[go: up one dir, main page]

JPS6072650A - Production of low melting alloy wire for sealing fluorescent lamp - Google Patents

Production of low melting alloy wire for sealing fluorescent lamp

Info

Publication number
JPS6072650A
JPS6072650A JP18053183A JP18053183A JPS6072650A JP S6072650 A JPS6072650 A JP S6072650A JP 18053183 A JP18053183 A JP 18053183A JP 18053183 A JP18053183 A JP 18053183A JP S6072650 A JPS6072650 A JP S6072650A
Authority
JP
Japan
Prior art keywords
low melting
melting point
fluorescent lamp
alloy wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18053183A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
芳野 久士
Masakatsu Haga
羽賀 正勝
Takashi Yorifuji
孝 依藤
Teruo Oshima
大島 照雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18053183A priority Critical patent/JPS6072650A/en
Priority to DE8484306379T priority patent/DE3485382D1/en
Priority to AT84306379T priority patent/ATE70755T1/en
Priority to EP84306379A priority patent/EP0136866B1/en
Priority to US06/651,682 priority patent/US4615846A/en
Priority to KR1019840006111A priority patent/KR890005196B1/en
Publication of JPS6072650A publication Critical patent/JPS6072650A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0864Cooling after atomisation by oil, other non-aqueous fluid or fluid-bed cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To form a low melting alloy for sealing a fluorescent lamp to a uniform compsn. and wire shape and to permit easy weighing and sealing in a hermetic vessel by melting said alloy and injecting and cooling continuously the molten alloy from a nozzle to the surface of a rotary cooling body. CONSTITUTION:An alloy raw material 1 is charged into a vessel 3 and is heated and melted by an electric heater 4. The molten alloy material 1 is injected from a nozzle 2 onto the surface of a rotary cooling body 5 by the gas forced into the vessel 3 from above upon attainment of a prescribed temp. and is thereby quickly cooled to form a continuous alloy wire 6. The bore of the nozzle in this case is made 0.2-2.0mm.phi and the temp. of the low melting alloy to be injected is made higher by 10-100 deg.C than the m.p. thereof. The rotating speed of the body 5 is made 0.2-5.0m/sec and an annular hollow groove 7 is preliminarily formed along the circumferential direction on the surface of the body 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は螢光灯に封入して、水銀蒸気圧を制御する低融
点合金線の製造方法に係り、特に溶融状態でノズルから
回転冷却体に射出急冷して線状に形成する方法に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a low melting point alloy wire for controlling mercury vapor pressure by enclosing it in a fluorescent lamp, and particularly relates to a method for manufacturing a low melting point alloy wire for controlling mercury vapor pressure from a nozzle in a molten state. This relates to a method of forming a linear material by injection quenching.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

螢光灯などの低圧水銀蒸気放電灯は、その気密容器内に
おける水銀蒸気圧が6X10−’〜7 X ]、 Om
mHgで、比較的低い放電電流のときに供給電気エネル
ギーが水銀の253.7 nmの紫外域放射線へ転換さ
れる効率が最も高くなることが知られている。
A low-pressure mercury vapor discharge lamp such as a fluorescent lamp has a mercury vapor pressure in its airtight container of 6X10-' to 7X ], Om
mHg, it is known that the efficiency with which the supplied electrical energy is converted into mercury 253.7 nm ultraviolet radiation is highest at relatively low discharge currents.

上記253.7 nmの紫外域の放射線は螢光体励起効
率が高いことから、上記6×10〜 7X10m+qHgに水銀蒸気圧を維持することが好ま
しく、このときの気密容器壁の温度は約40℃である。
Since radiation in the ultraviolet region of 253.7 nm has a high phosphor excitation efficiency, it is preferable to maintain the mercury vapor pressure at 6 x 10 to 7 x 10 m+qHg, and the temperature of the wall of the airtight container at this time is approximately 40°C. It is.

しかしながら、螢光灯などの低圧水銀〃ζ気故知、灯は
、近時Ni仔の細い気密容器壁の負荷が冒いものが増加
しておシ、気密容器壁の温度が高く、100℃を越すも
のがある。
However, in low-pressure mercury lamps such as fluorescent lamps, the load on the walls of narrow nickel airtight containers has increased in recent years, and the temperature of the walls of the airtight containers has been high, reaching temperatures of 100°C. There is something to overcome.

