から導入し、分配管3で分配
する。この被処理油が上昇流となって槽内全通過し、下
段接地電極22a、下段高電圧電極21aによって形成
されている交流電場内に至ると、被処理油中に含まれる
不純物が合体を繰シ返し、大きな粒子となって重力方向
(被処理油の流れと反対の方向)VC降下し、被処理油
から分離して静電脱塩槽1の下部の水層部に達し、排水
口10から抜き出される。The oil to be treated is introduced through the inlet pipe 2 and distributed through the distribution pipe 3. When this oil to be treated becomes an upward flow and passes through the tank and reaches the AC electric field formed by the lower ground electrode 22a and the lower high voltage electrode 21a, the impurities contained in the oil to be treated repeatedly coalesce. Then, they become large particles that fall in the gravity direction (opposite direction to the flow of the oil to be treated), separate from the oil to be treated, reach the water layer at the bottom of the electrostatic demineralization tank 1, and flow through the drain port 10. being extracted.
一方処理油は、上段接地電極22b、上段高電圧電極2
1bによシ形成された交流電場に到シ、下段′i1L場
で除去されなかった不純物がさらに合体を繰シ返し、大
きな粒子となって降下し、被処理油から分離除去され、
接地電極22a。On the other hand, the treated oil is applied to the upper ground electrode 22b and the upper high voltage electrode 2.
Upon reaching the alternating current electric field formed by 1b, the impurities that were not removed in the lower stage 1L field coalesce again and again, becoming large particles that fall, and are separated and removed from the oil to be treated.
Ground electrode 22a.
22b内のとい形状の内に流下し、静電脱塩槽1の内周
部に達し、下部水層部に到シ、上記最下端の電極21a
、22aの下で分離された水とともに排水口10から抜
き出される。22b flows down into the groove shape, reaches the inner circumference of the electrostatic demineralization tank 1, reaches the lower water layer, and the lowermost electrode 21a
, 22a together with the separated water is extracted from the drain 10.
この装置によれば、とい形状の接地電極22a。According to this device, the ground electrode 22a is in the shape of a trough.
22bに肥大した水滴が沈降するので、水滴の沈降距離
が短かく、処理時間を少なくすることができるとともに
、上昇する油と沈降した水滴とが接触せず、一旦洗浄水
に分離した塩類が再び油に同伴されることがない。Since the enlarged water droplets settle in 22b, the settling distance of the water droplets is short and the processing time can be reduced, and the rising oil does not come into contact with the settled water droplets, so that the salts that have been separated into the washing water are reused. Not entrained in oil.
次にこの装置を用いて静電脱塩した具体的実施例につき
説明する。Next, a specific example of electrostatic desalination using this apparatus will be described.
被処理油(温度120℃1M刀粘度7 C8T 。Oil to be treated (temperature 120°C 1M viscosity 7 C8T.
塩分300 ppm )を第3図に示す装置を用いて脱
塩した結果、処理後の油中塩分は、20ppm以下でち
った。As a result of desalting the oil (with a salt content of 300 ppm) using the apparatus shown in Figure 3, the salt content in the oil after treatment was 20 ppm or less.
これに対し第1図に示す従来装置で同じ被処理油を脱塩
した結果、30 ppmであった。On the other hand, when the same treated oil was desalted using the conventional apparatus shown in FIG. 1, the result was 30 ppm.
以上の結果から明らかなように本発明によれば、油中塩
分濃度を著しく減少できる顕著な効果を奏する。As is clear from the above results, the present invention has the remarkable effect of significantly reducing the salt concentration in oil.
第1図は従来の静電脱塩装置の概略縦断面図、第2図は
同横断面図、第3図は本発明の一実施例を示す静電脱塩
装置の概略縦断面図、第4図は同概略横断面図、第5図
は第4図のv−■線に沿う断面図である。
l・・・静電脱塩槽、2・・・被処理油導入管、3・・
・分配管、4・・・接地電極、5・・・高電圧電極、6
・・・集油管、7・・・変圧器、8・・・碍子、9・・
・界面計、10・・・排水口、11・・・絶縁ブッシン
グ、21a。
21b・・・格子高電圧電極、22a、22b・・・格
子接地電極。
出願人徨代理人 弁理士 鈴 江 武 彦第1図
第2図
第3図FIG. 1 is a schematic vertical cross-sectional view of a conventional electrostatic desalination apparatus, FIG. 2 is a cross-sectional view thereof, and FIG. 3 is a schematic longitudinal cross-sectional view of an electrostatic desalination apparatus showing an embodiment of the present invention. 4 is a schematic cross-sectional view of the same, and FIG. 5 is a sectional view taken along the line v-■ in FIG. 4. l... Electrostatic demineralization tank, 2... Treated oil introduction pipe, 3...
