[go: up one dir, main page]

JPS6068312A - Photographing method of optical microscope image - Google Patents

Photographing method of optical microscope image

Info

Publication number
JPS6068312A
JPS6068312A JP8477083A JP8477083A JPS6068312A JP S6068312 A JPS6068312 A JP S6068312A JP 8477083 A JP8477083 A JP 8477083A JP 8477083 A JP8477083 A JP 8477083A JP S6068312 A JPS6068312 A JP S6068312A
Authority
JP
Japan
Prior art keywords
sample
distance
optical microscope
lens barrel
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8477083A
Other languages
Japanese (ja)
Other versions
JPH0527084B2 (en
Inventor
Hiroyoshi Soejima
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP8477083A priority Critical patent/JPS6068312A/en
Publication of JPS6068312A publication Critical patent/JPS6068312A/en
Publication of JPH0527084B2 publication Critical patent/JPH0527084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain a clear optical microscope image of a sample even when its surface is not flat by varying the relative position relation between the lens barrel of an optical microscope and the sample. CONSTITUTION:The surface of the sample 4 on a stage 5 at the side of the lens barrel 2 is not flat. The stage 5 is moved in the direction Z of the optical axis of the optical microscope 1 to bring the highest projection part of the sample 4 into focus within a photographic visual field. The distance between the sample 4 and lens barrel 2 at this time is denoted as Z1. Then, the stage 5 is moved to bring the lowest recessed part of the sample 4 into focus. The distance at this time is denoted as Z3. The distances Z1 and Z3 are stored in a control part 10. Photography is started at the distance Z1 and the stage 5 is scanned in the optical axis direction at an equal speed until the sample 4 is at the distance Z3. A shutter 9 is open during this period associatively with a synchronous motor 8, which stops at the distance Z3 to close the shutter 9. The sample 4 is scanned in the optical axis direction to vary the quantities of light corresponding to respective positions of the sample 4 with time. Therefore, images are integrated on the film in a camera 3 to expose corresponding positions of the focusing position one after another.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光学顕微鏡を使用して試料表面の顕微鏡像を撮
影する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of taking a microscopic image of a sample surface using an optical microscope.

(ロ) 従来技術 一般に、光学顕微鏡は観察すべき試料の調整が簡単であ
ること、操作性が容易であること、色彩を識別できるこ
と、さらに、価格的にも安価であること等【こより広く
採用されている。このように光学顕微鏡は多くの利点を
有する反面、焦点深度が浅いために表面が曲っていたり
凹凸がある試料をそのまま写真撮影したのでは鮮明な光
学顕微鏡像が得られないという難点がある。このため従
来は専ら表面が比較的フラットな試料を観察対象として
いる。そして、表面が曲っていたり凹凸がある試料を観
察する場合には実体顕微鏡や走査型電子顕微鏡が主に適
用されている。しかしながら前者の場合は倍率がせいぜ
い数10倍程度までであり充分とはいえない。また、後
者の場合は数万倍程度の高倍率が得られるが試料の調整
や装置の操作が煩雑でまた色彩を識別できず、価格的に
も高価である等の難点がある。
(b) Prior art In general, optical microscopes are widely adopted because they are easy to prepare the sample to be observed, are easy to operate, can distinguish colors, and are inexpensive. has been done. Although optical microscopes have many advantages as described above, they have the disadvantage that clear optical microscope images cannot be obtained by simply photographing samples with curved or uneven surfaces due to their shallow depth of focus. For this reason, conventionally, only samples with relatively flat surfaces have been observed. When observing samples with curved or uneven surfaces, stereoscopic microscopes and scanning electron microscopes are mainly used. However, in the former case, the magnification is at most several ten times, which is not sufficient. In the latter case, a high magnification of tens of thousands of times can be obtained, but there are drawbacks such as complicated preparation of the sample and operation of the device, inability to distinguish colors, and high price.

