[go: up one dir, main page]

JPS6065504A - Gas-insulation transformer - Google Patents

Gas-insulation transformer

Info

Publication number
JPS6065504A
JPS6065504A JP17311083A JP17311083A JPS6065504A JP S6065504 A JPS6065504 A JP S6065504A JP 17311083 A JP17311083 A JP 17311083A JP 17311083 A JP17311083 A JP 17311083A JP S6065504 A JPS6065504 A JP S6065504A
Authority
JP
Japan
Prior art keywords
winding
voltage
gas
transformer
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17311083A
Other languages
Japanese (ja)
Inventor
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17311083A priority Critical patent/JPS6065504A/en
Publication of JPS6065504A publication Critical patent/JPS6065504A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To obtain the transformer of a high economical efficiency and a high reliability by employing a nonlinear resistance element as a lightning arrester which is connected between the high-voltage part of a winding and a tank thereby achieving the protection of the winding from the invasion of a transient overvoltage such as surge voltage and the miniaturization of equipments. CONSTITUTION:A nonlinear resistance element 9 is attached between a tank 4 and a hook part 5 of a lower part of a high-voltage shiled 5 arranged on the outermost side of a high-voltage winding 3 and the element 9 supports the winding 3 through the high-voltage shiled 5. A columnar spacers 8 and the nonlinear resistance elements 9 are arranged in uniform intervals in a circumferential direction of the winding respectively. As the nonlinear resistance elements 9 are thus arranged in the position nearest the winding, the elements function effectively and restrain the enchroaching transient overvoltage such as surge voltage. Accordingly, the generation of overvoltage in the winding is minimized to protect the winding and the value of the overvoltage to be generated can be foreseen accurately so that the reliability of insulation becomes high, the reduction of winding insulation structure becomes possible and the economical efficiency is improved.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、変圧器本体がSF6ガス等の絶縁ガスを封入
したタンク内に設置されたガス絶縁変圧器に閏するもの
であり、特に、巻線に侵入づる1ノージ電圧等の過渡的
過電圧に対する巻線の保護手段に改良を施したガス絶縁
変圧器に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a gas insulated transformer in which the transformer body is installed in a tank filled with an insulating gas such as SF6 gas. This invention relates to a gas insulated transformer with improved means for protecting the windings against transient overvoltages such as 1-noge voltages that enter the lines.

[発明の技術的費用及びその問題点] 従来より、ガス絶縁変圧器は、冷却効率が低いとイウ欠
点を持つ為、一般に15’1.KV、 /lOM−vA
PiI度が限界であるとされ、大容量・高電圧変圧器ど
しては採用不可能であったものの、その一方で、不燃1
ノF・軽量等の優れた長所を有づ゛ることににす、配電
用を中心として用いられてきた。この様な従来の小容量
・低電圧のガス絶縁変圧器において、サージ電圧等の過
渡的過電圧の侵入に対18巻線の保護手段としては、周
知の通り、変圧器外部に避雷器を設置することが行われ
、充分な効果を発揮していlC0また、配電用として用
いられる為に、鉄道輸送限界等に対する考慮も不要であ
った。
[Technical cost of the invention and its problems] Conventionally, gas insulated transformers have a disadvantage of low cooling efficiency, so generally 15'1. KV, /lOM-vA
It was said that the PiI degree was the limit and could not be used in large-capacity, high-voltage transformers.
It has been used mainly for power distribution because it has excellent advantages such as low F and light weight. In such conventional small-capacity, low-voltage gas-insulated transformers, one way to protect the 18 windings from the intrusion of transient overvoltages such as surge voltages is to install a lightning arrester outside the transformer. In addition, since it was used for power distribution, there was no need to consider railway transportation limitations.

