JPS6070336A - Method for yielding gas having constant concentration - Google Patents
Method for yielding gas having constant concentrationInfo
- Publication number
- JPS6070336A JPS6070336A JP17980783A JP17980783A JPS6070336A JP S6070336 A JPS6070336 A JP S6070336A JP 17980783 A JP17980783 A JP 17980783A JP 17980783 A JP17980783 A JP 17980783A JP S6070336 A JPS6070336 A JP S6070336A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- constant
- concentration
- line
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は一定濃度の純物質蒸気を連続的に発生させる
方法に関するもので、とくに室温で液状または固状の純
物質の蒸気を飽和濃度以下の任意の一定濃度で連続的に
発生させる方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously generating vapor of a pure substance at a constant concentration, and particularly relates to a method for continuously generating vapor of a pure substance that is liquid or solid at room temperature at an arbitrary constant concentration below the saturation concentration. This relates to a method for generating
一定濃度の純物質蒸気を連続的に発生させることは、各
種ガス濃度の機器分析における校正用標準ガス発生の目
的に極めて重要である。例えば空気中の水蒸気の絶対濃
度の測定、大気汚染ガスの分析、作業環境における有害
ガスの分析、臭気の分析、屋内居住環境の分析など、広
い分野のガス分析用標準ガスの供給に必要である。分析
目的以外の分野でもたとえばガスの毒性評価を目的とし
た生物試験用の標準ガスなどにも一定濃度ガスの連続供
給が必要となる。Continuous generation of pure substance vapor at a constant concentration is extremely important for the purpose of generating standard gas for calibration in instrumental analysis of various gas concentrations. For example, it is necessary to supply standard gases for gas analysis in a wide range of fields, such as measurement of the absolute concentration of water vapor in the air, analysis of air pollution gases, analysis of harmful gases in working environments, analysis of odors, and analysis of indoor living environments. . Continuous supply of gas at a constant concentration is also required in fields other than analytical purposes, such as standard gas for biological tests for evaluating the toxicity of gases.
従来、常温でガス状の物質に関しては既知濃度に調製さ
れた容器充てんガスを用いる方法、あるいは純ガスを一
定流量比の希釈ガスと混合して調製する方法により、標
準ガスを連続的に発生することができるが、常温で液状
及び固状の物質の蒸気に関しては上記の方法は適用でき
ない。Conventionally, for substances that are gaseous at room temperature, a standard gas is continuously generated by using a gas filled in a container prepared to a known concentration, or by mixing pure gas with a diluent gas at a constant flow rate. However, the above method cannot be applied to vapors of substances that are liquid or solid at room temperature.
常温で液状又は固形状の物質の蒸気を連続的に一定濃度
で発生させる方法としては、従来ガス浸透法及びガス拡
散法が実用化されている。ガス浸透法においては一般に
ガス浸透管中に液状又は固形状の純物質を封入し、純物
質から発生するガスが浸透管の管壁を浸透し管外へ拡散
する際の浸透速度が一定温度で一定であることを利用し
て定濃度ガスの連続発生が行われる。一方ガス拡散法で
は、ガス拡散管内に置かれた純物質から発生するガスが
拡散管内の空間を拡散によって希釈される際の、拡散速
度が一定温度で一定であることを利用して定濃度ガスの
連続発生が行われる。しかし上記のガス浸透法及びガス
拡散法を用いる定濃度ガス発生法では、ガス浸透速度及
びガス拡散速度は一定であっても発生するガス量又はガ
ス濃度は浸透管の長さ、膜厚、材質など、また拡散管の
幾何学的状態などによって異なるので、発生ガスの正確
な濃度値は実験的にめる必要がある。また上記いずれの
方法ともガス浸透又はガス拡散が平衡状態に到達するま
でに長時間を要し、とくに蒸気圧の低い物質では極めて
長時間を要する上、発生濃度も低濃度の範囲に限定され
る。Conventionally, gas permeation methods and gas diffusion methods have been put into practical use as methods for continuously generating vapor of a liquid or solid substance at a constant concentration at room temperature. In the gas infiltration method, a liquid or solid pure substance is generally sealed in a gas infiltration tube, and the gas generated from the pure substance permeates the wall of the infiltration tube and diffuses out of the tube at a constant rate. Taking advantage of this fact, constant concentration gas is continuously generated. On the other hand, in the gas diffusion method, when the gas generated from a pure substance placed in a gas diffusion tube is diluted by diffusion through the space inside the diffusion tube, the diffusion rate is constant at a constant temperature. occurs continuously. However, in the constant concentration gas generation method using the gas permeation method and gas diffusion method described above, even if the gas permeation rate and gas diffusion rate are constant, the amount of gas generated or the gas concentration is determined by the length of the permeation tube, the film thickness, and the material. The exact concentration value of the generated gas needs to be determined experimentally because it varies depending on the geometrical state of the diffusion tube and other factors. In addition, in any of the above methods, it takes a long time for gas permeation or gas diffusion to reach an equilibrium state, especially for substances with low vapor pressure, and the concentration generated is limited to a low concentration range. .
