JPS607921A - Apparatus for gas separation membrane - Google Patents
Apparatus for gas separation membraneInfo
- Publication number
- JPS607921A JPS607921A JP11407483A JP11407483A JPS607921A JP S607921 A JPS607921 A JP S607921A JP 11407483 A JP11407483 A JP 11407483A JP 11407483 A JP11407483 A JP 11407483A JP S607921 A JPS607921 A JP S607921A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- mixed gas
- membranes
- membrane
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、混合ガスを分離、濃縮するためのガス膜分離
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas membrane separation device for separating and concentrating a mixed gas.
従来技術における膜による混合ガスの分離法は、原子力
燃料のウラン同位体の分離など古くより行なわれてきた
か、近年新しい膜素材の開発などが進み、その利用分野
も広まってきている。Conventional methods for separating mixed gases using membranes have been used for a long time, such as in the separation of uranium isotopes from nuclear fuel, but in recent years new membrane materials have been developed, and the fields of their use are expanding.
その具体例として、酸素富化装置や、工業プロセスの排
ガス中からの水素の回収などの利用例がみられる他、化
学反応プロセスの中で反応物の濃度調整などに利用する
試みがみられる。Specific examples of its use include oxygen enrichment devices and the recovery of hydrogen from exhaust gas in industrial processes, as well as attempts to use it to adjust the concentration of reactants in chemical reaction processes.
この膜による混合ガスの分離の原理は、それぞれの成分
の膜における透過原炭のちがいを利用するもので、透過
速度の早い成分が濃縮されることによる。The principle of separation of mixed gases using this membrane is to utilize the difference in raw coal permeated in the membrane for each component, and the component with a high permeation rate is concentrated.
そこで、第1図に示すような、従来の単一膜によるガス
分離装置では、上記混合ガスを流入させる、混合ガス流
入手段2と、この膜1を透過した分離ガスを取り出す分
離ガス取出手段6、更にこの膜を透過しなかった混合ガ
スを排出するガス排出手段4とが設けられており、以下
にその原理を説明する。Therefore, in a conventional single-membrane gas separation device as shown in FIG. Further, a gas exhaust means 4 is provided for exhausting the mixed gas that has not passed through the membrane, and the principle thereof will be explained below.
まず、膜1における透過速度のもがう2成分の混合ガス
を考える。First, consider a mixed gas of two components whose permeation rates in the membrane 1 struggle.
大きい透過速度を示すものの透過前の組成をxX透過後
の組成を2とする。The composition before permeation is xX, and the composition after permeation is 2, which shows a high permeation rate.
小きい透過速度を示すものの透過前の組成および透過後
の組成は、それぞれ、lxおよび1−・2である。The pre-permeation and post-permeation compositions of those exhibiting a small permeation rate are lx and 1-.2, respectively.
次に、混合ガス流入部7の圧力tpl、最終透過部8の
圧力をPlとすると、Pl〉Pl である。Next, when the pressure tpl of the mixed gas inflow section 7 and the pressure of the final permeation section 8 are Pl, Pl>Pl.
大きい透過速度を示すものおよび小さい透過速度を示す
ものの、それぞれの透過速度をQA+QB(mol/y
+/、sec、 atm ’)とし、膜1の面積をSと
し、更に大きい透過速度を示す成分A、および小さい透
過速度を示す成分Bの第1図における膜透過流量FA、
FβCmol/sec :]は次のようになる。For those showing a large permeation rate and those showing a small permeation rate, the respective permeation rates are calculated as QA + QB (mol/y
+/, sec, atm'), and the area of membrane 1 is S, and the membrane permeation flow rate FA in FIG.
FβCmol/sec:] is as follows.
FA= S 、QA(Plx−P2Z ) ・・・・・
・・(1)Fn= S、QB(Pt (1x) Pl
(1−Z))・・・・・・・(2)透過後の組成比は、
第(1)、 (2)式で示され、それぞれの透過流量の
比に等しいことから、” QAPlx −P2Z
□−□、□・・・・・・・・・(3)
1−ZQn PI(1−X) Pl (I Z)と表わ
すことができる。FA=S, QA(Plx-P2Z)...