しかし乍ら、最近の技術進歩により、ガス絶縁変圧器の
冷却効率は大幅に改善され、例えば275KV、300
MVA級或ハ500 K V 1750MVA級等のガ
ス絶縁変圧器が開発研究されるに至り、従来の様に変圧
器外部に避雷器を設【プる手段では、過渡的過電圧に対
する巻線の保護が充分に行えイ1くなった。即ち、この
クラスの変電所用変圧器においでは、サージ等の過渡的
過電圧を効果的に抑制御る為には、避雷器をできる限り
変圧器の谷線に近付けることが必要であり、避雷器を変
圧器の内部に設けることが最も望ましい。ところで、従
来このクラスの変圧器では、絶縁媒体として鉱油系絶縁
油が用いられており、絶縁油は避雷器を劣化させその機
能を著しく低下させる為、避雷器を内蔵すること(j殆
ど不可能であった。従って、ガス絶縁変圧器においても
、依然避雷器は外部に設りられており、その為、過渡的
過電圧の侵入により巻線の絶縁が破壊されて変圧器の信
頼性が低下すると共に、外部に避雷器を設置する構造で
は、機器が大型化し、経済性においても問題となってい
た。その上、変電所用どして用いられる為に、鉄道輸送
限界に対する考慮を必要どする様になり、この点からも
変圧器の小型化が要請されている。
However, with recent technological advances, the cooling efficiency of gas insulated transformers has been greatly improved.
As gas-insulated transformers such as MVA class, 500 KV, 1750 MVA class, etc. have been developed and researched, the conventional method of installing lightning arresters outside the transformer is insufficient to protect the windings against transient overvoltages. I went to #1. In other words, in this class of substation transformers, in order to effectively suppress transient overvoltages such as surges, it is necessary to place the arrester as close to the trough line of the transformer as possible; It is most desirable to install it inside the By the way, in conventional transformers of this class, mineral oil-based insulating oil has been used as the insulating medium, and since insulating oil deteriorates the lightning arrester and significantly reduces its function, it is almost impossible to incorporate the lightning arrester (j). Therefore, even in gas-insulated transformers, lightning arresters are still installed externally, and as a result, the insulation of the windings is destroyed due to the intrusion of transient overvoltage, reducing the reliability of the transformer. In a structure in which lightning arresters are installed, the equipment becomes larger and there are problems in terms of economy.Furthermore, since it is used for substations, it becomes necessary to consider the limits of railway transportation. From this point of view, there is a demand for smaller transformers.

[発明の目的] 本発明は、上述の如き従来のガス絶縁変圧器の欠点を解
消する為に提案されたもので、その目的は、タンク内に
避雷器を内蔵させることににす、サージ電圧等の過渡的
過電圧の侵入に対する効果的な巻線の保護及び設備の小
形化を可能とし、経済的で信頼性の高いガス絶縁変圧器
を提供覆ることである。
[Object of the Invention] The present invention was proposed in order to eliminate the drawbacks of the conventional gas insulated transformer as described above. The purpose of the present invention is to provide an economical and reliable gas-insulated transformer, which enables effective winding protection against the ingress of transient overvoltages and the miniaturization of equipment.

[発明の概要] 本発明のガス絶縁変圧器は、避雷器として非心線抵抗素
子を採用し、これを巻線高圧部とタンクどの間に接続で
ることにより変圧器のタンク内に内蔵させ、非直線抵抗
素子を巻線に最大限まで近付【ノたものである。
[Summary of the Invention] The gas insulated transformer of the present invention employs a non-core resistance element as a lightning arrester, and connects it between the winding high-voltage part and the tank to incorporate it into the tank of the transformer. The linear resistance element is placed as close as possible to the winding.

[発明の実施例] 本発明は全てのガス絶縁変圧器に適用されるものである
が、以下では、特にその効果が茗しい箔状巻線を右づ′
るガス絶縁箔巻変圧器の実施例を説明する。
[Embodiments of the Invention] Although the present invention is applicable to all gas insulated transformers, in the following, the present invention is applied to all types of gas insulated transformers.
An example of a gas insulated foil-wound transformer will be described.

第1図に示づガス絶縁箔巻変圧器は、鉄心1の回りに箔
状巻線より成る低圧巻線2及び高圧巻線3を巻装した変
圧器本体を、S F6ガス等の絶縁ガスが封入されたタ
ンク4内に設置したものであり、高圧′?i−線3の最
外側には、上下にU字形779部5aを持つ高圧シール
ド5が設けられている。なお、タンク4の電位は、アー
ス電位に保たれ、J、た、巻線の上下端部とタンク4と
の間には、鉄心1を支持する鉄心クランプ6が設【プら
れている。
The gas-insulated foil-wound transformer shown in Fig. 1 has a transformer body in which low-voltage windings 2 and high-voltage windings 3 made of foil windings are wound around an iron core 1, and is wrapped with an insulating gas such as SF6 gas. It is installed in a tank 4 which is sealed with high pressure '? At the outermost side of the i-line 3, a high voltage shield 5 having U-shaped 779 portions 5a on the upper and lower sides is provided. The potential of the tank 4 is maintained at the ground potential, and a core clamp 6 for supporting the core 1 is provided between the tank 4 and the upper and lower ends of the winding.

この様なガス絶縁箔巻変圧器において、特に本発明では
次の様な構成が施されている。
In particular, in the present invention, such a gas insulated foil-wound transformer has the following configuration.