本発明者らは従来の定濃度ガス発生にみられる問題点を
解決し、物質の蒸気をその飽和濃度以下の任意の濃度で
連続的に発生させる方法を鋭意研究した結果、従来法と
は異なる原理にもとづく定濃度ガス連続発生方法を見出
し、本発明をなすに至った。本発明の方法は液状又は固
形状の物質が一定温度及び一定圧力で示す蒸気圧が物質
により固有かつ一定であることに立脚し、一定温度にお
ける物質の飽和ガスを連続的に発生させ、これを必要に
応じて一定の割合で希釈することを原理としている。The inventors of the present invention solved the problems seen in conventional constant concentration gas generation, and as a result of intensive research on a method to continuously generate vapor of a substance at an arbitrary concentration below its saturated concentration, we found that this method differs from the conventional method. A method for continuously generating constant concentration gas based on the principle was discovered, and the present invention was completed. The method of the present invention is based on the fact that the vapor pressure of a liquid or solid substance at a constant temperature and pressure is unique and constant depending on the substance, and continuously generates a saturated gas of the substance at a constant temperature. The principle is to dilute at a fixed rate as necessary.
即ち、本発明によれば、液状又は固形の純物質を含浸さ
せた多孔質担持体を一定温度に保ち、担持体の表面に上
記純物質と相互作用を示さないバランスガスを一定流速
で通過させることによりその純物質の飽和濃度ガスを連
続的に発生させ、該発生ガスを任意の流量比の希釈ガス
を用いて任意の濃度に希釈することを特徴とする定濃度
ガス発生方法が提供される。That is, according to the present invention, a porous carrier impregnated with a liquid or solid pure substance is maintained at a constant temperature, and a balance gas that does not interact with the pure substance is passed over the surface of the carrier at a constant flow rate. Accordingly, a method for generating a constant concentration gas is provided, which is characterized in that a gas with a saturated concentration of the pure substance is continuously generated, and the generated gas is diluted to an arbitrary concentration using a diluent gas having an arbitrary flow rate ratio. .
次に、本発明を図面により説明すると、第1図において
、5は飽和蒸気発生セルで、セル内部には、純物質阿を
含浸させた多孔性担持体又は表面積の大きい薄膜状材料
2oが充てんされる。多孔質担持体又は薄膜状材料は室
温以下の一定温度に保持される。Next, the present invention will be explained with reference to the drawings. In Fig. 1, 5 is a saturated steam generation cell, and the inside of the cell is filled with a porous carrier impregnated with a pure substance, or a thin film material 2o with a large surface area. be done. The porous support or thin film material is maintained at a constant temperature below room temperature.
1はバランスガス(希釈用ガス)の導入口で、導入口1
から導入されたバランスガスは、ラインエ5を通って、
2つに分流され、その一方の流れはライン16、質量流
量調節器2,3を通り、一定の流量に調節された後、ラ
イン8を通って、混合バルブ18に送られる。他方の流
れは、ライン17を通り、質量流量調節器2,3を通り
、一定の流量に調節さ九た後、ライン9からバランスガ
ス導入管10を通って、飽和蒸気発生セル5内に導入さ
れる。1 is the introduction port for balance gas (dilution gas);
The balance gas introduced from the line passes through line 5,
The flow is divided into two parts, and one of the flows passes through line 16 and mass flow regulators 2 and 3, is adjusted to a constant flow rate, and is then sent to mixing valve 18 through line 8. The other flow passes through line 17, passes through mass flow rate controllers 2 and 3, and is regulated to a constant flow rate, and then is introduced into saturated steam generation cell 5 from line 9 through balance gas introduction pipe 10. be done.