...(1)Fn=S,QB(Pt (1x) Pl
(1-Z))・・・・・・(2) The composition ratio after passing through is
Since it is shown in equations (1) and (2) and is equal to the ratio of the respective permeation flow rates, "QAPlx -P2Z □-□, □... 1-X) Pl (IZ).
さて、一般にガス分離において、その分離の度合を示す
分離係数αは、分離前後の組成比の割合として次式で示
される。Now, in general, in gas separation, the separation coefficient α, which indicates the degree of separation, is expressed by the following equation as a ratio of the composition ratio before and after separation.
第(3)式を用いると、第(4)式は次のようになる。Using equation (3), equation (4) becomes as follows.
さて、膜による分離操作において、低圧側圧力P2をゼ
ロとしたとき、すなわち分離度を低減させるバンクプレ
ッシャー効果をゼロとしたときの分離係数は、理想分離
係数α”と呼ばれ、最大値を示す。Now, in a separation operation using a membrane, the separation coefficient when the low pressure side pressure P2 is set to zero, that is, when the bank pressure effect that reduces the degree of separation is set to zero, is called the ideal separation coefficient α'' and shows the maximum value. .
第(5)式において、Pl−0とおくことにより、理想
分離係数α”はQA、Qsを用いて次式のように表わさ
れる。In equation (5), by setting Pl-0, the ideal separation coefficient α'' can be expressed as follows using QA and Qs.
QA
α葺=□ ・・・・・曲(6)
QB
一般に膜分離において操作条件、すなわち成分Aの初期
組成X1操作圧PlfP2および成分A。QA αfuki = □ ... Song (6) QB In general, operating conditions in membrane separation, that is, initial composition of component A, X1 operating pressure PlfP2, and component A.
Bの透過速度QA、QBが与えられると、成分Aの分離
後の組成2は、第(3)式の関係で与えられる。When the permeation rates QA and QB of B are given, the composition 2 of component A after separation is given by the relationship of equation (3).
また、分離係数の最大値は第(6)式に示されるごとく
、QA/Qrrである。Further, the maximum value of the separation coefficient is QA/Qrr, as shown in equation (6).
上記の膜分離技術は、原理が非常にシンプルであり、ガ
スの透過速度の異なる限り、いかなる混合ガスの分離に
も利用できる優れた技術であるが、従来のガス分離装置
は一回の分離操作において分離度に限界があること、従
って目的成分を所定の濃度まで分離するためには、多段
の装置が必要であり、しかも各段ごとに加圧操作が必要
であるため、装置が大規模化するという欠点があり、こ
の欠点を軽減するため、−回の分離操作で高い分離度を
有する装置が望まれている。The above membrane separation technology is very simple in principle and is an excellent technology that can be used to separate any mixed gases as long as the gas permeation rates are different.However, conventional gas separation equipment requires only one separation operation. There is a limit to the degree of separation, and therefore, in order to separate the target component to a predetermined concentration, a multi-stage device is required, and pressurization is required for each stage, making the device large-scale. In order to alleviate this drawback, there is a demand for an apparatus that can achieve a high degree of separation in -separation operations.
そこで本発明は、従来のガス膜分離装置の欠点を解消す
るためになされたものであり、−回の分離操作で高分離
度を得るガス膜分離装置を提供することを目的としたも
のである。SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the drawbacks of conventional gas membrane separators, and its object is to provide a gas membrane separator that can obtain a high degree of separation in -times of separation operations. .