(ハ) 目 的 本発明は上記の問題点に鑑みてなされたものであって、
表面が曲っていたり凹凸があるような試料に対しても鮮
明な光学顕微鏡像を撮影することができるようにして従
来の問題点を解消することを目的とする。
(C) Purpose The present invention has been made in view of the above problems, and
To solve the conventional problems by making it possible to take a clear optical microscope image even for a sample whose surface is curved or uneven.

に)構 成 光学顕微鏡像の光量は第1図に示すように、試料面と焦
点が合ったときに最大となり、ある程度焦点位置から外
れると試料位置によらず一定のバックグラウンドの強度
となる。本発明はこの点に着目したものであって、上記
の目的を達成するため、試料の撮影視野内において、こ
の試料の最も凸なる部位に焦点を合せたときの試料と鏡
筒間の距離と、試料の最も凹なる部位に焦点を合せたと
きの試料と鏡筒間の距離との間で、撮影露出時間内に一
方の距離から他方の距離まで試料と鏡筒の少なくとも一
方を光学顕微鏡の光軸方向fこ走査させるようにしてい
る。そして、たとえばフィルム上に光量を順次積算すれ
ば焦点の合った部位のみがし旧こ応じて露光されること
になり、結果的に全体として焦点の合った撮影像が得ら
れるものである。
As shown in Figure 1, the light intensity of an optical microscope image is at its maximum when it is in focus on the sample surface, and when it deviates from the focus position to a certain extent, the background intensity remains constant regardless of the sample position. The present invention focuses on this point, and in order to achieve the above object, the distance between the sample and the lens barrel when focusing on the most convex part of the sample within the field of view of the sample. , between the distance between the sample and the lens barrel when focusing on the most concave part of the sample, and move at least one of the sample and the lens barrel of the optical microscope from one distance to the other within the photographic exposure time. Scanning is performed in the optical axis direction f. For example, if the amount of light is sequentially accumulated on the film, only the in-focus areas will be exposed accordingly, resulting in a photographed image that is in focus as a whole.

(ホ)実施例 以下、本発明を実施例について、図面に基づいて詳細に
説明する。
(E) Examples Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は本発明を適用するための光学顕微鏡の概略構成
図である。第2図において、1は光学顕微鏡、2は図示
省略した拡大レンズ等が内蔵てれた鏡筒、3は、この鏡
筒2に取付けられたカメラ、4は観察すべき試料、5ば
この試料4を載置するためのステージである。このステ
ージ5にはラック部5aが形成され、ラック部5aには
ピニオン6が噛合している。8はピニオン6を回転駆動
するためのシンクロモータ、9は上記カメラ3のシャッ
タ、10はシンクロモータ8やシャッタ9等の動作を制
御する制御部である。
FIG. 2 is a schematic diagram of an optical microscope to which the present invention is applied. In Fig. 2, 1 is an optical microscope, 2 is a lens barrel with a built-in magnifying lens (not shown), 3 is a camera attached to this lens barrel 2, 4 is a sample to be observed, 5 is a sample This is a stage for placing 4. A rack portion 5a is formed on this stage 5, and a pinion 6 is meshed with the rack portion 5a. 8 is a synchro motor for rotationally driving the pinion 6, 9 is a shutter of the camera 3, and 10 is a control unit that controls the operations of the synchro motor 8, the shutter 9, and the like.

次に上記構成を有する光学顕微鏡1を適用して試料2の
光学顕微鏡像を撮影する方法について説明する。
Next, a method of taking an optical microscope image of the sample 2 by applying the optical microscope 1 having the above configuration will be explained.