第1図において、低圧巻線2の上下端部には絶縁板7が
設()られ、この絶縁板7と鉄心クランプ6どの間にポ
スト形スペーサ8が設けられている。
In FIG. 1, an insulating plate 7 is provided at the upper and lower ends of the low-voltage winding 2, and a post-shaped spacer 8 is provided between the insulating plate 7 and the iron core clamp 6.

低圧巻線2は、この絶縁板7及びポスト形スペーリ8を
介し、鉄心クランプ6によって上下から締付は固定され
ている。一方、高圧巻線3の最外側に設【プられた高圧
シールド5の下方のフック部5aどタンク4との間には
、非直線抵抗素子9が爪側りられ、高圧シールド5を介
して高圧巻線3を支持している。これらの、ポスト形ス
ペーザ8及び非直線抵抗索子9は夫々巻線の円周方向に
等間隔に配置されている。
The low voltage winding 2 is clamped and fixed from above and below by iron core clamps 6 via the insulating plate 7 and the post-shaped spacer 8. On the other hand, a non-linear resistance element 9 is hooked between the lower hook part 5a of the high voltage shield 5 installed on the outermost side of the high voltage winding 3 and the tank 4. It supports the high voltage winding 3. These post-shaped spacers 8 and non-linear resistance cords 9 are arranged at equal intervals in the circumferential direction of the winding.

以上の様な構成を有する本実施例の作用は次の通りであ
る。
The operation of this embodiment having the above configuration is as follows.

まず、変圧器の高圧巻線3の最外側、即ら巻線に最大限
まで接近した位四に非直線抵抗素子9が配されている為
、非直線抵抗素子9が最も効果的に(原曲を発揮して、
侵入するサージ電圧等の過渡的過電圧を充分に抑制する
。、従って、巻線にお(づる過電圧の発生を最小限に抑
えて巻線を保護すると共に、発生ずる過電圧の値を正確
に予知できるので、従来のガス絶縁変圧器に比べて絶縁
の信頼性が極めて高くなる上に、巻線絶縁構造の大幅な
縮小が可能となり、経済性も向上する。なお、S昆ガス
等の絶縁ガス中では、油中にJ3Lプる場合とは異なり
、非直線抵抗素子の劣化及び機能低下の恐れはない。と
ころで、特にここで示した様な箔状巻線を右ηる変圧器
においては巻線の支持r段か1°1別に必要であり、巻
線支持構造そのものが絶t7、上の弱点となる可能性が
あったが、本実施例Cは非直線抵抗素子が巻線を支持す
る様に配置されている為、絶縁信頼11の高い巻線支持
IM造が得られる。
First, since the non-linear resistance element 9 is arranged at the outermost side of the high-voltage winding 3 of the transformer, that is, at the position closest to the winding, the non-linear resistance element 9 is most effective (original). Perform the song,
Sufficiently suppress transient overvoltages such as incoming surge voltages. Therefore, the occurrence of overvoltage on the windings can be minimized to protect the windings, and the value of the overvoltage that will occur can be accurately predicted, making the insulation more reliable than with conventional gas-insulated transformers. In addition, it becomes possible to significantly reduce the winding insulation structure and improve economic efficiency.In addition, unlike when J3L is immersed in oil, in an insulating gas such as S-gas, non-linear There is no risk of deterioration or functional deterioration of the resistance element.By the way, especially in transformers with foil windings as shown here, it is necessary to support the windings in stages r or 1°. The support structure itself could have been a weak point, but in this embodiment C, the non-linear resistance element is arranged to support the winding, so the winding support has a high insulation reliability of 11. IM construction is obtained.

第2図に示すものは、本発明の第2実施例であり、高圧
巻線3の凹円方向にポスト形スペーサ8を等間隔に配置
して、このポスト形スペーザ8の内部に非直線抵抗素子
9を内蔵させたものである。
What is shown in FIG. 2 is a second embodiment of the present invention, in which post-shaped spacers 8 are arranged at equal intervals in the concave circular direction of the high-voltage winding 3, and a non-linear resistance is provided inside the post-shaped spacers 8. It has a built-in element 9.

仙の17?J成については、前記第1実施例と全く同一
どされている。− 以上jホべた様な構成を右する第2実施例では、非直線
抵抗素子9がポスト形スペーサ8に内蔵されている為、
第1実施例に比べてコスト高になる6のの、同箇所にお
いて第1実施例以上に絶縁信頼111が高くなっている
Sen's 17? The J configuration is completely the same as that of the first embodiment. - In the second embodiment, which has the same configuration as described above, since the non-linear resistance element 9 is built into the post-shaped spacer 8,
Although the cost is higher than that of the first embodiment, the insulation reliability 111 is higher than that of the first embodiment at the same location.

