JPS6071950A - Gas chromatograph - Google Patents
Gas chromatographInfo
- Publication number
- JPS6071950A JPS6071950A JP18150183A JP18150183A JPS6071950A JP S6071950 A JPS6071950 A JP S6071950A JP 18150183 A JP18150183 A JP 18150183A JP 18150183 A JP18150183 A JP 18150183A JP S6071950 A JPS6071950 A JP S6071950A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- gas
- operated
- sample
- sample gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/08—Preparation using an enricher
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
イ、゛技術の利用分野
本発明は、気体に含まれている微量成分の分析に適した
ガスクロマトグラフに関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Application of the Technology The present invention relates to a gas chromatograph suitable for analyzing trace components contained in gas.
口、従来技術
通常、気体中に含まれている微量成分をガスクロマトグ
ラフにより分析する場合には、第4図に示したように、
分配剤が充填された濃縮管Aを液体酸素ジャーBにより
一183’Cにまで冷却してなる低温濃縮手段を用い、
サンプラーバッグCからの気体を濃縮管Aを介して積算
流量計りにより一定量サンプリングして気体中の微量成
分を低温濃縮し、次に濃縮管の一端をガスクロマトグラ
フの試料注入口に接続し、濃縮管を加熱して濃縮成分を
脱着してガスクロマトグラフのカラムに注入することが
行なわれている。Conventional technology When analyzing trace components contained in a gas using a gas chromatograph, normally, as shown in Fig. 4,
Using a low-temperature concentration means formed by cooling a concentration tube A filled with a distribution agent to -183'C with a liquid oxygen jar B,
A fixed amount of gas from the sampler bag C is sampled through the concentrator tube A using an integrated flowmeter to condense trace components in the gas at a low temperature. Next, one end of the concentrator tube is connected to the sample inlet of the gas chromatograph and concentrated. The tube is heated to desorb concentrated components and then injected into a gas chromatograph column.
このような手法によれば微量成分の検出感度を格段に向
上することはできるが、サンプリング量の計測に誤差が
生じ易く、分析精度が低下するという問題があった。Although such a method can significantly improve the detection sensitivity of trace components, there is a problem in that errors tend to occur in the measurement of the sampling amount and the analysis accuracy decreases.
ハ、目的
本発明はこのような問題に鑑み、高い精度により微量な
成分を高い感度で検出することができるガスクロマトグ
ラフを提供することを目的とする。C. Objectives In view of the above-mentioned problems, an object of the present invention is to provide a gas chromatograph that can detect minute amounts of components with high precision and high sensitivity.
二0発明の構成
すなわち、本発明の特徴とするところは大吉i五の計量
管からの試料ガスを濃縮するようにした点にある。20. The structure of the present invention, that is, the feature of the present invention is that the sample gas from the Daikichi i5 metering tube is concentrated.
ホ、実施例
そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。E. Embodiments The details of the present invention will be explained below based on illustrated embodiments.