まず、試料4をステージ5上に載置する。この試料4の
鏡筒2側の表面は平坦でなく第3図(a)に示すような
凹凸があるものとする。次いで、ステージ5を光学顕微
鏡1の光軸方向(第2図中符号Z方向)へ移動する。そ
して、鏡筒2を覗きながら試料4の撮影視野内において
、試料4の最も凸なる部位(同図中のA1点)に焦点を
合せる。このときの試料4と鏡筒2間の距離をZlとす
る。続いて、ステージ5を移動させて同じ視野内で試料
4の最も凹なる部位(同図中のA2点)に焦点を合せる
。このときの試料4と鏡筒2間の距離を73 とする。
First, the sample 4 is placed on the stage 5. It is assumed that the surface of the sample 4 on the lens barrel 2 side is not flat but has irregularities as shown in FIG. 3(a). Next, the stage 5 is moved in the optical axis direction of the optical microscope 1 (Z direction in FIG. 2). Then, while looking through the lens barrel 2, the user focuses on the most convex portion of the sample 4 (point A1 in the figure) within the field of view of the sample 4. The distance between the sample 4 and the lens barrel 2 at this time is defined as Zl. Subsequently, the stage 5 is moved to focus on the most concave portion of the sample 4 (point A2 in the figure) within the same field of view. The distance between the sample 4 and the lens barrel 2 at this time is 73 degrees.

上記の試料4と鏡筒2間の各距離Z+、Zaは制御部1
0に記憶てせておく。引き続いて、初めに設定した距離
Z1に試料5を位置させ、この状態から制御部10を操
作してシャッタ9を開放し、撮影を開始する。シャッタ
9が開放されると同時にシンクロモータ8も駆動され、
ピニオン6を回転させる。そして、ステージ5を試料4
が後に設定した距離Z8になるまで等速度で光軸方向に
走査させる(本例では下方に移動させる)。その間シャ
ッタ9はシンクロモータ8に連動して開放のままであり
、所定の距離Z8に到達した時にシンクロモータ8が停
止するとともに、シャッタ9が閉じる。このように、撮
影露出時間内に一方の距離Zlから他方の距離Z8まで
試料4が光軸方向に走査されるので、時間経過にともな
い、試料4の各部位に対応した光量は第3図(b)〜(
d)に示すように順次変化する。従って、カメラ3のフ
ィルム上にハ像が積算され、焦点の合った部位に対応し
た所が次々と露出されていく。そして、結果的には全体
として撮影視野内で焦点の合った撮影像が得られる。
The distances Z+ and Za between the sample 4 and the lens barrel 2 are determined by the control unit 1.
Store it at 0. Subsequently, the sample 5 is positioned at the initially set distance Z1, and from this state the control unit 10 is operated to open the shutter 9 and photographing is started. At the same time as the shutter 9 is opened, the synchro motor 8 is also driven,
Rotate pinion 6. Then, stage 5 is set to sample 4.
is scanned in the optical axis direction at a constant speed until it reaches a distance Z8 set later (in this example, it is moved downward). During this time, the shutter 9 remains open in conjunction with the synchro motor 8, and when a predetermined distance Z8 is reached, the synchro motor 8 stops and the shutter 9 closes. In this way, the sample 4 is scanned in the optical axis direction from one distance Zl to the other distance Z8 within the photographic exposure time, so as time passes, the amount of light corresponding to each part of the sample 4 changes as shown in Figure 3 ( b)~(
It changes sequentially as shown in d). Therefore, the images are accumulated on the film of the camera 3, and the areas corresponding to the in-focus areas are exposed one after another. As a result, a photographed image that is in focus within the field of view is obtained as a whole.