第3図に示すものは、本発明のガス絶縁変圧器の第3実
施例であり、本実施例では、非直線抵抗索子9が高圧巻
線3の最外側とタンク側壁との間に配置されている。ま
た、低圧及び高圧の巻線2゜3の下方にはJt通の絶縁
板7が設【づられ、これら絶縁板7ど鉄心クランプ5と
の間に同じく共通のポスト形スペーサ8が設【プられて
おり、この絶縁板7及びポスト形スペーザ8を介し、鉄
心クランプ6によって低圧及び高圧の巻線2.3が」を
通に支持されている。
What is shown in FIG. 3 is a third embodiment of the gas insulated transformer of the present invention. In this embodiment, a nonlinear resistance cord 9 is arranged between the outermost side of the high voltage winding 3 and the tank side wall. has been done. In addition, an insulating plate 7 through Jt is provided below the low-voltage and high-voltage windings 2.3, and a common post-shaped spacer 8 is provided between these insulating plates 7 and the core clamp 5. The low-voltage and high-voltage windings 2.3 are supported by the core clamp 6 through the insulating plate 7 and the post-shaped spacer 8.

以上の様な構成を右する第3実施例は、前記第1、第2
実施例とは異なり、非直線抵抗素子9が巻線の半径方向
に接続された為、非直線抵抗素子9は巻線支持構造とし
ての作用を持たず、代りにポスト形スペー→ノ8にJ:
って巻線全体が支持されている為、絶縁信頼性を維持し
たまま構造が簡略化され経済的でもある。
A third embodiment having the above-described configuration is based on the first and second embodiments.
Unlike the embodiment, since the non-linear resistance element 9 was connected in the radial direction of the winding, the non-linear resistance element 9 did not function as a winding support structure, and instead, the non-linear resistance element 9 was connected to the post-shaped spacer 8. :
Since the entire winding is supported, the structure is simplified and economical while maintaining insulation reliability.

なお、第1実施例においては、高圧巻線3の円周方向に
非直線抵抗素子9を等間隔に配置したが、非直線抵抗素
子9は少なくとも一つ以上用いられれば良く、他の非直
線抵抗素子9については、代りにボスト形スペーサ8を
配置することも可能である。同様に、第2実施例におい
ても、全てのボスト形スペー1ノ8に非直線抵抗素子9
を内蔵させる心髄はナク、ボスト形スペーサの一つ以上
の内部に非直線抵抗索子9を内蔵させればよい。
In the first embodiment, the non-linear resistance elements 9 are arranged at equal intervals in the circumferential direction of the high-voltage winding 3, but it is sufficient that at least one non-linear resistance element 9 is used, and other non-linear resistance elements 9 As for the resistor element 9, it is also possible to arrange a boss-shaped spacer 8 instead. Similarly, in the second embodiment, non-linear resistance elements 9 are provided in all the boss-type spaces 1 and 8.
The key to incorporating this is to incorporate the non-linear resistance cord 9 inside one or more of the boss-shaped spacers.

既に述べた如く、本発明は全てのガス絶縁変圧器に適用
されるーしのであり、本実施例で示した箔G変圧器に限
定されるものではない。従って、最近開光が進δノ)ら
れている蒸発冷却ガス絶縁変圧器ヤ)、絶縁と冷却とを
分離したいわゆるセパレート方式のガス絶Iス変圧器に
も適用され、前記実施例と同様に大きな効果が期待でき
る。
As already stated, the present invention is applicable to all gas insulated transformers and is not limited to the foil G transformer shown in this embodiment. Therefore, it can be applied to evaporatively cooled gas insulated transformers, which have recently been developed, and so-called separate type gas insulated transformers that separate insulation and cooling. You can expect good results.

31、た、絶縁ガスについ’C−b S F6ガスに限
定されることなく、絶縁気体であれば、全て本発明に適
用可能であり、更に、混合蒸気の存在下であって6ての
作用り1果は変ら4.い。
31. The insulating gas is not limited to 'C-b S F6 gas, but any insulating gas can be applied to the present invention. 1. The fruit has changed 4. stomach.