即ち、本発明のガス膜分離装置は、混合ガスを流入させ
る混合ガス流入手段と、この混合ガスの流路の一つの表
面が接触するよう配設され、かつ、個々のガスの透過速
度のちがいによりその混合ガスを分離可能な二つの膜と
、これら二つの膜の間より透過ガスの一部を排出可能な
透過ガス排出手段と、これら二つの膜を透過した分離ガ
スを取り出す分離ガス取出手段と、これらの膜を透過し
なかった混合ガスを排出するガス排出手段とを有するこ
とを特徴としたものである。That is, the gas membrane separation device of the present invention is arranged such that the mixed gas inlet means for introducing the mixed gas and one surface of the flow path for the mixed gas are in contact with each other, and the gas membrane separation device is arranged so that the mixed gas inlet means for introducing the mixed gas into the mixed gas is in contact with one surface of the flow path for the mixed gas, and the gas membrane separation device is arranged such that the mixed gas inlet means for introducing the mixed gas into the mixed gas is in contact with one surface of the flow path of the mixed gas, and the gas membrane separation device is arranged such that the mixed gas inlet means for introducing the mixed gas into the mixed gas is in contact with one surface of the flow path of the mixed gas, and the two membranes that can separate the mixed gas, a permeated gas exhaust means that can exhaust a part of the permeated gas from between these two membranes, and a separated gas extraction means that takes out the separated gas that has permeated these two membranes. and a gas exhaust means for exhausting the mixed gas that has not passed through these membranes.
以下第2図を参照して本発明の一実施例を説明するが、
第1図の従来例と共通な記号及び番号で示す第2図の原
理図における本発明のガス膜分離装置は、混合ガスを流
入きせる混合ガス流入手段2と、この混合ガスの流路の
一つの表面が接触するように配設され、かつこれら個々
のガスの透過速度のぢがいによりその混合ガスを分離可
能な二つの膜iA、jBと、これら二つの膜1Aと1B
との間より透過ガスの一部を排気可能とする透過ガス排
出手段5、これら二つの膜1A及び1Bを透過した分離
ガスを取り出す分離ガス取出手段6と、更にこれらの膜
IA、IBを透過しなかった混合ガスを排出するガス排
出手段4とを設けることにより構成されている。An embodiment of the present invention will be described below with reference to FIG.
The gas membrane separator of the present invention in the principle diagram of FIG. 2, which is shown using the same symbols and numbers as the conventional example in FIG. two membranes iA, jB that are arranged so that their surfaces are in contact with each other and that can separate the mixed gas by the difference in the permeation rate of these individual gases; and these two membranes 1A and 1B.
A permeated gas exhaust means 5 that can exhaust a part of the permeated gas from between the two membranes 1A and 1B, a separated gas extraction means 6 that extracts the separated gas that has permeated through these two membranes 1A and 1B, and It is constructed by providing a gas discharge means 4 for discharging the mixed gas that has not been mixed.
そこで、上記の構成からなる本発明のガス膜分離装置の
原理は、2つの膜1Aと1Bとの間より透過ガス排出手
段5により中濃度成分の一部を連続的に排出することに
より、最終透過ガスとして高濃度のガスを得るものであ
り、中間排出部6の圧力をPl、そこでの成分Aの組成
をyとすると、成分Bの中間排出部乙の組成は1−yで
ある。Therefore, the principle of the gas membrane separator of the present invention having the above-mentioned configuration is that by continuously discharging a part of the medium concentration component from between the two membranes 1A and 1B by the permeate gas discharging means 5, the final A high-concentration gas is obtained as a permeate gas, and if the pressure of the intermediate discharge part 6 is Pl and the composition of component A there is y, then the composition of component B in the intermediate discharge part B is 1-y.
混合ガス流入部7、中間排出部6、および中間排出部6
と最終透過部8において、第(3)式と同様な次の二つ
の式が得られる。Mixed gas inflow section 7, intermediate discharge section 6, and intermediate discharge section 6
and the final transmission section 8, the following two equations similar to equation (3) are obtained.
Y QAPlx −P’y
□=−0・川・・・・・(7)
1 y QBPH(1−x)−P’(1−y)Z QA
P’y−P2Z
□=−・ ・・・・・・・・(8)
1−Z Qn P’(1−y) P2 (1−Z)操作
条件、すなわちPt + P’、 P21 X、 QA
、 QBが与えられると、第(7)、 (8)式を連立
して解くことにより、最終透過ガスの成分Aの組成Zが
もとまる。Y QAPlx -P'y □=-0・River...(7) 1 y QBPH(1-x)-P'(1-y)Z QA
P'y-P2Z □=-・・・・・・・・・・(8) 1-Z Qn P'(1-y) P2 (1-Z) Operating conditions, namely Pt + P', P21 X, QA
, QB are given, the composition Z of the component A of the final permeated gas can be determined by solving equations (7) and (8) simultaneously.