走査の間にはバックグラウンドのかぶりを生じるが、こ
れは、フィルムの感度やカメラ3の絞り、また、図示省
略したイルミネータの明るさ、ざらには印画紙、焼付条
件等を調整することにより取り除くことができる。なお
、上記実施例においては試料4の最も凸なる部位に焦点
を合せた位置z1から最も凹なる部位に焦点を合せた位
置Z8に試料4を走査させたが逆の場合であってもよく
、さらに、試料4側を動かすのではなくて鏡筒2を動か
すようにしてもよい。さらには、試料4と鏡筒2とを互
いに接近、離間きせるようにすることもできる。
Background fog occurs during scanning, but this can be removed by adjusting the sensitivity of the film, the aperture of the camera 3, the brightness of the illuminator (not shown), the photographic paper, the printing conditions, etc. be able to. In addition, in the above embodiment, the sample 4 was scanned from the position Z1 where the focus was on the most convex part of the sample 4 to the position Z8 where the focus was on the most concave part of the sample 4, but the reverse case may also be used. Furthermore, instead of moving the sample 4 side, the lens barrel 2 may be moved. Furthermore, the sample 4 and the lens barrel 2 can be moved closer to or farther apart from each other.

(へ)効 果 以上のように本発明によれば光学顕微鏡の鏡筒と試料と
の相対的な位置関係を変位することにより試料表面が平
坦でないものでも鮮明な光学顕微鏡像が得られる。しか
も、走査型電子顕微鏡に比べて極めて安価に実現するこ
とができる。また、実体顕微鏡では実現できなかった数
100倍の倍率でも撮影像が得られるという優れた効果
が発揮される。
(f) Effects As described above, according to the present invention, a clear optical microscope image can be obtained even if the sample surface is not flat by changing the relative positional relationship between the lens barrel of the optical microscope and the sample. Furthermore, it can be realized at a much lower cost than a scanning electron microscope. Furthermore, the excellent effect of being able to obtain photographed images even at a magnification of several hundred times, which was not possible with a stereomicroscope, is exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料表面に焦点を合せたときの光量との関係を
説明する特性図、第2図および第3図は本発明の実施例
を示し、第2図は本発明を適用するための光学顕微鏡の
構成図、第3図は試料表面の形状と、この試料に焦点を
合せたときの光量との関係を示す特性図である。 1・・・光学顕微鏡、2・・・鏡筒、3・・・カメラ、
4・・・試料。 出 願 人 株式会社島津製作所 代パ理 人 弁理士 岡 1)和 秀 / (7) 第1図 第2図
Fig. 1 is a characteristic diagram explaining the relationship with the amount of light when focused on the sample surface, Figs. 2 and 3 show embodiments of the present invention, and Fig. FIG. 3, which is a block diagram of the optical microscope, is a characteristic diagram showing the relationship between the shape of the sample surface and the amount of light when focused on the sample. 1... Optical microscope, 2... Lens barrel, 3... Camera,
4...Sample. Applicant: Shimadzu Corporation Representative Patent Attorney: Oka 1) Hide Kazu/ (7) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ([) 表面が平坦でない試料の光学顕微鏡像を撮影す
る方法であって、試料の撮影視野内においてこの試料の
最も凸なる部位に焦点を合せたときの試料と鏡筒間の距
離と、試料の最も凹なる部位に焦点を合せたときの試料
と鏡筒間の距離との間で撮影露出時間内に、一方の距離
から他方の距離まで試料と鏡筒の少なくとも一方を光学
顕微鏡の光軸方向に走査させることを特徴とする光学顕
微鏡像の撮影方法。
([) A method of taking an optical microscope image of a sample whose surface is not flat, which measures the distance between the sample and the lens barrel when focusing on the most convex part of the sample within the field of view of the sample, and the sample. During the exposure time, move at least one of the sample and the lens barrel from one distance to the other along the optical axis of the optical microscope. A method for taking an optical microscope image, characterized by scanning in a direction.
JP8477083A 1983-05-13 1983-05-13 Photographing method of optical microscope image Granted JPS6068312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8477083A JPS6068312A (en) 1983-05-13 1983-05-13 Photographing method of optical microscope image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8477083A JPS6068312A (en) 1983-05-13 1983-05-13 Photographing method of optical microscope image

Publications (2)

Publication Number Publication Date
JPS6068312A true JPS6068312A (en) 1985-04-18
JPH0527084B2 JPH0527084B2 (en) 1993-04-20

