JPS6070321A - Color recognizing apparatus for color picture - Google Patents
Color recognizing apparatus for color pictureInfo
- Publication number
- JPS6070321A JPS6070321A JP58178521A JP17852183A JPS6070321A JP S6070321 A JPS6070321 A JP S6070321A JP 58178521 A JP58178521 A JP 58178521A JP 17852183 A JP17852183 A JP 17852183A JP S6070321 A JPS6070321 A JP S6070321A
- Authority
- JP
- Japan
- Prior art keywords
- color
- group
- pieces
- color image
- divided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 230000006870 function Effects 0.000 claims description 10
- 208000014617 hemorrhoid Diseases 0.000 claims 1
- 239000003086 colorant Substances 0.000 abstract description 13
- 239000013598 vector Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
- G01J3/513—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Color Image Communication Systems (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、あい1いさを含む有限数の色を対象とした色
彩画像の色識別装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a color identification device for a color image, which targets a finite number of colors including brightness and brightness.
従来例の構成とその問題点
有限色より成る色彩画像、たとえば地図、染色図案、織
物図案などを対象として、色彩を識別する装置として、
比較的容易に実現でき、優れた結果を与えるものとして
は、マルチスペクトラムとして反射捷たは透過色光をと
らえ、そのパターンを識別するものが知られている。こ
れは、その識別規則を適当に定めることで、統計学的に
合理約1■1
となる観測パターンについてのパラメータを、画像ごと
に与える必要がある。そのためのパラメータ推定の過程
、「学習」が必要である。従来の色識別装置における学
習には、通常予め色の分っている色見本を読捷せてパラ
メータを算出し、識別関数を組立てていた。このような
「学習」には、読みとるべき画像とは別に、画像の中に
出現する色を塗った色見本を用意するか、人間が介入し
て、画像の中の領域とそれに対応する色を指示してやる
必要がある。前者の方法は、対象画像中の塗りのむらな
ど、パラメータを大きく支配する要因が見本に再現され
ず、寸だ後者の方法は人間が介入するためサンプルする
領域が限定され、正しいパラメータを得にくいという欠
点があった。Configuration of conventional example and its problems As a color identification device for color images consisting of finite colors, such as maps, dyeing patterns, textile patterns, etc.
A known method that can be realized relatively easily and gives excellent results is a method that captures reflected or transmitted color light as a multispectrum and identifies its pattern. To do this, it is necessary to provide parameters for each image regarding an observation pattern that is statistically reasonable by appropriately determining the identification rule. For this purpose, the process of parameter estimation, ``learning'', is necessary. For learning in a conventional color identification device, usually a color sample whose color is known in advance is read, parameters are calculated, and a classification function is assembled. This kind of "learning" involves preparing a color sample with the colors that appear in the image in addition to the image to be read, or by human intervention to identify areas in the image and their corresponding colors. I need to give instructions. In the former method, factors that greatly control the parameters, such as uneven paint in the target image, are not reproduced in the sample, and in the latter method, the sample area is limited due to human intervention, making it difficult to obtain correct parameters. There were drawbacks.
発明の目的
本発明はこれらの欠点を除いて、容易にかつ客観的に正
しいパラメータの得られる手段を備えた色彩画像の色識
別装置を提供することを目的とする0
発明の構成
本発明は色彩画像を走査してn個の波長域に分離し、そ
れらのn個のパターン毎に多数の小空間に区切り、小空
間の標本密度により第2次標本を選定して学習用サンプ
ルとし、それらの各群から群ごとの母数を算出し識別関
数を構成するようにした色彩画像の色識別装置である。OBJECTS OF THE INVENTION It is an object of the present invention to eliminate these drawbacks and provide a color identification device for color images equipped with means for easily and objectively obtaining correct parameters. The image is scanned and separated into n wavelength ranges, each of these n patterns is divided into a large number of small spaces, and secondary samples are selected as learning samples according to the sample density of the small spaces. This is a color identification device for color images that calculates a parameter for each group from each group and constructs a classification function.