・Distribution pipe, 4... Ground electrode, 5... High voltage electrode, 6
...Oil collecting pipe, 7...Transformer, 8...Insulator, 9...
- Interface meter, 10... Drain port, 11... Insulating bushing, 21a. 21b... Grid high voltage electrode, 22a, 22b... Grid ground electrode. Applicant's Attorney Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3
Claims (1)
とい形状の格子接地電極とを傾斜して配置し、これら1
対の電極間で凝集した水滴がとい形状の接地電稜内を流
下するようにしてなる静電脱塩装置。In an electrostatic desalination tank, a grid high-voltage electrode and a grid-shaped ground electrode paired with this electrode are arranged at an angle, and these 1
An electrostatic desalination device in which water droplets condensed between a pair of electrodes flow down a trough-shaped grounding ridge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19125583A JPS6081289A (en) | 1983-10-13 | 1983-10-13 | Electrostatic desalination unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19125583A JPS6081289A (en) | 1983-10-13 | 1983-10-13 | Electrostatic desalination unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6081289A true JPS6081289A (en) | 1985-05-09 |
Family
ID=16271491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19125583A Pending JPS6081289A (en) | 1983-10-13 | 1983-10-13 | Electrostatic desalination unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6081289A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8287710B2 (en) | 2010-08-17 | 2012-10-16 | King Fahd University Of Petroleum And Minerals | System for electrostatic desalination |
CN106423558A (en) * | 2016-12-09 | 2017-02-22 | 河北汉尧环保科技股份有限公司 | Cross power supply coagulation-type ultra-low emission electric dust remover |
-
1983
- 1983-10-13 JP JP19125583A patent/JPS6081289A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8287710B2 (en) | 2010-08-17 | 2012-10-16 | King Fahd University Of Petroleum And Minerals | System for electrostatic desalination |
CN106423558A (en) * | 2016-12-09 | 2017-02-22 | 河北汉尧环保科技股份有限公司 | Cross power supply coagulation-type ultra-low emission electric dust remover |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890002142B1 (en) | Apparatus for separating oilfieid emulsions | |
US4252631A (en) | Electrostatic coalescence system with independent AC and DC hydrophilic electrodes | |
JPS6260927B2 (en) | ||
CN106318442B (en) | A kind of sump oil purification processing unit and purifying treatment method | |
US3649516A (en) | Separator with vessel-length phase separation sections | |
CN107253810A (en) | Oily sludge treatment method | |
US2730195A (en) | Gas cleaning method | |
BR112013002736B1 (en) | water removal method | |
JPS6081289A (en) | Electrostatic desalination unit | |
US4304671A (en) | Apparatus and process for separating emulsions by coalescence | |
GB2050871A (en) | Dehydration and demineralization of diluted bitumen | |
US3117920A (en) | Electrode structure for emulsion treatment | |
US3412003A (en) | Method for removing oil and foreign bodies from water | |
US4371434A (en) | Degasser-dehydrator | |
CN202730080U (en) | Electro-desalting dehydrater | |
US1382037A (en) | Process and apparatus for recovering soluble constituents from furnace-fumes | |
CN106973849A (en) | A kind of aquaculture water treatment facilities | |
JP2952664B1 (en) | Method and apparatus for removing water from oil phase | |
US2029527A (en) | Electrical dehydrator | |
US1414079A (en) | Apparatus for dehydrating oil | |
SU1333364A1 (en) | Method and apparatus for dehydration and desalination of water/petroleum and water/oil emulsions | |
CN115873628A (en) | Efficient electric desalting and dewatering equipment and method | |
CN109553241B (en) | Oily sewage treatment device and method | |
JPS60150855A (en) | Electrostatic desalting apparatus | |
JPS6124042B2 (en) |