このように気密容器壁温度が高温になると、シ著しく筒
ぐなシ、放射された2’53.7nm苓:主とする紫外
域の放射線が水銀によって自己吸収され、供給エネルギ
ーの紫外域放射線への転換効率が悪ぐなり、光出力が低
下する問題があった。
When the wall temperature of the airtight container becomes high in this way, the radiated 2'53.7 nm radiation, which is mainly in the ultraviolet range, is self-absorbed by mercury and becomes the supplied energy of ultraviolet radiation. There was a problem that the conversion efficiency deteriorated and the light output decreased.

この対策としては、アマルガムを気密容器内に封入して
、高温時における水銀蒸気圧の上昇を抑制することが行
われるようになって@た。
As a countermeasure to this problem, amalgam has been sealed in an airtight container to suppress the rise in mercury vapor pressure at high temperatures.

例えばHgおよびInと、Lib At、 Zn、Sn
、Pb、Biから選ばれた1種の金属とからなるアマル
ガム、若しくはHgと](iとPb、tたはHgとBi
とpbとSnとのアマルガムヲ刺入用合金とした螢光灯
が、特公昭54− :33215号公報、特公昭54−
38582号公報などによって従来公表されている。
For example, Hg and In, Lib At, Zn, Sn
, Pb, Bi, or Hg](i and Pb, t or Hg and Bi
A fluorescent lamp made of an alloy of PB and Sn for inserting amalgam was published in Japanese Patent Publication No. 33215, Publication No. 33215.
This has been previously published in Publication No. 38582 and the like.

気密容器にアマルガムを封入する方法は、内径が20〜
25胴φ程度の真空脱グミ用の細管から所定量を秤量し
て封入するが、このためには線状あるいは板状のアマル
ガムの方が、押開が容易で、細管からの挿入も容易とな
るので工業的に好ましい。
The method of enclosing amalgam in an airtight container is to
A predetermined amount is weighed and sealed in a thin tube for vacuum degumming with a diameter of approximately 25 mm.For this purpose, a linear or plate-shaped amalgam is easier to push open and easier to insert through the thin tube. Therefore, it is industrially preferable.

しかしながら、上記のアマルガムは機械的に脆弱である
ため、通常の方法では線状あるいは板状に加工すること
が困難であった。
However, since the above amalgam is mechanically fragile, it has been difficult to process it into a linear or plate shape using normal methods.

このため従来は、溶融したアマルガムをガスと共に噴射
して果粒状にするアトマイズ法あるいはインボラトラ機
械的に粉砕する方法などによって果粒状に形成し、これ
を秤量して気密容器に封入していた。
For this reason, conventionally, molten amalgam has been formed into granules by an atomization method in which the amalgam is injected together with a gas to form granules, or by a mechanical crushing method using involatra, which is then weighed and sealed in an airtight container.

しかしながらアトマイズ法により得られたものは、粒径
や形状が不均一であシ、篩分けして粒径を調整しなけれ
ば秤量や細ちへの的。人ができないため、極めて歩留り
が悪く高価である。
However, the particles obtained by the atomization method are non-uniform in particle size and shape, and if they are not sieved to adjust the particle size, they will be difficult to weigh and fine. Since it cannot be done by humans, the yield is extremely low and it is expensive.

捷たインゴットからの粉砕によるものは、同様に粒径や
形状が不均一であり、クラックがあってくだけ易く、シ
かもインゴットの中心部がHgリッチとなって組成のバ
ラツキが大きく、封入した場合の水銀蒸気圧の抑制効果
が一定しないほどの欠点があった。
Those obtained by pulverization from shredded ingots are similarly uneven in particle size and shape, are prone to cracking, and may become Hg-rich in the center of the ingot, resulting in large compositional variations. The drawback was that the effect of suppressing mercury vapor pressure was inconsistent.

また金属の71板全製造する技術として、従来、Fe 
b Ni等と、Si、Bとからなる溶%Q合金を高速で
回転する冷却体に射出して非晶a合金薄板を製造する方
法が知られている。しかしながらこれらの合金は何れも
融点が1000℃近辺か、それ以上と高く、また得られ
る溝板は数10μm程度で極めて薄いため、$シ光灯の
刺入用低融点合金の製造方法としては、細管からの封入
がかIt Lぐ実用的ではない。
In addition, as a technology for manufacturing all 71 metal plates, conventionally, Fe
There is a known method for manufacturing an amorphous a-alloy thin plate by injecting a molten % Q alloy consisting of Ni, etc., Si, and B into a cooling body that rotates at high speed. However, all of these alloys have a high melting point of around 1000°C or higher, and the groove plate obtained is extremely thin, about several tens of micrometers. Encapsulation from a capillary is extremely impractical.