実施例の説明
以下本発明の実施例について図面とともに詳細に説明す
る。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は対象となる色彩画像の例で、C1,C2・・・
Cなるn色の異なった色彩の領域で構成されている。こ
れらの色は、塗りむら、あるいは印刷むら等を含んでい
る。Figure 1 shows an example of a target color image, C1, C2...
It is composed of areas of n different colors called C. These colors include uneven coating, uneven printing, and the like.
第2図は、本発明の一実施例を示す構成図である。図に
おいて、1は第1図に示されるようなn色から成る識別
対象画像、2は観測点の色光を抽出するための光学系で
、光源(図示せず)よりの対象面透過光、捷たは反射光
を取り出す。識別対象画像1と光学系2は適当な走査系
によって相対の波長に分解するための色分解フィルター
群、4は色分解用フィルター3によって選択された各波
長域の光成分を変換する光電変換素子群、6は増幅回路
群、6はテータブロセソサ、7はデータを記憶するだめ
の記憶装置、8は観測点の色を判定するだめの色認識演
算装置4である。FIG. 2 is a configuration diagram showing an embodiment of the present invention. In the figure, 1 is an image to be identified consisting of n colors as shown in Fig. 1, and 2 is an optical system for extracting colored light from an observation point, which collects light transmitted through the object surface from a light source (not shown), and or take out the reflected light. The identification target image 1 and the optical system 2 are a group of color separation filters for separating into relative wavelengths using an appropriate scanning system, and 4 is a photoelectric conversion element that converts light components in each wavelength range selected by the color separation filter 3. 6 is an amplifier circuit group, 6 is a theta processor, 7 is a storage device for storing data, and 8 is a color recognition calculation device 4 for determining the color of an observation point.
本発明に従えば、観測点からの色光は、光学系2、フィ
ルタ群3、光電変換素子群4および増幅器群5を経て、
複数の波長帯(λ1.λ2.・・・・・・λr)に対応
するr個の電気信号X 1t X2 、・・・・xrと
なる。According to the present invention, colored light from an observation point passes through an optical system 2, a filter group 3, a photoelectric conversion element group 4, and an amplifier group 5,
There are r electrical signals X 1t X2 , . . . xr corresponding to a plurality of wavelength bands (λ1, λ2, .
つまり、各観測点の色光は、Xつ、x2.・・・・・X
、を成分とするr次元の観測ベクトル(簡単のため、以
ザ6を経て、−たん記憶装置7に蓄えられる0全画像の
走査終了後、記憶装置7内の観測ベクトル群(マ)から
、無作為または予め定めておいた規則に従って、m個(
m>> n 、 n は識別されるべき色の数)の第1
次標本を抽出する。これをx 、x 。In other words, the number of colored lights at each observation point is X, x2. ...X
, an r-dimensional observation vector whose components are m pieces (at random or according to predetermined rules)
m >> n , n is the first of the colors to be identified)
Extract the next sample. This is x, x.
73・・・・1と表わす。次に、マ’(i−1,2・・
−・m)を用いて、その各成分を比較し、
x1max=maxix) I
X ma X−ma X (X ’ ]2
x max−max[x’1
なる最大値、XkmaX (k=1.2.−=−r)お
よび1−1nlxZ
なる最小値xkmin(k=1,2・・・・・r)を見
付ける。73...Represented as 1. Next, Ma'(i-1,2...
-・m), compare each component, and calculate the maximum value of x1max=maxix) I .-=-r) and 1-1nlxZ (k=1, 2...r).