蒸気発生セル5においては、純物質の飽和蒸気が発生し
、これは排出口11及びライン12を通って混合バルブ
1Bに送られ、ここで、ライン8を通ってきたバランス
ガスと混合希釈され、これ希釈された純物質蒸気は、ラ
イン13を通って、ガス混合管7に導入され、ここから
ライン14を通って導出される。4は恒温槽及び6は温
度検出器である。In the steam generation cell 5, pure saturated steam is generated, which is sent through the outlet 11 and the line 12 to the mixing valve 1B, where it is mixed and diluted with the balance gas that has passed through the line 8. This diluted pure substance vapor is introduced through line 13 into gas mixing tube 7 and from there is led out through line 14. 4 is a constant temperature bath and 6 is a temperature detector.
本発明は、複数の混合ガス発生にも適用され、この場合
の装置を第2図に示す。第2図において、第1図に示し
たものと同じ符号は同一意味を有する。この装置におい
ては、飽和蒸気発生セル5−1.5−2及び5−3でそ
れぞれ別個の純物質の飽和蒸気が発生し、これらの蒸気
はガス混合管7に導入されてここで混合され、ライン1
4を通って導出される。The invention also applies to the generation of multiple gas mixtures, the apparatus for which is shown in FIG. In FIG. 2, the same symbols as those shown in FIG. 1 have the same meanings. In this device, saturated steam of separate pure substances is generated in the saturated steam generation cells 5-1, 5-2 and 5-3, and these steams are introduced into the gas mixing pipe 7 and mixed there, line 1
4.
本発明においては、蒸気発生源となる純物質が液状の場
合には、純物質を飽和蒸気発生セルの底部に置き、毛管
現象によって、多孔質担持体に含浸させ、担持体を常時
純物質で湿潤させ、との担持体表面から蒸発させる。ま
た、純物質が固体の場合には、あらかじめ溶媒に溶解し
て担持体に含浸させた後、溶媒を除去させたものを用い
ることができる。飽和蒸気発生セル内の担持体は、純物
質の蒸発面積を大として蒸発を促進させ、速やかに蒸気
圧平衡に到達させるためのもので、純物質と化学的作用
のない多孔性材料であればいずれも用いることができる
が、好適には繊維素繊維材料、ガラス繊維材料、けいそ
う土など鉱物質粒子、粒状ポリマー材料、さらに好適に
は網状又は織物状繊維素繊維、ハニカム構造状に成形し
た繊維素ろ紙、綿ガーゼを積層させ、その積層綿ガーゼ
の下部に、液に浸漬させて液を吸上げるためのガーゼ片
を結合させたもの等が用いられる。飽和蒸気発生セル内
に導入するバランス用(希釈用)ガスとしては空気、窒
素、ヘリウム、アルゴンなどの純物質と相互作用のない
気体であれば目的に応じて選択して使用することができ
る。In the present invention, when the pure substance serving as the steam generation source is in liquid form, the pure substance is placed at the bottom of the saturated steam generation cell and impregnated into the porous carrier by capillary action, so that the carrier is constantly filled with the pure substance. Wet and evaporate from the support surface. Furthermore, when the pure substance is a solid, it can be used by dissolving it in a solvent in advance, impregnating it into a carrier, and then removing the solvent. The support in the saturated vapor generation cell is used to promote evaporation by increasing the evaporation area of the pure substance, and to quickly reach vapor pressure equilibrium.If it is a porous material that has no chemical interaction with the pure substance, Any of these can be used, but preferred are cellulose fiber materials, glass fiber materials, mineral particles such as diatomaceous earth, granular polymer materials, and more preferably net-like or woven cellulose fibers, and honeycomb-structured materials. The filter used is one in which cellulose filter paper and cotton gauze are laminated, and a piece of gauze is bonded to the bottom of the laminated cotton gauze for soaking in liquid and absorbing the liquid. As the balance (dilution) gas introduced into the saturated steam generation cell, any gas that does not interact with pure substances, such as air, nitrogen, helium, and argon, can be selected depending on the purpose.
本発明によれば、飽和蒸気発生セル内において、純物質
と通過気体との間には速やかに蒸気圧平衡が成立し、セ
ル出口からはその温度における純物質の飽和濃度ガスが
連続的に送り出される。物質の一定温度、一定圧力下に
おける平衡蒸気圧は物質固有の物性に属し、セル内で気
体・液体平衡又は気体・固体平衡が成立する限り、生成
するガス濃度は装置の構造な物理的状態には無関係に一
定である。またこれら純物質の飽和蒸気濃度は所定温度
における蒸気圧として既知のデータから容易にめること
ができる。また飽和濃度以下のガス濃度を調製する場合
には、発生する飽和濃度ガス−を所定の流量比の希釈ガ
スによって任意の濃度に希釈し連続的に供給することが
容易にできる。According to the present invention, vapor pressure equilibrium is quickly established between the pure substance and the passing gas in the saturated steam generation cell, and the saturated concentration gas of the pure substance at that temperature is continuously sent out from the cell outlet. It will be done. The equilibrium vapor pressure of a substance under constant temperature and constant pressure belongs to the physical properties inherent to the substance, and as long as gas-liquid equilibrium or gas-solid equilibrium is established within the cell, the concentration of the gas produced will depend on the physical state of the structure of the device. is constant regardless. Further, the saturated vapor concentration of these pure substances can be easily determined from known data as the vapor pressure at a predetermined temperature. Further, when adjusting the gas concentration below the saturation concentration, it is easy to dilute the generated saturation concentration gas to an arbitrary concentration with a diluent gas at a predetermined flow rate ratio and continuously supply the diluted gas.
