JPS6081259A - Production of cu electrically conductive coating material - Google Patents
Production of cu electrically conductive coating materialInfo
- Publication number
- JPS6081259A JPS6081259A JP18834283A JP18834283A JPS6081259A JP S6081259 A JPS6081259 A JP S6081259A JP 18834283 A JP18834283 A JP 18834283A JP 18834283 A JP18834283 A JP 18834283A JP S6081259 A JPS6081259 A JP S6081259A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- paint
- resin
- fine
- thermosetting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 title abstract description 4
- 239000012799 electrically-conductive coating Substances 0.000 title abstract 2
- 239000000843 powder Substances 0.000 claims abstract description 51
- 229920005989 resin Polymers 0.000 claims abstract description 26
- 239000011347 resin Substances 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 12
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 7
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims abstract description 6
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 4
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 3
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 3
- 239000003973 paint Substances 0.000 claims description 61
- 230000001603 reducing effect Effects 0.000 claims description 6
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 claims 1
- 241000208225 Rhus Species 0.000 claims 1
- 235000014220 Rhus chinensis Nutrition 0.000 claims 1
- 238000007639 printing Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 6
- 230000002829 reductive effect Effects 0.000 abstract description 4
- 230000009974 thixotropic effect Effects 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 14
- 239000004020 conductor Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910002012 Aerosil® Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical class OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical class OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- 229910009973 Ti2O3 Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Paints Or Removers (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は印刷用Cu導電塗料特に微小線幅の導線の印刷
に適するチクソ性を有する塗料の製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a Cu conductive paint for printing, particularly a paint having thixotropy suitable for printing conductive wires with minute line widths.
従来印刷用導電塗料は主としてへgパウダーをレジン溶
液に懸濁したものであった。このようなA(7塗料は常
温乾燥用又は高温焼付用塗料として、電子部品業界には
広く用いられている。その表面固布抵抗(以下比抵抗と
略称する)Iル0が0,1以下という低い値である上に
、印刷特性がよく、焼付後耐湿性等の物理的緒特性が優
れているからである。Conventional conductive paints for printing have mainly consisted of heg powder suspended in a resin solution. Such A(7 paints) are widely used in the electronic parts industry as paints for room temperature drying or high temperature baking. This is because, in addition to this low value, the printing properties are good and the physical properties such as post-baking moisture resistance are excellent.
しかしながら次のような大きい欠点がある。即ち湿度の
高い環境で抵抗、チンプキャパシター等の連結導線及び
ジャンパー線の代用とした時、その線間距離が小さくか
つ線間の電位差が大きい場合、銀移行(Agマイグレー
ション; migration)の現象を生じ、甚だし
いときは短絡状態になること、及びその価格が高価であ
ることである。However, there are major drawbacks as follows. That is, when used as a substitute for connecting conductor wires and jumper wires for resistors, chimp capacitors, etc. in a high humidity environment, if the distance between the wires is small and the potential difference between the wires is large, the phenomenon of silver migration may occur. , short circuit may occur in severe cases, and the price is high.
最近になってA(7パウダーの代りにCuパウダーを用
いてAg塗料の代用品を得る研究がなされてきた。当然
の趨勢であろう。Recently, research has been conducted to obtain a substitute for Ag paint by using Cu powder instead of A(7 powder).This is a natural trend.
しかしながらA(7塗料に匹敵する塗料の開発は未だ成
功したとは言えない現状である。However, the development of a paint comparable to paint A(7) has not yet been successful.
当社においても早くから研究を進め、最近になって実用
に供し得るCu塗料の発明に成功した。Our company has been conducting research from an early stage and has recently succeeded in inventing a Cu paint that can be put to practical use.
例えば、
1特願昭55−098778(うるし系レジンを用いた
導電塗料)2、特願昭55−129115 (ヒドロキ
ノン類の誘導体を用いた導電膜II)
ろ、〃55−172645(うるし系塗料を用いた導電
塗料)4、〃56−010843 (ヒドロキノン類の
誘導体を用いた導電塗料)
Cu塗料が成功した原因はバインダーであるレジンの具
備すべき条件を研究し、その条件に合致したレジンを選
択したことにある。即ち次の通りである。For example, 1 Japanese Patent Application No. 55-098778 (conductive paint using lacquer-based resin), 2 Japanese Patent Application No. 55-129115 (conductive film II using derivatives of hydroquinones), 55-172645 (conductive paint using lacquer-based paint), Conductive paint used) 4, 56-010843 (Conductive paint using hydroquinone derivatives) The reason for the success of Cu paint is that we researched the conditions that the binder resin should have and selected a resin that met those conditions. It's what I did. That is, as follows.
(1) 熱硬化性であること。(1) It must be thermosetting.
(2) 常温でも還元性を有すること。(2) Must have reducing properties even at room temperature.
(3) 加熱硬化時にも還元性を有すること。(3) Must have reducibility even during heat curing.
(4) 硬化反応によって互の分子が堅く結合す5゜こ
と。(4) Molecules are tightly bonded to each other by a hardening reaction.
(1)は一般に印刷抵抗として必要な条件であることは
既に広く知られているので説明は省略する。Since it is already widely known that (1) is generally a necessary condition for a printed resistor, the explanation thereof will be omitted.
Cu塗料を焼結して得6れた導線も、低抵抗の一種であ
ると考えれば、前記(1)の条件が必要であることは当
然であ為う。(2)が必′要な理由は 導体であるCu
パウダーが極めて小さく、その粒度が(1−5)μmで
あることに起因する。そうするとCuの表面は活性度が
犬になシ周囲の水分、 02 、 So□等を吸着して
速やかに化合物を作シ、そのため表面抵抗が犬になり、
導電塗料としては使用困難になる。Considering that the conductive wire obtained by sintering Cu paint is also a type of low resistance wire, it is natural that the condition (1) above is required. The reason (2) is necessary is because Cu is a conductor.
This is due to the fact that the powder is extremely small, with a particle size of (1-5) μm. Then, the surface of Cu will have a high activity level, adsorb surrounding moisture, 02, So□, etc., and quickly create compounds, so the surface resistance will be low.