次に各成分ごとに、その最小値〜最大値の間を1個に区
切る0これにより、標本の存在するr次元の空間は、l
のr乗個の小空間(それぞれの形の等しい超直方体)に
分割される。全ての標本はこのlr個の小空間のどれか
に含まれている事になる。そのうちの標本の含1れてい
る数の多いものより順に、i個の空間(inn)を選ぶ
。このようにして選んだi群の標本を、第2次標本と名
付け、第2次標本の各群は相異なる1色の色に対する標
本とみなす。プロセッサ6は、これらのi個の群につい
て、それぞれ群内の標本の成分を調べ、その成分の統計
的な特性をめる。これによって、色認識演算装置8に必
要な識別関数を組立てる。Next, for each component, divide the range between its minimum value and maximum value into one piece.0 As a result, the r-dimensional space in which the sample exists is l
It is divided into r small spaces (equal hypercuboids of each shape). All samples are included in one of these lr small spaces. Among them, i spaces (inn) are selected in descending order of the number of samples they contain. The samples of group i selected in this way are named secondary samples, and each group of secondary samples is regarded as a sample for one different color. The processor 6 examines the components of the samples in each of these i groups and determines the statistical properties of the components. In this way, the discrimination function necessary for the color recognition calculation device 8 is assembled.
識別関数は、成分の統計的性質から最適な形を定めるこ
とができ、例えば各群内で、標本の各成分が多変数正規
分布する場合は、2次の識別関数を用いると、ベイズの
決定法が実現される。色の識別では成分は必ずしも正規
分布しないが、例えば2次識別関数で実用上問題はない
。The optimal form of the discriminant function can be determined based on the statistical properties of the components. For example, if each component of the sample has a multivariate normal distribution within each group, using a quadratic discriminant function will help Bayesian decision making. The law is fulfilled. In color discrimination, components are not necessarily normally distributed, but for example, a quadratic discriminant function poses no practical problem.
このようにして識別関数が決捷っだ後、プロセッサ6は
、記憶装置7から、全観測データを順次読み出し、色認
識演算装置8に与えれば、全てのデータは合理的に1個
の色に分けられる。i ) nであるから、その結果を
適当に組合せて、目的とするn色の色認識結果を得るこ
とができる。After the discriminant function is resolved in this way, the processor 6 sequentially reads out all observed data from the storage device 7 and supplies it to the color recognition calculation device 8, so that all the data can be rationally combined into one color. Can be divided. i) Since n, the results can be appropriately combined to obtain the desired color recognition results for n colors.
第3図は、第1次の標本の区分を例示している。FIG. 3 illustrates the division of the first order sample.
ここでは、標本はxl、x2の2つの成分から成るとし
、7=aで標本を区切っている。図から明らかなように
、高密度の小空間10.11 、12.13を標本デー
タから見付は出すのは容易である。第3図の例が、3色
の色の例と仮定するならば、小空間12と小空間13ば
おそらく同一色に属するものであって、結果を3色に甘
とめるのは容易である。Here, it is assumed that the sample consists of two components xl and x2, and the sample is separated by 7=a. As is clear from the figure, it is easy to find the high-density small spaces 10.11 and 12.13 from the sample data. Assuming that the example in FIG. 3 is an example of three colors, the small space 12 and the small space 13 probably belong to the same color, and it is easy to limit the result to three colors.
また、先の実施例では、標本の密度順に機械的に1個を
選んだが、第3図の例に見られるように、隣接する高密
度小空間は、同一カテゴリの標本から発生する場合が多
い。そこで他の実施例として、小空間に分けた後、密度
の順に小空間を選ぶ時、既に選ばれた小空間に隣接する
、すなわち、唯一つを除いてその空間の座標が等しいも
のは、それらを一つとしてまとめる事が可能である。In addition, in the previous example, one specimen was mechanically selected in order of density, but as seen in the example in Figure 3, adjacent high-density small spaces often originate from specimens of the same category. . Therefore, as another example, when selecting small spaces in the order of density after dividing into small spaces, the spaces that are adjacent to the already selected small spaces, that is, those whose coordinates are the same except for one, are It is possible to combine them into one.
また他の実施例として、小空間の選出の際、密度の順に
選ばず、ある小空間に注目した時、それに隣接する全て
の小空間の密度が、それの密度より低い空間を選んでも
、良い。これは、各色の事前生起確率がバラついている
時や、色ごとに分布の広がりが大きく異なるような画像
を対象とする時に、特に有効である。As another example, when selecting small spaces, it is possible not to select them in order of density, but when focusing on a certain small space, to select a space where the density of all the small spaces adjacent to it is lower than that density. . This is particularly effective when the a priori probability of occurrence of each color varies, or when the target image is one in which the spread of distribution varies greatly for each color.