Family

ID=13839912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8477083A Granted JPS6068312A (en) 1983-05-13 1983-05-13 Photographing method of optical microscope image

Country Status (1)

Country Link
JP (1) JPS6068312A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385481A (en) * 2002-02-13 2003-08-20 Fairfield Imaging Ltd Automated microscopy at a plurality of depth of focus through the thickness of a sample
US8890996B2 (en) 2012-05-17 2014-11-18 Panasonic Corporation Imaging device, semiconductor integrated circuit and imaging method
US9057871B2 (en) 2011-05-16 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Set of compound lenses and imaging apparatus
US9083880B2 (en) 2011-03-02 2015-07-14 Panasonic Corporation Imaging device, semiconductor integrated circuit, and imaging method
DE102019101976A1 (en) 2018-01-30 2019-08-01 Canon Kabushiki Kaisha TONER AND METHOD FOR THE PRODUCTION OF TONER

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367094B2 (en) 2009-12-07 2013-12-11 パナソニック株式会社 Imaging apparatus and control method thereof
CN102308242B (en) 2009-12-07 2014-08-20 松下电器产业株式会社 Imaging device and imaging method
JP5882898B2 (en) 2011-03-14 2016-03-09 パナソニック株式会社 Imaging apparatus, imaging method, integrated circuit, computer program
CN102934003B (en) 2011-04-15 2016-06-08 松下电器产业株式会社 Camera head, semiconductor integrated circuit and image capture method
WO2013054527A1 (en) 2011-10-12 2013-04-18 パナソニック株式会社 Image capture device, semiconductor integrated circuit, and image capture method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPTICS COMMUNICATIONS=1992 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385481A (en) * 2002-02-13 2003-08-20 Fairfield Imaging Ltd Automated microscopy at a plurality of depth of focus through the thickness of a sample
GB2385481B (en) * 2002-02-13 2004-01-07 Fairfield Imaging Ltd Microscopy imaging system and method
US7248282B2 (en) 2002-02-13 2007-07-24 Fairfield Imaging Limited Microscopy imaging system and method
US9083880B2 (en) 2011-03-02 2015-07-14 Panasonic Corporation Imaging device, semiconductor integrated circuit, and imaging method
US9057871B2 (en) 2011-05-16 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Set of compound lenses and imaging apparatus
US8890996B2 (en) 2012-05-17 2014-11-18 Panasonic Corporation Imaging device, semiconductor integrated circuit and imaging method
DE102019101976A1 (en) 2018-01-30 2019-08-01 Canon Kabushiki Kaisha TONER AND METHOD FOR THE PRODUCTION OF TONER

Also Published As

Publication number Publication date
JPH0527084B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US7944609B2 (en) 3-D optical microscope
US10353190B2 (en) Sensor for microscopy
JP3537205B2 (en) Microscope equipment
US20170031146A1 (en) Imaging Assemblies With Rapid Sample Auto-Focusing
JPS6068312A (en) Photographing method of optical microscope image
JPH11190864A (en) Image pickup device provided with swing mechanism, image pickup method and storage medium
JPS6257969B2 (en)
JPH05216093A (en) Camera with function for initializing operation mode
JPH0580247A (en) Microscope equipped with automatic focusing device
JP2992870B2 (en) Microscopy equipment
SU1490667A1 (en) Device for adjusting photographic and motion-picture cameras
JP3076092B2 (en) Microscope with imaging device
Clarke Photography of fractured parts and fracture surfaces
JPS5837043Y2 (en) Focusing device in microscope
Peres Contemporary Light Microscopy Practices
JP2727191B2 (en) Switchable zoom finder
Peres Light and Lenses
JPH0574053B2 (en)
Mancini et al. Photomicrography
Mandal Photography and Its Relevance in Pathology
Scott Technology the Enabler.
JPH0364248A (en) Image reader
JPS6385531A (en) Method and device for all-focus photography
JPS636860B2 (en)
JPH08286116A (en) Microscopic photographing device