It becomes difficult to use as a conductive paint.
この欠点を除くために必要であると同時に、例えCuパ
ウダーの表面が僅かに酸化されて薄い酸化膜で蔽われて
いても、塗料作成中に還元され、Cuパウダーの接触抵
抗が小となって全体としての導体抵抗が小となるからで
ある。(3)の条件は熱硬化反応時に必要である。加熱
によりレジンが3次元構造に移る場合に生ずる反応生成
物が酸化性であればCu表面はたちまち酸化膜に蔽われ
て導電性を失う。中性であっても、空気中の02がCu
パウダーの表面に接触すれば、パウダー表面に酸化膜が
形成されて、その導電性は損なわれる。従って硬化反応
という激しい化学変化時にあっても、Cuパウダーがそ
れ自身導電性を失わないためには、レジンの硬化反応は
当然還元性の反応でなければならない。It is necessary to eliminate this drawback, and at the same time, even if the surface of the Cu powder is slightly oxidized and covered with a thin oxide film, it will be reduced during paint preparation and the contact resistance of the Cu powder will be reduced. This is because the overall conductor resistance becomes small. Condition (3) is necessary during the thermosetting reaction. If the reaction product produced when the resin transforms into a three-dimensional structure by heating is oxidizing, the Cu surface is immediately covered with an oxide film and loses its conductivity. Even if it is neutral, 02 in the air is Cu
If it comes into contact with the powder surface, an oxide film will be formed on the powder surface, impairing its conductivity. Therefore, in order for the Cu powder itself not to lose its conductivity even during a severe chemical change called a curing reaction, the curing reaction of the resin must naturally be a reducing reaction.
多くのレジンはこのような特性を備えていないので、そ
の欠点をおきなうために、別に反応に関与しない還元性
物質を加えることが試みられたが、満足な結果は得られ
ないようである。Many resins do not have such properties, and attempts have been made to remedy this by adding reducing substances that do not take part in the reaction, but this does not seem to yield satisfactory results. .
第(4)の特性は、Cu導電塗料で塗膜を作り焼結して
得られる導電膜の電気伝導機構は、殆んどCV・ウダー
の接触面を通して流れる接触電流によるものであるから
、バインダーレジンが緊密に硬化すると、Cuパウダー
自身が互に固く接触してお互いの接触面積が犬になり、
結果として接触抵抗が小となる。従って導電性が良好に
なる。The fourth characteristic is that the electrical conduction mechanism of the conductive film obtained by forming a coating film with Cu conductive paint and sintering it is mostly due to the contact current flowing through the contact surface of the CV/wooder. When the resin hardens tightly, the Cu powder itself firmly contacts each other and the contact area becomes a dog.
As a result, contact resistance becomes small. Therefore, the conductivity becomes good.
本願と同一の出願人による前記出願に係る発明は総て、
このような特性を有するレジンを用いたことによって成
功したものである。All inventions related to the above application filed by the same applicant as the present application are:
This success was achieved by using a resin with such characteristics.
前記のCu塗料は一般のO1L張り積層板(pcボード
と略称する)をエツチングして作った導電配線の代用と
して、スクリーンプリントにより印刷配線を形成して用
いる上には支障はない。然し近年高密度印刷抵抗(PR
Cと略称)の実用化が進むに従って大きい問題を生ずる
に至った。その理由は、従来印刷導線の幅は小でも1咽
もあれば充分であった。然るに高密度の場合には、導線
幅は普通は05M、最小の場合0.2 mm即ち200
μmが必要になる。The above-mentioned Cu paint can be used to form printed wiring by screen printing as a substitute for conductive wiring made by etching a general O1L laminate (abbreviated as PC board). However, in recent years high-density printed resistors (PR
As the practical use of the technology (abbreviated as "C") progressed, major problems arose. The reason for this is that conventionally, even if the printed conductive wire had a small width, it was sufficient to have a width of one width. However, for high densities, the conductor width is usually 0.5 mm, and the minimum is 0.2 mm or 200 mm.
μm is required.
C=塗塗料けでな〈従来のhg塗料でも最小線幅は1
mmが限度と考えられている。その理由は次の通りであ
る。第1図はCu塗料でスクリーンプリント法により絶
縁基板1の上に形成した導線の長さ方向に直角をなす断
面図を示す。斜線部分2は印刷直後の断面を示す。印刷
塗料は相当固いペース!・状であるから大体において矩
形断面と考えてよい。一般に厚さtは(30〜50)μ
mか普通である。C = paint (even with conventional HG paint, the minimum line width is 1)
mm is considered to be the limit. The reason is as follows. FIG. 1 shows a cross-sectional view perpendicular to the length direction of a conductive wire formed on an insulating substrate 1 using Cu paint by screen printing. The shaded area 2 shows the cross section immediately after printing. Printing paint has a very hard pace!・Since it is shaped like this, it can be considered to have a roughly rectangular cross section. Generally the thickness t is (30~50)μ
m or normal.
これを110℃〜150℃で高温加熱硬化させると、工
程の途中てH20などの反応生成物を生じて粘度か低下
し、6で示すような所甜「たれ−1を生ずる。When this is heated and cured at a high temperature of 110 DEG C. to 150 DEG C., reaction products such as H20 are generated during the process, the viscosity decreases, and a sweet "sauce-1" as shown in 6 is produced.
この現象は1’TLCの場合にも同様に生ずる。「たれ
−1の幅を図示するようにεで示すと、スクリーン印刷
に適した塗料の場合、本発明者等の研究では6mm(ε
の最小イ、は)は0.25 mm即ち250μmが限度
である。This phenomenon occurs similarly in the case of 1'TLC. "If the width of the drip-1 is indicated by ε as shown in the figure, in the case of a paint suitable for screen printing, the width of the sauce-1 is 6 mm (ε
The minimum value of 0.25 mm or 250 μm is the limit.
そうすると線幅Bの最小値は明らかにBmi = 0.