〔発明の目的〕[Purpose of the invention]

本発明はかかる点に鑑みなされたもので、非晶p合金薄
板を製造する技術を応用し、板厚や線径が01〜2.0
胴程度と大きく、秤量や刺入が容易で、しかも組成が均
一な螢光灯刊入用低融点合金線の製造方法を提供するこ
とを目的とするものである。
The present invention was made in view of the above points, and by applying the technology of manufacturing an amorphous p alloy thin plate, the plate thickness and wire diameter are 0.1 to 2.0 mm.
The object of the present invention is to provide a method for producing a low melting point alloy wire for use in fluorescent lamps, which is as large as a barrel, easy to weigh and insert, and has a uniform composition.

〔発明の概要〕[Summary of the invention]

本発明1l−1:発光灯封入用低融点合金を溶融状態に
してノズルから回転冷却体の表面に連ワ1:的に創出し
て冷却することを特徴とするものである。
The present invention 1l-1 is characterized in that a low melting point alloy for encapsulating a luminescent lamp is molten and cooled by creating continuous lines 1: on the surface of a rotary cooling body from a nozzle.

本発明において1q造される低融点合金線は、Hgと共
に気密容器に封入して、容器内でアマルガム化させるも
のと、Hgを含む合金を射出冷却して、アマルガム合金
線を製造する2通フの方法がある。
In the present invention, 1 q of low-melting point alloy wire is produced in two ways: one is sealed in an airtight container with Hg and amalgamated in the container, and the other is injected and cooled the alloy containing Hg to produce amalgam alloy wire. There is a method.

先ず、前者の射出冷却によシ低酬点合金線を作り、これ
をHgと共に気密容器内に個人して使用状態でアマルガ
ム化させる場合について説明する。
First, a case will be described in which a low-resolution alloy wire is produced by injection cooling, and the wire is placed in an airtight container with Hg and amalgamated in use.

この場合の合金組成としては、Snおよびpbのうちl
Iたは2種と、BiおよびInからなるもので、その組
成比は重量係でSn 15〜57係、Pb5〜40%、
B130〜70%、In 4〜50多の範囲が好ましい
In this case, the alloy composition is l of Sn and pb.
It consists of I or 2 types, Bi and In, and its composition ratio is Sn 15-57%, Pb 5-40%,
The preferred range is B130 to 70% and In 4 to 50%.

脣た後者のアマルガム合金線′fj:製造する場合の合
金組成としては、Snおよびpbのうち1種才たは2h
と、BiとInおよびHgとからなるもので、その組成
比は重量係でSrl ] 55〜57%Pb5〜40%
、B130〜70%、In4−50係、Hg4〜25チ
の範囲が好丑しい。
The latter amalgam alloy wire 'fj: The alloy composition when manufacturing is one of Sn and PB or 2H.
It consists of Bi, In and Hg, and its composition ratio is Srl by weight: 55-57%Pb5-40%
, B130-70%, In4-50%, Hg4-25% are preferable.

ここでSn、 Pbb BiおよびInは夫々低融点の
金属で、しかもHgとアマルガムを形成し、その融点を
下げる作用をなすものである。これら合金成分の添加量
を夫々上記範囲に規定することによシ50〜130℃の
温度卸、囲でアマルガムの固相一液相共存状態が得られ
るためである。
Here, Sn, Pbb Bi, and In are metals each having a low melting point, and moreover, they form an amalgam with Hg and have the effect of lowering the melting point. This is because by specifying the amounts of these alloy components added within the above ranges, a state in which a solid phase and a liquid phase coexist in the amalgam can be obtained at a temperature of 50 to 130°C.

第1図のグラフは本発明によるアマルガム合金線を気密
容器内に封入したときの気密容器壁面温度と水銀蒸気圧
との関係を示すものである。
The graph in FIG. 1 shows the relationship between the wall surface temperature of the airtight container and the mercury vapor pressure when the amalgam alloy wire according to the present invention is sealed in the airtight container.