発明の効果
以上のように、本発明は色彩画像を走査してn個の波長
域に分離し、それらのn個のパターン成分毎に多数の小
空間に区切り、小空間の標本密度により第2次標本を選
定して学習用サンプルとし、それらの各群から群ごとの
母数を算出し識別関数を構成するようにした色彩画像の
色識別装置で、統計的に比較的単純な分布を持つ成分の
パターンに対して、簡単で有効な、いわゆる「教師なし
学習」を実行さぜ、効果的な色彩画像の色識別装置を実
現することができる。Effects of the Invention As described above, the present invention scans a color image, separates it into n wavelength ranges, divides each of these n pattern components into a large number of small spaces, and divides the color image into a number of small spaces depending on the sample density of the small spaces. This is a color identification device for color images that selects the next sample as a learning sample, calculates the parameter for each group from each group, and constructs a discriminant function.It has a statistically relatively simple distribution. By performing simple and effective so-called "unsupervised learning" on component patterns, it is possible to realize an effective color identification device for color images.
第1図は本発明に適用される色彩画像の一例を示す平面
図、し142図は本発明による色識別装置の一実施例を
示すブロック図、第3図は本発明により小区間に区分さ
れた標本例を示す平面図である。
1・・・・・・識別対象画像、2・・・・・・光学系、
3・・・・・色分解フィルター群、4・・・・・・光電
変換素子群、6・・・・・・増幅回路群、6・・・・・
データプロセッサ、7・・・・・・記憶装置、8・・・
・色認識演算装置、10〜13・・・・・・小空間。FIG. 1 is a plan view showing an example of a color image applied to the present invention, FIG. 142 is a block diagram showing an example of a color identification device according to the present invention, and FIG. FIG. 1...Identification target image, 2...Optical system,
3...Color separation filter group, 4...Photoelectric conversion element group, 6...Amplification circuit group, 6...
Data processor, 7...Storage device, 8...
- Color recognition calculation device, 10-13...Small space.
Claims (1)
的な反射光重たは透過光をn個の波長域に分離するため
の光学系と、それらの成分の組をパターンとして観測点
の色彩を判別するための識別関数の算出および判定手段
と、色彩画像を走査する手段とを備え、色彩画像の走査
により得られるn個のパターン成分ごとにその最大値と
最小値の間を複数個の小区間に分割し、区切られたn次
元観測空間内の各小空間ごとの観測点の出現頻度を比較
し、その値が優勢である小空間を複数個選び、選ばれた
各小空間内にあるパターンの群を学習パターンとし、そ
れらの各群から群ごとの母数を算出し、その母数によっ
て識別関数を構成することを特徴とする色彩画像の色識
別装置。 (勢 選ばれた優勢な小空間のうち、その範囲が唯1つ
を除いて等しい2つ以上の小空間は、同一の母集団によ
るものとみなして、母数を算出することを特徴とする特
許請求の範囲第1項記載の色彩画像の色識別装置。 (痔 小空間への区分を、各パターン成分の最大値と最
小値の間を均等に分割して行うことを特徴とする特許請
求の範囲第1項記載の色彩画像の色識別装置。 (→ 小空間への区分を、各パターン成分の最大値、最
小値間に互り、その成分に関しては各区分内の観測パラ
メータの数がそれぞれ等しくなるように区切る事を特徴
とする特許請求の範囲第1項記載の色彩画像の色識別装
置。(1) An optical system that irradiates a color image with light from a light source and separates the local reflected light or transmitted light at an observation point into n wavelength ranges, and a set of these components as a pattern. It is equipped with means for calculating and determining a discriminant function for determining the color of an observation point, and means for scanning a color image, and for each of n pattern components obtained by scanning the color image, between the maximum value and the minimum value. is divided into multiple subintervals, the frequency of appearance of observation points in each subspace in the divided n-dimensional observation space is compared, multiple subspaces in which this value is dominant are selected, and each selected A color identification device for a color image, characterized in that a group of patterns in a small space is used as a learning pattern, a parameter for each group is calculated from each of the groups, and a classification function is configured by the parameter. Among the selected dominant small spaces, two or more small spaces whose ranges are equal except for one are considered to be from the same population, and the population is calculated. A color identification device for a color image according to claim 1. (Hemorrhoids) A patent claim characterized in that the division into small spaces is performed by equally dividing between the maximum value and the minimum value of each pattern component. A color identification device for a color image as described in item 1. 2. The color identification device for a color image according to claim 1, wherein the color images are divided equally.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58178521A JPS6070321A (en) | 1983-09-27 | 1983-09-27 | Color recognizing apparatus for color picture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58178521A JPS6070321A (en) | 1983-09-27 | 1983-09-27 | Color recognizing apparatus for color picture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6070321A true JPS6070321A (en) | 1985-04-22 |