7 vanとなる。このような理由でPROの抵抗幅の
最小値は0.7mmとされている。この場合幅13のフ
ラット部分BOはせいぜい0.2胴である。だから最小
幅を仮シに0.5+nmとするとBのフラット部分がゼ
ロとなり、実際上膜厚りが不定となった抵抗値の分布は
広がって歩留りが小となり、実用することができない。Then, the minimum value of line width B is clearly Bmi = 0.
7 van. For this reason, the minimum resistance width of PRO is set to 0.7 mm. In this case, the flat portion BO of width 13 is at most 0.2 cylinders. Therefore, if the minimum width is tentatively set to 0.5+nm, the flat portion of B will be zero, and the distribution of resistance values will actually become wider and the film thickness will become unstable, resulting in a lower yield and thus making it impossible to put it into practical use.
Cu塗料の場合も結果は同様で、導線の各部で抵抗値が
異なり、全体として大きい値となり、場合によっては使
用することができないということも生ずる。In the case of Cu paint, the result is similar; the resistance value differs in each part of the conductive wire, resulting in a large value as a whole, and in some cases, it may become unusable.
それ故上記のCu塗料でも得られる最低の線幅は1咽で
あり、無理しても0.7謳か実用上の最低線幅といえる
であろう。何れにしても高密度の場合に必要な200μ
mの線幅は勿論のこと500μmの線幅の導線は、スク
リーン印刷のマスクの如何にかかわらず実現することは
できない。Therefore, the minimum line width that can be obtained even with the above-mentioned Cu paint is 1 mm, which can be said to be 0.7 mm, which is the practical minimum line width. In any case, 200μ is required for high density.
A conductive wire having a line width of 500 μm, let alone a line width of 500 μm, cannot be realized regardless of the screen printing mask.
本発明の目的は前記詳細に説明しだ1−たれ−1の原因
対策を究明し、CALm料を用いた場合の線幅を少なく
とも500μmとする技術を達成することを目的とする
。The purpose of the present invention is to investigate the causes of the sag-1 described in detail above, and to achieve a technique for achieving a line width of at least 500 μm when CALm material is used.
この目的を達成するために、本発明に係るCu導電塗料
の製造方法は、
微小Cuパウダー、熱硬化性レジン、不飽和脂肪酸及び
微小5i(J)2パウダーより成るCu導電塗料におい
て、
(i)前記熱硬化性レジンは常温及び熱硬化反応時にお
いて還元性を有するものを選び、
(11)前記5i02パウダーの含有量が1.5%以下
どすることを特徴としたものである。In order to achieve this objective, the method for producing a Cu conductive paint according to the present invention includes: (i) a Cu conductive paint consisting of a fine Cu powder, a thermosetting resin, an unsaturated fatty acid, and a fine 5i(J)2 powder; The thermosetting resin is selected to have reducibility at room temperature and during the thermosetting reaction, and (11) the content of the 5i02 powder is 1.5% or less.
次に本発明の構成について詳述する。Next, the configuration of the present invention will be explained in detail.
本発明者は、従来カーボン抵抗の4湿塗料の研究を手が
けていた。円柱状磁器基板(以下7+でビン(Bobb
in、)と略称する。)の場合、能率的に浸漬(ティッ
プ)塗装を行う。この場合、同程度の粘度であっても、
磁器端子における塗料の垂れ下がり、又は端子エツジに
おける塗料膜の厚さの減少等に偏重された。The present inventor has previously conducted research on four-wet paints with carbon resistance. Cylindrical porcelain substrate (hereinafter referred to as 7+)
It is abbreviated as in, ). ), efficient dip (tip) painting is performed. In this case, even if the viscosity is the same,
Undue emphasis was placed on sagging of paint on porcelain terminals or a decrease in the thickness of the paint film on the edges of the terminals.
即ち第2図の(a)、(b)図に示すようになる。(a
、)、(b)図はカーボン皮膜抵抗の軸方向の水平及び
垂直断面図である。図において4はボビン、5はカーボ
ン層、6は塗膜である。(σ、)はボビンを水平にし、
(b)は垂直にして乾燥した場合で、何れもエツジの部
分で塗膜が薄く々す、或いは「垂れ下り」を生ずる。諸
種の研究の結果上記の問題は粘度よりもむしろ、塗料材
料の糸引性に関係することが分った。That is, as shown in FIGS. 2(a) and 2(b). (a
, ) and (b) are axial horizontal and vertical cross-sectional views of the carbon film resistor. In the figure, 4 is a bobbin, 5 is a carbon layer, and 6 is a coating film. (σ,) makes the bobbin horizontal,
(b) shows the case of drying in a vertical position, and in both cases the coating film is thin or ``sagging'' at the edges. As a result of various studies, it has been found that the above problem is related to the stringiness of the paint material rather than the viscosity.
即ち成る程度糸引性をとり去ると、前記の欠点か大幅に
改善されるのである。In other words, if the stringiness is removed to some extent, the above-mentioned drawbacks can be greatly improved.
0w塗料の「だれ」の場合、本質的には前記の一般塗料
の場合の問題と同一であるという点に気がついだ。予備
実験を重ねた結果、効果か確認されだので、この研究を
進めた結果、良い成績を得ることかできたのである。次
にこの点につき詳しく説明する。I noticed that the problem with 0W paint is essentially the same as the problem with general paints. As a result of repeated preliminary experiments, it was confirmed that it was effective, and as a result of proceeding with this research, we were able to obtain good results. Next, this point will be explained in detail.
塗料のような粘性の大きいものを、厚塗りした場合、エ
ツジ部分の膜厚の減少、「垂れ下り」などを生ずること
なく元の状態を保つ度合の大きいものは、一般にチクソ
トロピック力性質(以下チクソ性と略称する)が太きい
と称する。チクソ性を犬にするには、その塗料又は該塗
料のベースとなるレジンの糸引き性を減殺すればよい。When a highly viscous material, such as paint, is applied thickly, it maintains its original state without reducing the film thickness at the edges or "sagging", and generally has thixotropic properties (hereinafter referred to as (abbreviated as thixotropy) is said to be thick. In order to improve the thixotropy, it is sufficient to reduce the stringiness of the paint or the resin on which the paint is based.