グラフから明らかなように本発明によるアマルガム合金
線は、曲’1! Aで示すように50〜130℃の温度
jil)囲でアマルガムの固相−液相相共存状態となり
、この状態で水銀蒸気圧をほぼ6 X 10−’ 〜7
 X 10−’ y+unHgの最も光出力の高い状態
に安定的に保持することができる。これに対してFIg
 全単独で刺入したものは曲線Bi示すように、温度上
昇に伴って急激に水銀xC気圧が上昇して行き、動車が
悪くなる。
As is clear from the graph, the amalgam alloy wire according to the present invention has a curve '1! As shown in A, the solid phase and liquid phase of amalgam coexist at a temperature range of 50 to 130°C, and in this state, the mercury vapor pressure is approximately 6 x 10-' to 7
It is possible to stably maintain the state with the highest optical output of X10-'y+unHg. On the other hand, FIG.
As shown by the curve Bi, in the case of a single injection, as the temperature rises, the mercury x C pressure rapidly rises, and the movement of the car deteriorates.

次に本発明の製造方法を第2図を参照して詳細に説明す
る。
Next, the manufacturing method of the present invention will be explained in detail with reference to FIG.

上記組成の低融点合金原料1を、先端にノズル2を設け
た容器3内−に入れる。この容器3は合金原料1と反応
しない高融点拐料、例えば石英で形成され、更にこの容
器3の外周には高周波コイルあるいは電熱ヒーター4が
設けられ、合金原料1を加熱溶融するようになっている
A low melting point alloy raw material 1 having the above composition is put into a container 3 having a nozzle 2 at its tip. This container 3 is made of a high-melting material, such as quartz, which does not react with the alloy raw material 1. Furthermore, a high frequency coil or an electric heater 4 is provided around the outer periphery of the container 3 to heat and melt the alloy raw material 1. There is.

5はノズル2の下方に配置された回転冷却体で、熱伝導
性の良い銅や鉄で構成されている。
Reference numeral 5 denotes a rotary cooling body disposed below the nozzle 2, which is made of copper or iron with good thermal conductivity.

上記装置において、先ず容器3内に合金原料Iff:投
入し、電熱ヒーター4で加熱して溶融状態にする。所定
の温度になったところで、容器3の上方からガスを圧入
し、ガス圧によってノズル2から溶融した合金原料1を
回転冷却体5の表面に連続的に射出して、急冷すること
により連続した合金線6を形成し、図示しないスプール
に巻取る。
In the above apparatus, first, the alloy raw material Iff is charged into the container 3 and heated by the electric heater 4 to melt it. When the predetermined temperature is reached, gas is injected from above the container 3, and the molten alloy raw material 1 is continuously injected from the nozzle 2 onto the surface of the rotary cooling body 5 by the gas pressure, and is rapidly cooled. An alloy wire 6 is formed and wound onto a spool (not shown).

なお本発明においてノズル2の内径は0.2〜20關φ
の範囲が好ましく、Q、 2 mmφ未満では射出状態
が安定せず、合金線6の表面が不均一になり易く、また
2、 0 mmφを越ると溶融合金がノズル2からこほ
れ落ちるなど安定しない。
In the present invention, the inner diameter of the nozzle 2 is 0.2 to 20 mm.
A range of Q is preferably less than 2 mmφ, the injection condition will not be stable and the surface of the alloy wire 6 will tend to become uneven, and if it exceeds 2.0 mmφ, the molten alloy will fall off from the nozzle 2 and become unstable. do not.

また溶融した合金原料1の射出温度は、その融点よシ1
0〜100℃程度I昂い温度が好1しく、10℃未満で
は合金の流動性が悪く、号だ100℃を越えると冷却が
不十分となって板厚の厚いものが得られず、表面も不均
一となる。
In addition, the injection temperature of the molten alloy raw material 1 is determined by its melting point
Temperatures as high as 0 to 100°C are preferable; below 10°C, the alloy has poor fluidity, and above 100°C, cooling is insufficient, making it impossible to obtain a thick plate, and the surface will also be non-uniform.