次に、このガス膜分離装置を用いた場合と、第1図に示
す従来の単一膜を用いた場合の具体例を、水素、−酸化
炭素の混合ガスにおいて、第(3)式および第(7)、
(8)式を用いて計算した結果を下記の表に示す。Next, a specific example using this gas membrane separation device and a case using the conventional single membrane shown in Fig. 1 will be explained using equation (3) and (7),
The results calculated using equation (8) are shown in the table below.
(本頁以下余白)
なお、ここで膜1.IA、IBを多孔質ガラスとし、水
素の透過速度を4.72 X 10 ’ (mo115
ec、 m’ 。(Margins below this page) In addition, here, membrane 1. IA and IB are made of porous glass, and the hydrogen permeation rate is set to 4.72 x 10' (mo115
ec, m'.
atm )、そして−酸化炭素の透過速度を1.38
X 10 (mol/see、 rr? 、 atm
)としている。atm ), and - carbon oxide permeation rate of 1.38
X 10 (mol/see, rr?, atm
).
上記の表に見られるように、本発明のガス膜分離装置に
よる混合ガスの分離は、いずれの場合も従来の方法にく
らべて高い分離を示している。As seen in the above table, the separation of mixed gases by the gas membrane separation device of the present invention shows higher separation than the conventional method in all cases.
なお、本発明のガス膜分離装置は、透過速度のちがいに
より混合ガスを分離するいかなる膜にも有効に応用でき
るものである。The gas membrane separation device of the present invention can be effectively applied to any membrane that separates mixed gases based on differences in permeation rate.
従って、本発明のガス膜分離装置は、従来の単一膜を用
いたガス分離装置にくらべて、−回の分離操作で高濃縮
のガスが得られると共に、低い圧力操作で、従来の単一
膜の装置と同じ分離度が得られる。Therefore, the gas membrane separator of the present invention can obtain a highly concentrated gas in - times of separation operations, and can obtain a highly concentrated gas with a lower pressure operation than a conventional gas separation device using a single membrane. The same resolution as membrane devices can be obtained.
また、膜分離装置を多段化して用いる場合、本発明のガ
ス膜分離装置により装置の段数を少なくすることができ
るなどの壊れた効果がある。Furthermore, when using a membrane separation device in multiple stages, the gas membrane separation device of the present invention has the advantage of being able to reduce the number of stages in the device.
【図面の簡単な説明】
第1図は従来の単一膜のガス分離装置の原理を示す概念
図、第2図は本発明の実施例におけるガス膜分離装置の
原理を示す概念図である。
IA、IB・・・膜、2・・・混合ガス流入手段、3・
・・分離ガス取出手段、4・・・ガス排出手段、5・・
・透過ガス排出手段。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing the principle of a conventional single membrane gas separation device, and FIG. 2 is a conceptual diagram showing the principle of a gas membrane separation device in an embodiment of the present invention. IA, IB... Membrane, 2... Mixed gas inflow means, 3.
... Separated gas extraction means, 4... Gas discharge means, 5...
・Permeate gas exhaust means.