例えばZnO2のような微小パウダーを添加していくと
、チタン性は増大する。しかし一方このようにしてチタ
ン性を増大した場合、該塗料を乾燥し又は高温焼結して
強固な塗膜を形成した場合、前記ZnO2のパウダーの
ような顔料を添加すると、膜の機械的強度、接着力等は
当然減少し、更に膜自身が次第にポーラスになることか
ら、肝心の耐湿性が劣化する。For example, when fine powder such as ZnO2 is added, the titanium property increases. However, if the titanium properties are increased in this way, if the paint is dried or sintered at high temperatures to form a strong paint film, the addition of pigments such as the ZnO2 powder will increase the mechanical strength of the film. As a result, adhesive strength and the like naturally decrease, and furthermore, the film itself gradually becomes porous, resulting in deterioration of the essential moisture resistance.
それ故問題はチタン性を充分に大きく保つ範囲で、前記
した塗膜の特性を良好にするには、如何なる顔料又はパ
ウダーを選定すれば良いかという点に帰着する。Therefore, the problem boils down to what pigment or powder should be selected in order to improve the properties of the coating film described above while maintaining a sufficiently high titanium property.
まず第1に考慮すべき点は、パウダー自身が耐湿性でな
ければならないということである。これは塗料として当
然要求される点である。疎水性を有することが望ましい
。疎水性と耐湿性は、類似の現象と考えがちであるが誤
解である。疎水性はマクロの形の水分に対する抵抗特性
であり、耐湿性はミクロの形の水の分子に対する特性で
あシ、両立することは少ない。The first consideration is that the powder itself must be moisture resistant. This is naturally required for paints. It is desirable to have hydrophobicity. Hydrophobicity and moisture resistance are often thought to be similar phenomena, but this is a misunderstanding. Hydrophobicity is a property of resistance to macroscopic water molecules, and moisture resistance is a property of resistance to water molecules in a microscopic form, and they are rarely compatible.
例えば一般にシリコンレジンは疎水性が大であるが、耐
湿性は優れているとはいえないのである。For example, silicone resins are generally highly hydrophobic, but they cannot be said to have excellent moisture resistance.
次に塗料としての接着性2機械的強度、耐湿特性を考え
ると、顔料又は無機質パウダーの量は少ないほど特性が
良いことは明らかである。Next, when considering adhesion, mechanical strength, and moisture resistance properties as a paint, it is clear that the smaller the amount of pigment or inorganic powder, the better the properties.
それ故塗料のテクノ性と、塗料としての元来の特性とは
相反する性質をもっている。もつとも、塗料としての特
性は、ある程度塗膜tが大きい方がよいのであるから、
若干チタン性を大にするため顔料を混合した方が良いと
いうことは事実である。しかし、厚さtが同一としての
場合には、顔料を混合しない方が良いのである。tを同
一にするだめには、純レジン塗料は重ね塗りをすればよ
いのである。このようにしだ方がチタン性を増加するだ
めのパウダーを混合した場合よりも、特性は良い。Therefore, the technological nature of paint and its original characteristics as a paint are contradictory. However, in terms of properties as a paint, the larger the coating film t, the better.
It is true that it is better to mix pigments to slightly increase titanium properties. However, if the thickness t is the same, it is better not to mix pigments. In order to make t the same, pure resin paint can be coated in multiple coats. The properties are better in this way than in the case where a powder that increases the titanium properties is mixed.
前記詳述したところから導電塗料に実用範囲でチタン性
を付与するためには、実験的には次の結論に達した。From the above detailed explanation, we have experimentally reached the following conclusion in order to impart titanium properties to conductive paint within a practical range.
(1)同一種類の無機パウダーならばその粒径は小さい
ほど良い。(1) If the inorganic powder is of the same type, the smaller the particle size, the better.
(2)種類の異なるパウダーでは個々のパウダーがOH
3のような疎水性分子団で囲まれているものの方が良い
。(2) For different types of powder, each powder is OH
Those surrounded by hydrophobic molecular groups like 3 are better.
(3)パウダー自身がルチル型のTiO3のように湿度
の呼吸作用を有するものの方がよい。(例えば特願昭5
5−18360にその効果を述べた)(4)一般に物質
が異なっても粒径が格段に小さいパウダーの方が効果が
ある。(3) It is better for the powder itself to have a moisture respiration effect, such as rutile-type TiO3. (For example,
5-18360) (4) Generally, even if the substances are different, powders with much smaller particle sizes are more effective.
上記結論は倒れも実験によって確認されたものであり、
常識的にも首肯できるものと思われる。The above conclusion was also confirmed through experiments,
This seems to be acceptable based on common sense.
ただしく4)項については疑問なしとしないので、実験
結果の1例を第6図に示す。図において横軸は試験用に
用いた実施例1(後述)の塗料に種類及び粒径の異なる
パウダーを混合したときの重量比で、縦軸は該塗料を用
いて第1図に示すような導体を印刷し、乾燥焼結した後
の「だれJの平均値の2倍値2丁を示すものである。曲
線■は平均直径10μmのAl2O3を用いた場合、■
は5μmのルチル形Ti2O3を用いた場合、■は0.
01μmの5i02を用いた場合の結果を示す。明らか
に前記(4)項の効果があることを示している。即ちS
?:02の場合が格段に良好な結果を得ており、混合
量が1.0 wt%になると「だれ−127は0.15
門であり、6%では約o、i媚であることが分る。However, since there are no doubts regarding item 4), an example of the experimental results is shown in FIG. In the figure, the horizontal axis is the weight ratio when powders of different types and particle sizes are mixed with the paint of Example 1 (described later) used for the test, and the vertical axis is the weight ratio when powders of different types and particle sizes are mixed with the paint of Example 1 (described later), and the vertical axis is the weight ratio of powders of different types and particle sizes. The graph shows two times the average value of the drop J after printing the conductor and drying and sintering it.The curve ■ shows the curve ■ when using Al2O3 with an average diameter of 10 μm.
When rutile type Ti2O3 of 5 μm is used, ■ is 0.