次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例
内径15mm、高さ200mmの円筒ガラス製の飽和蒸
気発生セル内底部に、表に示す純物質としての有機溶剤
的20m nを注入した後、直径約15mmの円形綿ガ
ーゼ積層物を下層部が有機溶剤中に浸漬するように挿入
する。積層物の高さは30〜50mmとし積層物上層ま
で有機溶剤が浸透した後、飽和蒸気発生セルを恒温水層
中に置きガス導入口より精製空気を20m Q /分の
流速で通気する。通気後30分毎に発生ガスをガスクロ
マトグラフで分析した結果、48時間にわたって相対標
準偏差2%以内で一定濃度を示した。Example After injecting 20 mn of organic solvent as a pure substance shown in the table into the inner bottom of a saturated steam generation cell made of cylindrical glass with an inner diameter of 15 mm and a height of 200 mm, a circular cotton gauze laminate with a diameter of about 15 mm was placed in the lower layer. Insert it so that it is immersed in an organic solvent. The height of the laminate is set to 30 to 50 mm, and after the organic solvent has permeated to the upper layer of the laminate, the saturated steam generating cell is placed in a constant temperature water layer and purified air is passed through the gas inlet at a flow rate of 20 mQ/min. Gas chromatography analysis of the generated gas every 30 minutes after ventilation showed a constant concentration over 48 hours with a relative standard deviation of less than 2%.
また上記の装置により0℃及び10℃において各種有機
溶剤から発生する飽和濃度ガスの分析値と文献からめた
蒸気圧値とを表に示した。The table also shows the analytical values of saturated gases generated from various organic solvents at 0°C and 10°C using the above-mentioned apparatus, and the vapor pressure values obtained from literature.
第1図及び第2図は、本発明の実施装置例を示すもので
、第1図は単一の純物質を含む定濃度ガス発生装置、第
2図は複数の純物質を含む定濃度ガス発生装置を示す。
1・・・バランスガス入口、2,3・・・質量流量調節
器、4・・・恒温槽、5.5−1.5−2.5−3・・
・飽和蒸気発生セル、6・・・温度検出器、20・・・
多孔性担持体、ト・・液状純物質。Figures 1 and 2 show examples of apparatuses for implementing the present invention. Figure 1 shows a constant concentration gas generator containing a single pure substance, and Figure 2 shows a constant concentration gas generator containing a plurality of pure substances. The generator is shown. 1... Balance gas inlet, 2, 3... Mass flow controller, 4... Constant temperature chamber, 5.5-1.5-2.5-3...
- Saturated steam generation cell, 6... temperature detector, 20...
Porous carrier, liquid pure substance.