Family
ID=16049926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58178521A Pending JPS6070321A (en) | 1983-09-27 | 1983-09-27 | Color recognizing apparatus for color picture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6070321A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0427832A (en) * | 1990-05-22 | 1992-01-30 | Shirou Usui | Method and apparatus for converting color vision information |
JPH0560616A (en) * | 1991-09-05 | 1993-03-12 | Matsushita Electric Ind Co Ltd | Method and apparatus for discriminating color |
JP2014157026A (en) * | 2013-02-14 | 2014-08-28 | Ricoh Co Ltd | Image forming apparatus, colorimetry method, and colorimetry program |
-
1983
- 1983-09-27 JP JP58178521A patent/JPS6070321A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0427832A (en) * | 1990-05-22 | 1992-01-30 | Shirou Usui | Method and apparatus for converting color vision information |
JPH0560616A (en) * | 1991-09-05 | 1993-03-12 | Matsushita Electric Ind Co Ltd | Method and apparatus for discriminating color |
JP2014157026A (en) * | 2013-02-14 | 2014-08-28 | Ricoh Co Ltd | Image forming apparatus, colorimetry method, and colorimetry program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Gender classification using machine learning with multi-feature method | |
JP3114668B2 (en) | Object detection / background removal method, apparatus, and recording medium recording program | |
Bansal et al. | Color image segmentation using CIELab color space using ant colony optimization | |
JPS5811562B2 (en) | Irobunkaisouchi | |
Ap-Apid | An algorithm for nudity detection | |
Thoonen et al. | Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion | |
Agrawal et al. | Survey on image segmentation techniques and color models | |
Lionnie et al. | A comparison of human skin color detection for biometrie identification | |
Kwok et al. | Design of unsharp masking filter kernel and gain using particle swarm optimization | |
Dhanuja et al. | Areca nut disease detection using image processing technology | |
JPS6070321A (en) | Color recognizing apparatus for color picture | |
Khediri et al. | Comparison of image segmentation using different color spaces | |
Khanam et al. | Human skin color detection technique using different color models | |
Tapia et al. | Alphanet: Single morphing attack detection using multiple contributors | |
Busin et al. | Color space selection for unsupervised color image segmentation by histogram multi-thresholding | |
JP2005115525A (en) | Device for deciding kind of feature value and discrimination condition to be used for discrimination processing, program and recording medium with program recorded thereon, and device for selecting data of specific content | |
Zhang et al. | Fast learning artificial neural network (FLANN) based color image segmentation in RGBSV cluster space | |
Nunez-Garcia et al. | Classification of paintings by artistic style using color and texture features | |
Tabesh et al. | Tumor classification in histological images of prostate using color texture | |
WO2003036564A9 (en) | Image analysis | |
JPH0620054A (en) | Method and apparatus for decision of pattern data | |
JP2004157932A (en) | Object recognition apparatus and object recognition program | |
Aziz et al. | Color segmentation for a region-based attention model | |
JP5800559B2 (en) | Subject tracking device, imaging device, subject tracking method and program | |
US11328408B2 (en) | Systems and methods for color agnostic material face detection |