The results are shown when using 01 μm 5i02. This clearly shows that the above-mentioned item (4) is effective. That is, S
? :02 gave much better results, and when the mixture amount was 1.0 wt%, "Dare-127 was 0.15".
It is found that 6% is about o, i amorous.
次に利用し得るパウダーとしてはAt201. TZ’
203゜ZnO2,CcC03等非常に多いのであるが
、(4)項の条件からすると5i021種類に限定され
てくる。粒径が他のパウダーに比し約2けたも小さいか
らである。The next powder that can be used is At201. TZ'
There are many types such as 203°ZnO2 and CcC03, but based on the condition (4), they are limited to 5i021 types. This is because the particle size is about two orders of magnitude smaller than that of other powders.
この事実は実験によって確かめられた。This fact was confirmed by experiment.
次にパウダーをSiO2に限定しても、その粒度によっ
て実に多くの種類がある。ホワイトカーボンの名称で呼
ばれているものだけでも\その主なものをあげると次の
通りである。Next, even if the powder is limited to SiO2, there are many types depending on the particle size. Among the things that are called white carbon, the main ones are as follows.
(イ)無水ケい酸:エアロジル(日本エアロジル](K
製) A I50,200,300,380,0X50
.T’11.”600.JL972等。(a) Silicic anhydride: Aerosil (Japan Aerosil) (K
(manufactured by) A I50, 200, 300, 380, 0X50
.. T'11. ”600.JL972 etc.
粒径7〜40mμm (ロ)含水けい酸二ニブシールVN3(日本ンリヵ)。Particle size 7-40mμm (b) Hydrous silicic acid dinib seal VN3 (Nihon Rika).
粒径1.7〜4.1μm
カープレックス(塩野木製薬■〈K製)A80゜112
0等
ウルトラジル(独、テグンサDECj[JSSA)VN
3上記のうち最も特性のよいのはエアロジル系のものて
、特に扁几972か優れている。このことについては後
に簡単に述へる。それ故以下主として1(972を用い
た塗料の特性について、実施例によって説明する。Particle size 1.7-4.1 μm Carplex (Shionoki Pharmaceutical■ <K made) A80°112
0th class Ultrasil (Germany, Tegunsa DECj [JSSA) VN
3 Among the above, the one with the best characteristics is the Aerosil type, and the flat 972 is particularly excellent. This will be briefly discussed later. Therefore, the characteristics of the paint using 1(972) will be mainly explained by examples.
(実施例1) Cuパウダー(1〜5 )μm 71 注★1 レジン1 ピロカテコール誘導体)15 レジン2 フェノールレジン 溶剤(ブチルカルビー・−ル)11 不飽和脂肪酸(オレイン酸) 6 100% 1く ここにRは次式て与えられる。(Example 1) Cu powder (1-5) μm 71 Note★1 Resin 1 Pyrocatechol derivative) 15 Resin 2 Phenol resin Solvent (butylcarbyl) 11 Unsaturated fatty acid (oleic acid) 6 100% 1 Here, R is given by the following formula.
R= −(Cl−1) 1−(CI()、n−C,、I
−1271−1−1又は J(ニー〇〇〇 (C)I
)1 (Cl−l2) 、nCnl−12,++ (2
)1、m、n、は任意の整数である。R= −(Cl−1) 1−(CI(), n−C,,I
-1271-1-1 or J(nee〇〇〇 (C)I
)1 (Cl-l2), nCnl-12,++ (2
)1, m, n are arbitrary integers.
(これ等の詳細は特願昭55−154703に記されて
いるか、簡単のため省略する)
上記組成の原料を用いて印刷用Cu塗料を作るには次の
工程による。捷すレジン1にし/ン2を加えたものに溶
剤を適当量(規定値より小)加えて充分に混合し、次い
てオレイン酸を加え更に混合する。次にCuパウダーを
II2ガス中500 ℃前後で処理して充分に還元し、
常温に戻して直ちに前記混合溶剤中に投入して混合し、
更に少届の+(,972を添加しメこものに溶剤を徐々
に加えて前記規定値より相当大にして充分に混和する。(These details are described in Japanese Patent Application No. 55-154703, or are omitted for the sake of brevity.) The following steps are used to produce a Cu paint for printing using the raw materials having the above composition. Add an appropriate amount (less than the specified value) of a solvent to the resin 1 to be kneaded and add 2 parts to it and mix thoroughly, then add oleic acid and mix further. Next, the Cu powder is treated in II2 gas at around 500 °C to sufficiently reduce it.
Return to room temperature, immediately add to the mixed solvent and mix,
Furthermore, add a small amount of +(,972) and gradually add the solvent to the mixture to make it considerably larger than the specified value and mix thoroughly.
混合はボールミルによった。その後播かい器に移し、最
後にロールにかけて溶剤を蒸発して、規定値にする。I
L−972(日本アエロジルKJ<製;平均粒径16
++17t1++、)は使用に先立って含有水分その他
の不純物を追い出すために500℃前後で熱処理する。Mixing was done using a ball mill. It is then transferred to a sowing machine and finally rolled to evaporate the solvent and bring it to the specified value. I
L-972 (manufactured by Nippon Aerosil KJ <; average particle size 16
++17t1++,) is heat treated at around 500° C. to drive out moisture and other impurities before use.
前記の場合几−972の量をパラメータとしてその値を
Cuパウダーの重量の0..0.2 、0;5 、10
、1.5%とした5が類のCu導導電浩を製造し、こ
の4種類の塗料について試験する。In the above case, the amount of 几-972 is taken as a parameter and its value is set to 0.0% of the weight of the Cu powder. .. 0.2, 0; 5, 10
, 1.5% Cu conductive coatings of type 5 were prepared, and these four types of paints were tested.
試料は既に広く公知となっている印刷抵抗(pn、cと
略称する)の場合と全く同様の方法で作るので簡単のた
め説明は省略する。次に試料の寸法等については、第1
図を参照して説明する。基板1はベークライトPcボー
ト、印刷マスクf4200メツシュのテトロン地を用い
メc。The sample is prepared in exactly the same manner as in the case of a widely known printed resistor (abbreviated as pn, c), so the explanation will be omitted for the sake of simplicity. Next, regarding the dimensions of the sample, etc.