第1図は、本発明の一実施例を示す装置の構成図であっ
て、図中符号1は、微量成分が検出可能な量の試料ガス
をサンプリングすることができる200〜1000m文
の容量を持った計量管で、第1の多方コック2により試
料バッグ3、ポンプ4、キャリアガス源5及び後述する
第2の多方コツクロにそれぞれ切り換え接続できるよう
に構成されている。6は前述の第2の多方コックで、第
1の多方コック2、キャリアガス源5、抵抗管7及び第
3の多方コック8にそれぞれ切り換え接続できるように
構成されている。9は、濃縮部で、第3の多方コック8
により両端部の閉塞、計量管lから抵抗管7に亘る流路
、及びキャリアガス源5からガスクロマトグラフ10の
カラム11に亘る流路を形成するように構成されている
。この濃縮部は、第2図に示したように分配と吸着との
中間の捕獲特性を持つポーラス・ポリマーφビーズ12
を充填剤とした濃縮管13を冷凍器14と加熱ヒータ1
5とを設け、これらを断熱材16により同包し、濃縮工
程時にはマイナス40〜50’Cに冷却し、また脱着時
にはプラス100〜150’Cにまで加熱するように構
成されている。FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention, and the reference numeral 1 in the figure indicates a capacity of 200 to 1000 m that can sample a sample gas in an amount in which trace components can be detected. The metering tube is configured so that it can be switched and connected to a sample bag 3, a pump 4, a carrier gas source 5, and a second multi-way cock, which will be described later, through a first multi-way cock 2, respectively. Reference numeral 6 denotes the aforementioned second multi-way cock, which is configured to be switchable and connectable to the first multi-way cock 2, the carrier gas source 5, the resistance tube 7, and the third multi-way cock 8, respectively. 9 is a concentration section, and a third multi-way cock 8
Thus, both ends are closed, and a flow path from the metering tube 1 to the resistance tube 7 and a flow path from the carrier gas source 5 to the column 11 of the gas chromatograph 10 are formed. This concentration section consists of porous polymer φ beads 12 with capture characteristics intermediate between distribution and adsorption, as shown in Figure 2.
The concentrating tube 13 filled with
5 and are encased together with a heat insulating material 16, and are configured to be cooled to -40 to 50'C during the concentration process and heated to +100 to 150'C during desorption.
なお、図中符号17は、濃縮管13と同一の流体抵抗を
持った抵抗管で、計量管1の試料ガスをガスクロマトグ
ラフ10に導入するときにキャリアガス流路系の管路抵
抗を調整するためのものである。In addition, the reference numeral 17 in the figure is a resistance tube having the same fluid resistance as the concentration tube 13, and is used to adjust the resistance of the carrier gas flow path system when introducing the sample gas from the metering tube 1 into the gas chromatograph 10. It is for.
この実施例において、第1のコック2を操作して計量管
lをサンプルバッグ3とポンプ4に接続し、同時に第3
のコック8を操作して濃縮管13の両端を閉塞し、冷凍
器14を作動してマイナス40〜50”Cまで冷却する
。このような準備を終えた段階で、ポンプ4を作動して
計量v1に一定量の試料ガスをサンプリングする(第3
図■)。In this embodiment, the first cock 2 is operated to connect the metering tube l to the sample bag 3 and the pump 4, and at the same time the third
Operate the cock 8 to close both ends of the concentrating tube 13, and operate the refrigerator 14 to cool it down to -40 to 50"C. After completing these preparations, operate the pump 4 to begin weighing. Sample a certain amount of sample gas in v1 (3rd
Figure ■).
サンプリングが完了した時点で、第1、第2、第3の多
方コック2.6.9を操作してキャリアガス源5、計量
管1、濃縮管13及び抵抗管7に亘る流路を形成し、計
量管lに収容されている試料ガスをキャリアガスにより
濃縮管I3の一方の口へ圧送し、試料ガスに含まれてい
る揮発成分は十分に冷却されているポーラス・ポリマー
・ビーズ12に捕獲され、また希釈ガスやキャリアガス
は抵抗管7を通って大気中に放出されて目的成分だけが
濃縮される( II )。このようにして計量管l内の
試料ガスの濃縮が完了した時点で、第3の多方コック8
を閉塞し、ヒータ15に通電して濃縮管13を加熱し、
ポーラス・ポリマー・ビーズ12に捕獲されている目的
成分を気化、脱着しやすい状態とする(III)。この
ような状態において第2の多方コツクロを操作してキャ
リアガス源5から第3のコックを8介してクロマトグラ
フ10に亘る流路を形成し、同時に第3の多方コック8
を操作して濃縮工程とは逆方向からキャリアガスを流し
、バックフラッシュ法により目的成分をカラム11に注
入する。これにより、濃縮された全ての成分が時間遅れ
を生じることなく同時にカラムに注入し、カラムの分離
能に応じたピークを生じ、分解能と精度の高い分析結果
を得ることができる。When sampling is completed, operate the first, second, and third multi-way cocks 2.6.9 to form a flow path spanning the carrier gas source 5, metering tube 1, concentration tube 13, and resistance tube 7. , the sample gas contained in the metering tube I is forced into one port of the concentration tube I3 using a carrier gas, and the volatile components contained in the sample gas are captured in the sufficiently cooled porous polymer beads 12. Further, the diluent gas and carrier gas are discharged into the atmosphere through the resistance tube 7, and only the target component is concentrated (II). When the concentration of the sample gas in the metering tube 1 is completed in this way, the third multi-way cock 8
is closed, the heater 15 is energized to heat the concentration tube 13,
The target component captured by the porous polymer beads 12 is vaporized and brought into a state where it can be easily desorbed (III). In this state, the second multi-way cock is operated to form a flow path from the carrier gas source 5 via the third cock 8 to the chromatograph 10, and at the same time the third multi-way cock 8 is opened.