Claims (1)
を一定温度に保ち、担持体の表面に上記純物質と相互作
用を示さないバランスガスを一定流速で通過させること
によりその純物質の飽和濃度ガスを連続的に発生させ、
該発生ガスを任意の流量比の希釈ガスを用いて任意の濃
度に希釈することを特徴とする定濃度ガス発生方法。(1) A porous carrier impregnated with a liquid or solid pure substance is kept at a constant temperature, and a balance gas that does not interact with the pure substance is passed through the surface of the carrier at a constant flow rate to produce the pure substance. Continuously generates gas with a saturated concentration of
A constant concentration gas generation method characterized by diluting the generated gas to an arbitrary concentration using a diluent gas having an arbitrary flow rate ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17980783A JPS6070336A (en) | 1983-09-28 | 1983-09-28 | Method for yielding gas having constant concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17980783A JPS6070336A (en) | 1983-09-28 | 1983-09-28 | Method for yielding gas having constant concentration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6070336A true JPS6070336A (en) | 1985-04-22 |
Family
ID=16072232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17980783A Pending JPS6070336A (en) | 1983-09-28 | 1983-09-28 | Method for yielding gas having constant concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6070336A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4621375B2 (en) * | 2001-04-03 | 2011-01-26 | 長谷川香料株式会社 | Deodorant search method |
JP2013061167A (en) * | 2011-09-12 | 2013-04-04 | Toyota Central R&D Labs Inc | Low concentration gas supply device |
CN104155415A (en) * | 2014-08-20 | 2014-11-19 | 国家电网公司 | Method for rapidly obtaining constant gas humidity |
CN104390818A (en) * | 2014-12-11 | 2015-03-04 | 深圳睿境环保科技有限公司 | Smoke constant speed constant current sampling device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346989A (en) * | 1976-10-06 | 1978-04-27 | Nippon Chemiphar Co Ltd | Novel dibenzo(b,f)thiepin derivatives and their preparation |
JPS545317A (en) * | 1977-06-14 | 1979-01-16 | Victor Co Of Japan Ltd | Rejection system of interferring distortion caused in demodulation signal due to interference between fm signals |
US4388272A (en) * | 1981-04-08 | 1983-06-14 | Northwestern University | Method and apparatus for precise control of vapor phase concentrations of volatile organics |
-
1983
- 1983-09-28 JP JP17980783A patent/JPS6070336A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346989A (en) * | 1976-10-06 | 1978-04-27 | Nippon Chemiphar Co Ltd | Novel dibenzo(b,f)thiepin derivatives and their preparation |
JPS545317A (en) * | 1977-06-14 | 1979-01-16 | Victor Co Of Japan Ltd | Rejection system of interferring distortion caused in demodulation signal due to interference between fm signals |
US4388272A (en) * | 1981-04-08 | 1983-06-14 | Northwestern University | Method and apparatus for precise control of vapor phase concentrations of volatile organics |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4621375B2 (en) * | 2001-04-03 | 2011-01-26 | 長谷川香料株式会社 | Deodorant search method |
JP2013061167A (en) * | 2011-09-12 | 2013-04-04 | Toyota Central R&D Labs Inc | Low concentration gas supply device |
CN104155415A (en) * | 2014-08-20 | 2014-11-19 | 国家电网公司 | Method for rapidly obtaining constant gas humidity |
CN104390818A (en) * | 2014-12-11 | 2015-03-04 | 深圳睿境环保科技有限公司 | Smoke constant speed constant current sampling device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barratt | The preparation of standard gas mixtures. A review | |
Cal et al. | Removal of VOCs from humidified gas streams using activated carbon cloth | |
Nguyen et al. | Extraction of organic contaminants in aqueous solutions by pervaporation | |
Psaume et al. | Pervaporation: importance of concentration polarization in the extraction of trace organics from water | |
Watson et al. | A study of organic compound pervaporation through silicone rubber | |
Althuluth et al. | Natural gas purification using supported ionic liquid membrane | |
Li et al. | Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions | |
Ippen et al. | Basic factors of oxygen transfer in aeration systems [with Discussion] | |
JPS6070336A (en) | Method for yielding gas having constant concentration | |
US5656069A (en) | Selective carbon filter | |
Comite et al. | Exploring CO2 capture from pressurized industrial gaseous effluents in membrane contactor-based pilot plant | |
Sanchez-Pedreno et al. | The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals | |
Wang et al. | Effect of ionic liquid confinement on CO2 solubility and permeability characteristics | |
US12181449B2 (en) | Fluidized bed for industrial hygiene applications | |
Cadoff et al. | Passive sampler for ambient levels of nitrogen dioxide | |
Riba et al. | Preconcentration of atmospheric terpenes on solid sorbents | |
EP0500938A1 (en) | Method and device for preparation of standard vapour-gas mixture of substance to be analyzed | |
Vorotyntsev et al. | Gas mixtures separation by an absorbing pervaporation method | |
Obuskovic et al. | Flow Swing Membrane Absorption− Permeation | |
Namieśnik et al. | Investigations on the Applicability of some Commercial Polyethylene Films to Permeation‐type Passive Samplers for Organic Vapours | |
Hauser et al. | Membrane extraction of volatile organic compounds in combination with mobile gas chromatographic analysis | |
Feng et al. | Permeate pressure build‐up in shellside‐fed hollow fiber pervaporation membranes | |
Ballesta et al. | Simultaneous passive sampling of volatile organic compounds | |
RU2077937C1 (en) | Method of performing mass exchange | |
Namieśnik et al. | Determination of selected organic pollutants in indoor air using permeation passive samplers |