This will be explained with reference to the figures. The substrate 1 is made of Bakelite Pc boat and Tetron fabric of printing mask f4200 mesh.
印刷線の長さLば1DO+nm、10本並列印刷、線幅
I3゜は5個である。焼付条件は14[3℃、 1時間
とした。The length of the printed line L is 1DO+nm, 10 lines are printed in parallel, and the line width I3° is 5 lines. The baking conditions were 14 [3°C, 1 hour].
完成後の線幅Bを測定するとε及び7は次式で与えられ
る。When the line width B after completion is measured, ε and 7 are given by the following equation.
なお完成後の厚さtの平均値7はu−972の重量比が
05%以上のならは45μI11でばらつきは極めて小
であつンに0
測定結果を第4図に示す。図によるとR,972を添加
する前に0.38 mmもあった「だれ」の平均値が、
5i02. R−972を1.0係混入しただけで0.
16mmK減少する。図から明らかなように、1(97
2を増加すればεは小になるが、前記したように耐湿性
2機械的強度の上から問題を生ずる」二に、11.97
2のような超微粉5202の場合にはCI7.塗料の導
電性が2%付近で急激に小となり、使用できなくなる。The average value 7 of the completed thickness t is 45 μI11 if the weight ratio of u-972 is 0.5% or more, and the variation is extremely small and completely zero. The measurement results are shown in FIG. According to the figure, the average value of ``dare'' was 0.38 mm before adding R,972.
5i02. Just adding 1.0% of R-972 resulted in 0.0%.
It decreases by 16mmK. As is clear from the figure, 1 (97
If 2 is increased, ε becomes smaller, but as mentioned above, problems arise in terms of moisture resistance and mechanical strength."Second, 11.97
In the case of ultrafine powder 5202 such as CI7. The conductivity of the paint decreases rapidly around 2%, making it unusable.
それ故その重量の限度はCuパウダーに対し、最大1.
5係を超えることはできない。Therefore, the weight limit for Cu powder is up to 1.
It cannot exceed 5 sections.
そうすると、結局εを小とするためには、第1図から明
らかなように、塗膜の厚、さtをとの程度1て薄ぐする
ことができるかということになる。次にこの点について
考がする。記述を簡単にするために実験結果のみを述へ
る。第1図に示すような導電路の印刷において線幅Bo
”F:0.8 mm 、 長す(]−)=50mmとし
て製作したジャンパー線において、面11ノ最放置試験
(40℃、95係H,H、試験時間5001−1?・)
及び耐湿負荷状、験(40℃、95%川I用負荷電流1
007ア7A、試験時間5001(r)の条件で実施し
その変化率δItを測定する。Then, in order to make ε small, as is clear from FIG. 1, it is necessary to reduce the thickness of the coating film by an amount equal to 1. Next, let's think about this point. In order to simplify the description, only the experimental results will be described. In printing a conductive path as shown in Fig. 1, the line width Bo
"F: 0.8 mm, length (]-) = 50 mm jumper wire manufactured, side 11 left standing test (40 ° C, 95 ratio H, H, test time 5001-1?)
and humidity resistant load condition, test (40℃, 95% river I load current 1
The test was carried out under the conditions of 007A7A and test time 5001(r), and the rate of change δIt was measured.
δR−傅一よ”(x1ooチ)(3)
R,R
no、 1.Lはそれぞれ試験開始前と終了後の抵抗値
である。第5図にその結果を示す。横軸は膜厚t。δR−Fuichiyo” (x1oochi) (3) R, R no, and 1.L are the resistance values before and after the test, respectively. The results are shown in Figure 5. The horizontal axis is the film thickness t. .
縦軸はδ1(、の値である。The vertical axis is the value of δ1(,.
図においてlIi+腺(1) 、 (++)はそれぞれ
耐湿放置試験及び1li1湿負荷試験の結果を示す。In the figure, lIi+ glands (1) and (++) indicate the results of the humidity resistance test and the 1li1 humidity load test, respectively.
両試験におけるδRの許容限度は一般に30%とされて
いるので、この結果から明らかなように厚さtの最小値
は第5図から
l mi )30 、u)T’ (4)となる。Since the allowable limit of δR in both tests is generally 30%, as is clear from these results, the minimum value of the thickness t is l mi )30 , u) T' (4) from FIG. 5.
次K i;ii記したようにR972の使用iI友の最
大値は約1.5%であり、このときt=45nlμ7n
である。かつ第4図から27言 0.15 tnmであ
る。よって近似的に比例法則か成立するものとするとt
≧3Qmμmに対する2〜Iの値は
2T++i ”” X D、 15 ”= r[l]、
1 mm (5)5
即ちこの場合に得られる「たれ」の最小値(平均値)・
・01招mとなる。As described in next K i;ii, the maximum value of R972 usage is about 1.5%, and in this case, t=45nlμ7n
It is. And from FIG. 4, it is 27 words 0.15 tnm. Therefore, if we assume that the law of proportionality holds approximately, then t
The value of 2 to I for ≧3Qmμm is 2T++i ”” X D, 15 ”= r[l],
1 mm (5) 5 In other words, the minimum value (average value) of the "sauce" obtained in this case
・01 invitation.
従って第1図を参照してBo”0.2 inと太き目に
見ても B二0.2 + 0.I X 2二〇、4mm
となシ線幅500μm = 0.5喘という目的を達
成することがてきる。Therefore, referring to Figure 1, even if you look at the thick side as Bo"0.2 inch, it is B20.2 + 0.I x 220, 4mm.
The objective of 500 μm line width = 0.5 mm can be achieved.
なお第5図における曲線(III) 、 (IV)はそ
れぞれ高温放置試験(100℃、 500 Hr )及
び負荷寿命試験(70℃。Curves (III) and (IV) in Fig. 5 are a high temperature storage test (100°C, 500 Hr) and a load life test (70°C), respectively.
100mA、 5001−1r)の結果であるか、この
場合は膜厚が20ノ1m以下になっても支障はない。100 mA, 5001-1r), and in this case, there is no problem even if the film thickness is 20 m or less.