The carrier gas is caused to flow in the direction opposite to that of the concentration step, and the target component is injected into the column 11 by a backflush method. This allows all concentrated components to be injected into the column at the same time without any time delay, generating peaks that correspond to the separation ability of the column, and providing analytical results with high resolution and precision.
なお、この実施例においては、エタンC2H6を除くメ
タンCH4以上の高級炭化水素の分析に例を採って説明
したが、エタンの場合には第3のコックを例えば6方コ
ツクとして濃縮工程と同じ方向からキャリアガスを流し
てクロマトグラフに目的成分を注入すると、より高い感
度で分析することができる。In this example, analysis of higher hydrocarbons such as methane CH4 or higher excluding ethane C2H6 was explained as an example, but in the case of ethane, the third cock was set to be a six-way cock, for example, and the analysis was performed in the same direction as the concentration step. By injecting the target component into the chromatograph by flowing a carrier gas through the chromatograph, analysis can be performed with higher sensitivity.
へ、効果
以上説明したように本発明によれば、試料ガスを大きな
容量の計量管にサンプリングし、これを濃縮するように
したので、試料ガスの計量精度が向上し、微量成分を高
い精度により分析することができる。さらに、濃縮部に
分配作用と吸着作用の中間的な作用により揮発成分を捕
獲するポーラス・ポリマー・ビーズを使用したので、冷
却手段に通常の冷凍装置が使用でき、液体酸素等の補充
が不要となり、メンテナンスを簡略化することができる
。Effects As explained above, according to the present invention, the sample gas is sampled into a large-capacity measuring tube and concentrated, which improves the measurement accuracy of the sample gas and allows trace components to be detected with high precision. can be analyzed. Furthermore, since we use porous polymer beads in the concentrating section that capture volatile components through an intermediate action between distribution and adsorption, a normal refrigeration system can be used as a cooling means, eliminating the need for replenishment of liquid oxygen, etc. , maintenance can be simplified.
第1図は、本発明の一実施例を示す装置の構成図、第2
図は、同上装置における濃縮手段の一実施例を示す断面
図、第3図は、同上装置の動作を示す説明図、第4図は
、従来の低温濃縮装置の一例腎ホす構成図である。
1・・・・計量Af 2.6.8・・・・多方コック5
・・・・キャリアガス源 9・・・・低温濃縮手段10
・・・・ガスクロマトグラフ
出願人 株式会社 島津製作所
代理人 弁理士 西 川 慶 拍
同 木 村 勝 彦FIG. 1 is a configuration diagram of an apparatus showing one embodiment of the present invention, and FIG.