Claims (1)
スの流路に一つの表面が接触するように配役され、かつ
個々のガスの透過速度のちがいによりその混合ガスを分
離可能な一つの膜と、これら二つの膜の間より透過ガス
の一部を排出可能な透過ガス排出手段と、これら二つの
膜を透過した分離ガスを取り出す分離ガス取出手段と、
これらの膜を透過しなかった混合ガスを排出するガス排
出手段とを有することを特徴とするガス膜分離装置。A mixed gas inlet means for introducing the mixed gas, and a membrane arranged so that one surface is in contact with the flow path of the mixed gas and capable of separating the mixed gas based on the difference in permeation rate of each gas. , a permeated gas discharge means capable of discharging a part of the permeated gas from between these two membranes, and a separated gas extraction means that extracts the separated gas that has permeated through these two membranes;
A gas membrane separation device characterized by having a gas discharge means for discharging the mixed gas that has not passed through these membranes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11407483A JPS607921A (en) | 1983-06-24 | 1983-06-24 | Apparatus for gas separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11407483A JPS607921A (en) | 1983-06-24 | 1983-06-24 | Apparatus for gas separation membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS607921A true JPS607921A (en) | 1985-01-16 |
Family
ID=14628391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11407483A Pending JPS607921A (en) | 1983-06-24 | 1983-06-24 | Apparatus for gas separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607921A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0417006A (en) * | 1990-05-10 | 1992-01-21 | Hitachi Zosen Corp | Device for detecting position of unmanned carrier |
JPH04334501A (en) * | 1991-05-08 | 1992-11-20 | Yasuo Kitsuta | Centrifugal evaporator |
JP2016093767A (en) * | 2014-11-12 | 2016-05-26 | 三菱重工業株式会社 | Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542754B2 (en) * | 1975-08-12 | 1979-02-13 |
-
1983
- 1983-06-24 JP JP11407483A patent/JPS607921A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542754B2 (en) * | 1975-08-12 | 1979-02-13 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0417006A (en) * | 1990-05-10 | 1992-01-21 | Hitachi Zosen Corp | Device for detecting position of unmanned carrier |
JPH04334501A (en) * | 1991-05-08 | 1992-11-20 | Yasuo Kitsuta | Centrifugal evaporator |
JP2016093767A (en) * | 2014-11-12 | 2016-05-26 | 三菱重工業株式会社 | Apparatus for separating co2 in gas and membrane separation method therefor, and membrane separation management method of apparatus for separating co2 in gas |
US10913027B2 (en) | 2014-11-12 | 2021-02-09 | Mitsubishi Heavy Industries, Ltd. | CO2 separation device in gas and its membrane separation method and method for controlling membrane separation of CO2 separation device in gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hwang et al. | Membranes in separations | |
US4140499A (en) | Gas mixture-separating device | |
US3241293A (en) | Diffusion purification of gases | |
US4597777A (en) | Membrane gas separation processes | |
US5282969A (en) | High pressure feed membrane separation process | |
US4089653A (en) | Apparatus for the separation of hydrogen sulfide from gas mixture including carbon dioxide | |
US3144313A (en) | Difusion purification of gases | |
US3350844A (en) | Process for the separation or enrichment of gases | |
Stern et al. | Recycle and multimembrane permeators for gas separations | |
Naylor et al. | Enrichment calculations in gaseous diffusion: Large separation factor | |
CN101801501A (en) | Equipment and system for processing a gaseous mixture by permeation | |
US5306427A (en) | Low pressure feed membrane separation process | |
Thorman et al. | Gas separation by diffusion through silicone rubber capillaries | |
Hwang et al. | Methane separation by a continuous membrane column | |
Sirkar | Asymmetric permeators—a conceptual study | |
JPS607921A (en) | Apparatus for gas separation membrane | |
Li et al. | Membrane gas separation with permeate purging | |
Mencarini Jr et al. | Separation of tetrahydrofuran from aqueous mixtures by pervaporation | |
McCandless et al. | Counter-current recycle membrane cascades for the separation of the boron isotopes in BF3 | |
Haraya et al. | Performance of gas separator with high-flux polyimide hollow fiber membrane | |
JPS5794304A (en) | Gas separating membrane made of polysulfone hollow fiber and its manufacture | |
Itoh | Maximum conversion of dehydrogenation in palladium membrane reactors | |
JPH02135117A (en) | Gas separation module and multistage gas separator | |
Röhr et al. | A comparison of two commercial membranes used for biogas upgrading | |
McCandless | A comparison of countercurrent recycle membrane cascades with some “one-compressor” recycle permeators for gas separations in terms of ideal crossflow stages |