(実施例2)
Cuパウダー(1−5)μm 69
レジン1. ウル/系レジン
)16
レゾン2.エホキンメラミンレジン
溶 剤 プチルカルビ!・−ル 11
不飽和脂肪酸(リルン酸) 3
S?:02 (R−972) 1
100%
(実施例3)
Cuパウダー(1−5)μm 69
溶 剤 プチルカルビト〒ル 105
不飽和脂肪酸(リノール酸)
SZ:02(Jも−972) 15
100%
実施例2.乙における前記した各試験における結果は大
差ない。記述を簡単にするため省略する。(Example 2) Cu powder (1-5) μm 69 Resin 1. Ur/Resin) 16 Reson 2. Ehokin Melamine Resin Solvent Petil Calbi!・-Rule 11 Unsaturated fatty acid (lilunic acid) 3 S? : 02 (R-972) 1 100% (Example 3) Cu powder (1-5) μm 69 Solvent Butyl carbitol 105 Unsaturated fatty acid (linoleic acid) SZ: 02 (J also -972) 15 100% Implemented Example 2. The results of the above-mentioned tests in B are not significantly different. It is omitted to simplify the description.
最後にCIl、、原子団に囲まれた疎水性5j02を用
いたときの効果について、第6図面の簡単な説明する。Finally, the effect of using hydrophobic 5j02 surrounded by atomic groups will be briefly explained in the sixth drawing.
図はアエロジルII、−972(粒径2Qmμ7n、疎
水性)とアエロジルNO380(粒径7mμm)を実施
例1のC11゜重量に対しその1%重量を添加した場合
、この塗料によって印刷により作った5Q、+++mX
4 II+mX 35ノhm のジャンパー線を40
℃、95%]t、H,の槽中に10001−Ir放置し
たときの抵抗変化を示す。tllt g< (a) l
(b)はそれぞれIL−972とNO380の場合を
示す。粒径かも考えるとNo 、 380の方か好結果
か得られる筈なのに、J(、−972の方か相当に良い
。これによってもC113分子に囲1れン゛こ 7 ゛
疎水・註の5iO2の効果を明らかに知ることかできる
のである。The figure shows 5Q made by printing with this paint when Aerosil II, -972 (particle size 2Qmμ7n, hydrophobic) and Aerosil NO380 (particle size 7mμm) were added at 1% weight to the C11° weight of Example 1. ,+++mX
4 II + mX 35 nohm jumper wire 40
It shows the resistance change when 10001-Ir was left in a bath at 95% [°C, 95%]t and H. tllt g< (a) l
(b) shows the cases of IL-972 and NO380, respectively. Considering the particle size, I should have gotten a better result with No. 380, but J(, -972 is considerably better. This also allows for 1 molecule to be surrounded by C113 molecules. It is possible to clearly understand the effects of
次に本発明の効果について簡単に説明する。Next, the effects of the present invention will be briefly explained.
C?/ハウダーを用いた導電塗料において(207−5
0)μ7+1の厚さに印刷した導電路を構成した場合エ
ツジ部分の1だれ」を小さくしないと高密度印刷はでき
ない。[だれ−jを少なくするためには、無機質の微小
パウダーを混和してチクソ性を持たせればよいか、そう
すると前記したように電気的緒特性が劣化する。それ故
微小パウダーとしては、次の特性を具備したものが良い
ことを確かめた。C? /In conductive paint using howder (207-5
0) If a conductive path is printed to a thickness of μ7+1, high-density printing cannot be achieved unless the edge portion is made smaller. [In order to reduce the droop-j, it would be better to add thixotropic properties by mixing inorganic micropowder, but then the electrical characteristics would deteriorate as described above. Therefore, it was confirmed that fine powder having the following characteristics is suitable.
(1)種類の異なるパウダーでは、粒形が小さいほどよ
い。(1) When using different types of powder, the smaller the particle shape, the better.
(2)同鍾類のパウダーでも同様のことがいえる。(2) The same can be said for powders of the same genus.
(3)チクソ性を持/ζぜるのに適したものは慢02パ
ウダーである。他の無機質パウダーに比較して極めてノ
]・さい粒径のものが得られるからである。(3) The one suitable for having thixotropic properties is Haku02 powder. This is because particles with an extremely small particle size can be obtained compared to other inorganic powders.
(4)粒径が同じであってもc■−13のような疎水性
余子団で囲まれたパウダーの方がよい。(4) Even if the particle size is the same, a powder surrounded by hydrophobic colloids such as c■-13 is better.
(5) 5in2パウダーを用いるときは含有率はCu
パウダーの重量の1.5%以下とする必要がある。(5) When using 5in2 powder, the content is Cu
It must be 1.5% or less of the weight of the powder.
(6) SZ:02 R−972を用いると導体の厚さ
tが25μmの場合「だれ」の幅2ε言0.1 mmと
することができる。しかもこの場合電気的緒特性には劣
化はみとめられない。従来はこの値は0.25+u+n
であった。即ち1/2以下となったのである。(6) When SZ:02 R-972 is used, when the conductor thickness t is 25 μm, the width of the “drop” can be set to 0.1 mm. Moreover, in this case, no deterioration is observed in the electrical characteristics. Conventionally, this value was 0.25+u+n
Met. In other words, it became less than 1/2.
従って高密度化に大きく寄与することかできた。Therefore, it was possible to greatly contribute to higher density.
第1図は印刷導線の長さ方向に直角の断面図、第2図の
(d)図及び(b)図はそれぞれカーボン皮膜抵抗):
Hの軸方向の水平1垂直断面図、第ろ図fd異種パウダ
ーの粒径と1−だrシJの関係を示すり゛ラフ、
第4図は5j02(R972)の重けと[た、?11と
の関係を示すグラフ、
第5図は印刷導線の膜厚と耐湿放置及び耐湿負荷試1験
における抵抗変化率との関係を示すグラフ、
第6図は40℃、95%r(H湿度における面]湿放置
特性を示すグラフである。
図において
1・・・絶縁板、
2・・・印刷導線の長さ方向と直角の断面、ろ・・・印
刷導線の焼結後の[だれ−1,4・・・ボヒン、5・・
・カーボン層、6 塗IIIを示す。Fig. 1 is a cross-sectional view perpendicular to the length direction of the printed conductor, and Fig. 2 (d) and (b) are carbon film resistors, respectively):
A horizontal 1-vertical cross-sectional view in the axial direction of ? 11. Figure 5 is a graph showing the relationship between the film thickness of the printed conductor and the rate of change in resistance in humidity-resistant storage and humidity-resistant load tests. It is a graph showing the wet storage characteristics of the printed conductor after sintering. 1, 4...Bohin, 5...