The figure is a sectional view showing an embodiment of the concentrating means in the above device, FIG. 3 is an explanatory diagram showing the operation of the above device, and FIG. 4 is a block diagram of an example of a conventional low-temperature concentrator. . 1...Measuring Af 2.6.8...Multi-way cock 5
... Carrier gas source 9 ... Low temperature concentration means 10
...Gas chromatograph applicant Shimadzu Corporation Representative Patent attorney Kei Nishikawa Katsuhiko Kimura
Claims (1)
ことができる大容量の計量管、揮発成分の捕獲剤として
ポーラス・ポリマー・ピースを充填してなる低温濃縮手
段、及び前記計量管から前記濃縮手段への流路と、前記
濃縮手段からカラムへの疏路を選枳的に切り換える手段
を備えてなるガスクロマトグラフ。A large-capacity measuring tube capable of sampling a sample gas in an amount in which trace components can be detected, a low-temperature concentrating means filled with porous polymer pieces as a capture agent for volatile components, and a concentrating means from the measuring tube. A gas chromatograph comprising: a channel from the concentrating means to the column; and means for selectively switching a channel from the concentrating means to the column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18150183A JPS6071950A (en) | 1983-09-28 | 1983-09-28 | Gas chromatograph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18150183A JPS6071950A (en) | 1983-09-28 | 1983-09-28 | Gas chromatograph |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6071950A true JPS6071950A (en) | 1985-04-23 |
Family
ID=16101857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18150183A Pending JPS6071950A (en) | 1983-09-28 | 1983-09-28 | Gas chromatograph |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6071950A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03125261U (en) * | 1990-03-30 | 1991-12-18 |
-
1983
- 1983-09-28 JP JP18150183A patent/JPS6071950A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03125261U (en) * | 1990-03-30 | 1991-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5595709A (en) | Instrument for measuring non-methane organic gases in gas samples | |
US5435169A (en) | Continuous monitoring of organic pollutants | |
CN109313167B (en) | Multi-capillary column preconcentration system for enhanced sensitivity in Gas Chromatography (GC) and gas chromatography-mass spectrometry (GCMS) | |
JPH06194351A (en) | Gas-chromatograph system | |
CN105548416B (en) | Method for analyzing hydrogen isotopes of light hydrocarbon monomer hydrocarbon in natural gas and light hydrocarbon enrichment device | |
US20080163674A1 (en) | Sensor with an analyte modulator | |
CN108414633A (en) | A kind of determining instrument of micro nitrogen isotope and its application | |
CN111487357A (en) | Novel trace and ultra-trace component on-line chromatographic enrichment and analysis method | |
CN113791133B (en) | A direct measurement method and detection system for non-methane total hydrocarbons | |
CN111595994A (en) | Integrated Portable High Precision MicroGC-μTCD Detector | |
CN113740469A (en) | Analysis method and analysis system for hydrogen component content of fuel | |
CN118707011A (en) | A multi-channel chromatography enrichment system and analysis method | |
CN210347556U (en) | Extremely rare sample direct determination enrichment sampling system | |
JPS6071950A (en) | Gas chromatograph | |
JPH04278458A (en) | Concentration analysis method and equipment | |
JPH06167482A (en) | Volatile hydrocarbon continuously automatic analyzer | |
JP7169775B2 (en) | Separation method by gas chromatography, gas chromatograph device, gas analyzer, concentrator tube, concentrator, method for manufacturing concentrator tube, and gas detector | |
Müller et al. | Analysis of C1‐and C2‐halocarbons in ambient air from remote areas using stainless steel canister sampling, cold trap injection HRGC, and a static calibration technique | |
JP3299562B2 (en) | Trace organic compound analysis method and device | |
JP2800621B2 (en) | Gas chromatograph | |
JPH0291564A (en) | headspace sampler | |
JP2000346759A (en) | Sample analyzer | |
JPS61118659A (en) | Column chromatography equipment | |
CN214201317U (en) | Gas Chromatography Device Based on Solenoid Valve Automatic Sampling | |
CN216646361U (en) | NMHC on-line detection flow architecture for ambient air |