更に回転冷却体、5の回転速度は、板埋がO】〜2咽の
厚いものを得るために0.2〜5.0+++、/秒の範
囲に設定するのが好ましい。この場合0.2yn/秒未
満の遅い速度では表面が均一になりにくく、浄た5、 
Oyn /秒を越える筐速では、J9さが0.1間より
薄くなり、月入相としての取扱いが難しく5射出圧を上
げても余り厚くならず幅方向への広がりが大きくなるだ
けである。
Furthermore, the rotational speed of the rotary cooling body 5 is preferably set within the range of 0.2 to 5.0+++/sec in order to obtain a plate embedment as thick as 0 to 2 mm. In this case, at a slow speed of less than 0.2 yn/sec, it is difficult to make the surface uniform, and the
At case speeds exceeding Oyn/sec, J9 becomes thinner than 0.1 mm, making it difficult to handle as a monthly injection phase. 5 Even if the injection pressure is increased, it will not become much thicker and will only spread wider in the width direction. .

このようにして得られた合金線6u:厚芒が01〜2陥
の板状全なし、しかも成分も活部状態からの急冷である
ため均一なものが得られる。
The thus obtained alloy wire 6u has no plate shape with a thickness of 01 to 2, and its composition is uniform because it is rapidly cooled from the active state.

この合金線6は、切断機により所定必披岸に切断して螢
光灯気密容器に細石から挿入して、そのまま封入するこ
とができるので、従来の如き篩分は作業も不要で歩留が
良く、安価でlI+る上、作業性も向上させることがで
きる。
This alloy wire 6 can be cut into a predetermined length using a cutting machine, inserted into a fluorescent lamp airtight container starting from fine stones, and sealed as is, so there is no need for the conventional sieving process and the yield is reduced. It is easy to use, inexpensive, and easy to use, and can also improve workability.

第3図は本発明の他の実施例を示すもので、回転冷却体
5の表面に、周方向に沿って環状の凹溝7を形成したも
のである。この回転冷却体、う全周いて、凹溝7に溶融
した合金原料1を射出すると、断面がほぼ円形の合金m
6を得ることができる。
FIG. 3 shows another embodiment of the present invention, in which an annular groove 7 is formed on the surface of the rotary cooling body 5 along the circumferential direction. When the molten alloy raw material 1 is injected into the concave groove 7 around the entire circumference of this rotary cooling body, an alloy m having an approximately circular cross section is formed.
You can get 6.

〔発明の実施例〕[Embodiments of the invention]

合金原料として、融点が約80℃のB1−20%In−
20%Sn 、および融点が約70℃のBt−20%I
 n −20係S n −1,0%)Igの2釉類を用
意した。第2図に示す装置を用い、銅製の回転冷却体に
第1表に示す条件で、回転冷却体の回転速度、射出温度
、およびノズル径を夫々変えて、ガスの射出圧0.1〜
03気圧で、射出して合金線を連続的にfJip造した
。このようにして得られた合金線の板厚を夫々測定し、
その結果′f:第1表に示した。
As an alloy raw material, B1-20% In- with a melting point of about 80°C
20% Sn, and Bt-20% I with a melting point of about 70 °C
Two glazes of Ig were prepared. Using the apparatus shown in Fig. 2, the rotational speed of the rotary cooling body, the injection temperature, and the nozzle diameter were changed under the conditions shown in Table 1, and the gas injection pressure was 0.1 to 0.1.
The alloy wire was continuously manufactured by injection at 0.03 atm. The thickness of each alloy wire obtained in this way was measured,
The results 'f: are shown in Table 1.

丼た本発明と比較するために、本発明に規定する範囲を
外れた回転冷却体の回転速度、射出温度およびノズル径
で、上記実姉例と同様に合金線全製造し、その結果を第
1表に併記した。
In order to compare with the present invention, a complete alloy wire was manufactured in the same manner as in the above-mentioned sister example, using a rotational speed of a rotary cooling body, an injection temperature, and a nozzle diameter outside the range specified in the present invention, and the results were summarized in the first example. Also listed in the table.