・Carbon layer, 6 Coating III is shown.
Claims (1)
及び微小SiO2パウダーより成るCu導電塗料におい
て、 (i) 前記熱硬化性レジンは常温及び熱硬化反応時に
おいて還元性を有するものを選び、 (11)前記5i02パウダーの含有量が1.5%以下
とすることを、 特徴とするCu導電塗料の製造方法。 2 前記S?:02の各粒子の表面がc■−■3のよう
な疎水性分子団で四重れていることを特徴とする特許請
求の範囲第1項記載の0w4電塗料の製造方法。 3 前記5i02の粒子の平均直径が50mμm以下と
することを特徴とする特許請求の範囲第1項又は第2項
の何れか1つに記載のCu導電塗料の製造方法。 4、 前記還元性レジンとしてウルシ系レジンを用いる
ことを特徴とする特許請求の範囲第1項〜第3項の何れ
か1つに記載のCu導電塗料の製造方法。 5、 前記還元性レジンとしてピロカテコール誘導体を
用いることを特徴とする特許 範囲第1項〜第4項の何れか1つに記載のCu導電塗料
の製造方法。[Scope of Claims] 1. A Cu conductive paint comprising minute O powder, thermosetting resin, unsaturated fatty acid, and minute SiO2 powder, in which: (i) the thermosetting resin has reducibility at room temperature and during a thermosetting reaction; (11) A method for producing a Cu conductive paint, characterized in that the content of the 5i02 powder is 1.5% or less. 2 Said S? The method for producing an 0w4 electric paint according to claim 1, wherein the surface of each particle of :02 is covered with four hydrophobic molecular groups such as c■-■3. 3. The method for producing a Cu conductive paint according to claim 1 or 2, wherein the average diameter of the 5i02 particles is 50 mμm or less. 4. The method for producing a Cu conductive paint according to any one of claims 1 to 3, characterized in that a sumac resin is used as the reducing resin. 5. The method for producing a Cu conductive paint according to any one of patent scopes 1 to 4, characterized in that a pyrocatechol derivative is used as the reducing resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18834283A JPS6081259A (en) | 1983-10-11 | 1983-10-11 | Production of cu electrically conductive coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18834283A JPS6081259A (en) | 1983-10-11 | 1983-10-11 | Production of cu electrically conductive coating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6081259A true JPS6081259A (en) | 1985-05-09 |
JPS6352070B2 JPS6352070B2 (en) | 1988-10-17 |
Family
ID=16221935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18834283A Granted JPS6081259A (en) | 1983-10-11 | 1983-10-11 | Production of cu electrically conductive coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6081259A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796401A (en) * | 1980-12-09 | 1982-06-15 | Toyama Prefecture | Conductive paint using lacquer group resin |
JPS57125273A (en) * | 1981-01-29 | 1982-08-04 | Toyamaken | Electrically conductive coating material made with hydroquinone derivative |
JPS57172795A (en) * | 1981-04-16 | 1982-10-23 | Hokuriku Elect Ind | Method of producing printed circuit board using cu powder conductive paint |
-
1983
- 1983-10-11 JP JP18834283A patent/JPS6081259A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796401A (en) * | 1980-12-09 | 1982-06-15 | Toyama Prefecture | Conductive paint using lacquer group resin |
JPS57125273A (en) * | 1981-01-29 | 1982-08-04 | Toyamaken | Electrically conductive coating material made with hydroquinone derivative |
JPS57172795A (en) * | 1981-04-16 | 1982-10-23 | Hokuriku Elect Ind | Method of producing printed circuit board using cu powder conductive paint |
Also Published As
Publication number | Publication date |
---|---|
JPS6352070B2 (en) | 1988-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1254330A (en) | Electroconductive element, precursor conductive composition and fabrication of same | |
JP2004362950A (en) | Conductive paste mainly composed of silver powder, and its manufacturing method | |
US4036786A (en) | Fluorinated carbon composition and resistor utilizing same | |
JP7424686B2 (en) | Nanoparticle copper paste suitable for high-precision write-through 3D printing, manufacturing and application | |
TW201424887A (en) | Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit | |
JP3955805B2 (en) | Conductive paste composition | |
JP4090778B2 (en) | Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same | |
CN1082705C (en) | Electrically conductive paste | |
JPS6081259A (en) | Production of cu electrically conductive coating material | |
JP6681437B2 (en) | Conductive paste | |
JPS5874759A (en) | Electrically conductive copper paste composition | |
DE3417387A1 (en) | MIXTURE FOR PREPARING PROTECTIVE AND INSULATING COATS ON METALS, AND THEIR USE | |
DE2340170B2 (en) | High resistance for direct current high voltage circuits | |
JPH1166956A (en) | Conductive paste | |
JPS6035386B2 (en) | Conductive paint using Ni powder | |
JP2020055912A (en) | Resin composition for electrode formation, and chip type electronic component and method for manufacturing the same | |
DE3002112A1 (en) | Paste with given electrical conductivity - has polyester vehicle contg. additive imparting required conductivity, useful for thick film circuit etc. | |
JPH0139463B2 (en) | ||
JPS62117201A (en) | Printing type conductive paste | |
JPS60244093A (en) | Method of producing circuit board | |
JPS58103565A (en) | Electrically conductive paint | |
JPS63125582A (en) | Conductive paint | |
JPS6021591A (en) | Method of producing conductive circuit | |
JPH05314813A (en) | Copper paste for conductor circuit and manufacture thereof | |
JPS6354472A (en) | Electrically conductive paste |