第1表 〔発明の効果〕 以上説明した如く本発明に係る螢光灯封入用低融点合金
線のjJj!!造方法によれば、板厚や線径が0.1〜
2.0節程度と大きく、秤量や刺入作業が容易で、しか
も溶融状態からの泡、冷であるので、組成も均一なもの
を得ることができる。
Table 1 [Effects of the Invention] As explained above, jJj! of the low melting point alloy wire for encapsulating a fluorescent lamp according to the present invention! ! According to the manufacturing method, the plate thickness and wire diameter are 0.1~
It is large, about 2.0 knots, and easy to weigh and insert, and since it is foamed from a molten state and cooled, it is possible to obtain a product with a uniform composition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気密容器壁温度と水銀蒸気圧との関係を示すグ
ラフ、第2図は本発明方法に用いる装置の概略を示す説
明図、第3図は環状の凹溝を設けた回転冷却体の側面図
である。 1・・・合金原料、2・・・ノズル、3・・・容器、4
・・・電熱ヒーター、5・・・回転冷却体、6・・・合
金線、7・・・凹溝。 出願人代理人 弁理士 鈴 江 武 彦第1図 □沃l#容暑壁温度 (”C”) 第2− 第3図
Fig. 1 is a graph showing the relationship between wall temperature of an airtight container and mercury vapor pressure, Fig. 2 is an explanatory diagram showing the outline of the apparatus used in the method of the present invention, and Fig. 3 is a rotary cooling body provided with annular grooves. FIG. 1... Alloy raw material, 2... Nozzle, 3... Container, 4
...Electric heater, 5... Rotating cooling body, 6... Alloy wire, 7... Concave groove. Applicant's representative Patent attorney Takehiko Suzue Figure 1 □ 1 #Current wall temperature ("C") Figures 2-3

Claims (9)

【特許請求の範囲】[Claims] (1)螢光灯封入用低融点合金を溶融状態にしてノズル
から回転冷却体の表面に連続的罠射出して冷却すること
を特徴とする螢光灯側入用低融点合金線の製造方法。
(1) A method for producing a low melting point alloy wire for use in a fluorescent lamp, which comprises cooling the low melting point alloy wire for use in a fluorescent lamp by continuously trap-injecting the molten metal from a nozzle onto the surface of a rotating cooling body. .
(2) 回転冷却体の回転速度が0.2〜5.0771
/秒である特許請求の範囲第1項記載の螢光灯封入用低
融点合金線の製造方法。
(2) The rotation speed of the rotary cooling body is 0.2 to 5.0771
2. A method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the low melting point alloy wire is used for encapsulating a fluorescent lamp.
(3) ノズルの内径が02〜20關φである特許請求
の範囲第1項記載の螢光灯封入用低融点合金線の製造方
法。
(3) The method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the inner diameter of the nozzle is 02 to 20 mm.
(4)射出する低融点合金の温度が、その融点より10
〜100℃島い温度である特許請求の1ii7.囲第1
項記載の螢光灯封入用低融点合金線の取1造方法。
(4) The temperature of the low melting point alloy to be injected is 10° below its melting point.
Claim 1ii7. where the temperature is ~100°C. Enclosure 1
A method for producing a low melting point alloy wire for encapsulating a fluorescent lamp as described in 1.
(5) 回転冷却体の表面に、周方向に沿って環状の凹
溝が形成されている特許請求の範囲第1項記載の螢光灯
旧入用低融点合金線の刺造方法。
(5) The method of embroidering a low-melting point alloy wire for use in a fluorescent lamp according to claim 1, wherein an annular groove is formed along the circumferential direction on the surface of the rotary cooling body.
(6)螢光灯制入用低融点合金が゛、Snおよびpbの
うち1 fiJまたは2種と% BiおよびInからな
る特許請求の範囲第1項記載の螢光灯封入用低融点合金
線の製造方法。
(6) The low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the low melting point alloy for encapsulating a fluorescent lamp consists of 1 fiJ or two of Sn and PB and % Bi and In. manufacturing method.
(7)螢光灯封入用低融点合金が、Snおよびpbのう
ち1種または2移と、BlとInおよびHgと〃らなる
特許請求の範囲第1項記載の螢光灯封入用低融点合金線
の製造方法。
(7) The low melting point alloy for encapsulating a fluorescent lamp according to claim 1, wherein the low melting point alloy for encapsulating a fluorescent lamp comprises one or both of Sn and PB, Bl, In, and Hg. Method of manufacturing alloy wire.
(8)螢光灯刊入用合金がM笛係でSn1.5〜57%
、Pb 5〜40係、Bi 30〜70偏、In 4〜
50%である特許請求の範囲第6項捷たは第7項記載の
螢光灯制入用低融点合金紳の製造方法。
(8) The alloy for use in fluorescent lamps is M whistle and has a Sn of 1.5 to 57%.
, Pb 5-40, Bi 30-70, In 4-
A method for producing a low melting point alloy for use in fluorescent lamps according to claim 6 or claim 7, wherein the melting rate is 50%.
(9) Hgが、Sn、Pb、l1ib Inから速d
2ノした合金成分に対して4〜25係である信’ 汁′
「Mt’l求の範囲第7項または第8項記載の螢光灯用
低M1点合金線の製造方法。
(9) Hg is rapidly d from Sn, Pb, l1ib In
For the alloy component of 2, the amount of trust that is 4 to 25 is
``A method for producing a low M1 point alloy wire for a fluorescent lamp according to item 7 or 8 of the Mt'l requirement.
JP18053183A 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp Pending JPS6072650A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18053183A JPS6072650A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp
DE8484306379T DE3485382D1 (en) 1983-09-30 1984-09-18 METHOD FOR PRODUCING A LOW-MELTING ALLOY FOR SEALING FLUORESCENT LAMPS.
AT84306379T ATE70755T1 (en) 1983-09-30 1984-09-18 PROCESS FOR MAKING A LOW MELTING ALLOY FOR SEALING FLUORESCENT LAMPS.
EP84306379A EP0136866B1 (en) 1983-09-30 1984-09-18 Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
US06/651,682 US4615846A (en) 1983-09-30 1984-09-18 Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
KR1019840006111A KR890005196B1 (en) 1983-09-30 1984-09-29 Manufacturing method of low melting point alloy for fluorescent lamp encapsulation and fluorescent lamp made by enclosing the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18053183A JPS6072650A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp

Publications (1)

Publication Number Publication Date
JPS6072650A true JPS6072650A (en) 1985-04-24

Family

ID=16084888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18053183A Pending JPS6072650A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS6072650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321830A (en) * 2011-10-24 2012-01-18 南京信息工程大学 Low-smelting point high-strength lead-bismuth rare earth alloy and preparation method thereof
CN110016568A (en) * 2019-05-31 2019-07-16 谷志明 Method for recovering precious metals, noble metal reclaimer and noble metal recovery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101322A (en) * 1972-04-04 1973-12-20
JPS513613B1 (en) * 1970-12-22 1976-02-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513613B1 (en) * 1970-12-22 1976-02-04
JPS48101322A (en) * 1972-04-04 1973-12-20

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321830A (en) * 2011-10-24 2012-01-18 南京信息工程大学 Low-smelting point high-strength lead-bismuth rare earth alloy and preparation method thereof
CN110016568A (en) * 2019-05-31 2019-07-16 谷志明 Method for recovering precious metals, noble metal reclaimer and noble metal recovery system
CN110016568B (en) * 2019-05-31 2023-08-01 深圳市粤鹏金珠宝金行有限公司 Precious metal recovery method, precious metal recovery equipment and precious metal recovery system

Similar Documents

Publication Publication Date Title
CA2054784C (en) Ternary active brazing based on a zirconium-nickel alloy
US4615846A (en) Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
US4071229A (en) Vacuum revolving cylindrical furnace
JPS6072650A (en) Production of low melting alloy wire for sealing fluorescent lamp
JPS642177B2 (en)
US2206020A (en) Apparatus for cathode disintegration
JPS59134547A (en) High pressure gas discharge lamp electrode and method of producing same
JPH11100601A (en) Hydrogen storage alloy grain and its production
JPS6075504A (en) Production of low melting alloy for sealing fluorescent lamp
JPH02179803A (en) Pouring vessel for manufacturing flake for nd series permanent magnet
JP3565137B2 (en) Method for producing discharge lamp, discharge lamp and carrier for introducing halogen
JPH0337181A (en) Method for manufacturing giant magnetostrictive alloy rods consisting of rare earth metals and transition metals
JPS6072644A (en) Production of low melting alloy wire for sealing fluorescent lamp
US2203898A (en) Luminescent material
US3338706A (en) Metal processing method and resulting product
JP3109905B2 (en) Method for producing material for electronic cooling element
CN109022854B (en) Method for smelting mother alloy of amorphous soft magnetic material
JPS6210838A (en) Fluorescent lamp
JPH01252702A (en) Manufacture of high alloy wire rod
JPH01222002A (en) Manufacture of intermetallic compound powder
JPS6183632A (en) Glass melting hopper
JPS5896844A (en) Very rapidly cooled shape memory ni-ti alloy
JPS5959812A (en) Manufacture of fine metallic powder
JPS62170450A (en) Ta amorphous alloy and its production
JPS6244553A (en) Amorphous alloy having high hardness and high corrosion resistance and its production