[発明の効果] 以上i32明した様に、本発明によれば、非直線抵抗素
子をタンク内に内蔵さ′I!Dつ巻線とタンクどの間に
接続するという簡11な手段によって、υ−ジ電圧等の
過渡的過電圧の侵入に対する最も効果的な巻線の保護及
び設備の小型化を可能どした、絶縁信頼性が高く、経済
的なガス絶縁変圧器を提供できる。
[Effects of the Invention] As explained above, according to the present invention, a nonlinear resistance element is built into the tank. Insulation reliability that enables the most effective protection of the windings against the invasion of transient overvoltages such as υ-voltage and miniaturization of equipment by a simple method of connecting between the D windings and the tank. It is possible to provide a gas insulated transformer with high performance and economy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は、夫々本発明のガス絶縁変圧器を箔
巻変圧器に適用した実施例を示す断面図である。 1・・・鉄心の脚部、2・・・低圧巻線、3・・・高圧
巻れ;)、4・・・タンク、5・・・高圧シールド、5
a・・・U字形フック部、6・・・鉄心クランプ、7・
・・絶縁板、8・・・ポスト形スペーサ、9・・・非直
線抵抗素子。 7317代理人弁理士則近憲佑(はが1名)第1図 8 6 第2図
1 to 3 are cross-sectional views showing embodiments in which the gas insulated transformer of the present invention is applied to a foil-wound transformer. 1... Legs of iron core, 2... Low voltage winding, 3... High voltage winding;), 4... Tank, 5... High voltage shield, 5
a... U-shaped hook part, 6... Core clamp, 7.
...Insulating plate, 8...Post type spacer, 9...Nonlinear resistance element. 7317 Representative Patent Attorney Kensuke Norichika (1 person) Figure 1 8 6 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1) 鉄心の脚部に低圧及び高圧の巻線を巻装した変
圧器本体が、S F6ガス等の絶縁ガスを封入したタン
ク内に配置され、このタンクがアース電イ)°!に保た
れているガス絶縁変圧器において、高圧巻線とタンクと
の間に非直線抵抗素子を接続しlこことをfi徴どJ−
るガス絶縁変圧器。
(1) The main body of the transformer, which has low-voltage and high-voltage windings wound around the legs of the iron core, is placed in a tank filled with an insulating gas such as SF6 gas, and this tank is connected to the ground. In a gas insulated transformer maintained at
gas insulated transformer.
(2) 巻線が、箔状巻線である特許請求の範囲第1項
記載のガス絶縁変圧器。
(2) The gas insulated transformer according to claim 1, wherein the winding is a foil winding.
(3) 非直線抵抗素子が、巻線の下部に設【プられ巻
線を支持するものである特許請求の範囲第1項又は第2
項記載のガス絶縁変圧器。 (/l) 巻線が、絶縁板を介して巻線の円周方向に等
間隔に配置されたポスト形スペーサで支持され、このボ
スト形スペーサの一つ以上に非直線抵抗素子が内蔵され
ている特許請求の範囲第3項記載のガス絶縁変圧器。
(3) Claim 1 or 2, wherein the non-linear resistance element is provided below the winding to support the winding.
Gas insulated transformer as described in section. (/l) The winding is supported by post-shaped spacers arranged at equal intervals in the circumferential direction of the winding through an insulating plate, and a non-linear resistance element is built into one or more of the post-shaped spacers. A gas insulated transformer according to claim 3.
JP17311083A 1983-09-21 1983-09-21 Gas-insulation transformer Pending JPS6065504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17311083A JPS6065504A (en) 1983-09-21 1983-09-21 Gas-insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17311083A JPS6065504A (en) 1983-09-21 1983-09-21 Gas-insulation transformer

Publications (1)

Publication Number Publication Date
JPS6065504A true JPS6065504A (en) 1985-04-15

Family

ID=15954341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17311083A Pending JPS6065504A (en) 1983-09-21 1983-09-21 Gas-insulation transformer

Country Status (1)

Country Link
JP (1) JPS6065504A (en)

Similar Documents

Publication Publication Date Title
AP1083A (en) Electromagnetic device.
CA2255740C (en) Synchronous compensator plant
GB2331860A (en) High voltage rotating electric machine
US4604673A (en) Distribution transformer with surge protection device
AU737358B2 (en) Switch gear station
JPS6065504A (en) Gas-insulation transformer
KR100571152B1 (en) Sheath Current Suppressor for Underground Cables
WO2018028875A1 (en) Surge arresters for power transformer
RU2100888C1 (en) Power transmission line with lightning surge protective gear
JPS6147614A (en) Foil-wound transformer
JPS61190910A (en) gas insulated pole transformer
Steinfeld et al. Rating and design of metal-oxide surge arresters for high voltage AC systems
JPS6260406A (en) Gas insulated current transformer
JPS6148908A (en) Foil wound transformer
JPH10189353A (en) Gas insulated transformer
Bellaschi et al. Dielectric strength and protection of modern dry-type air-cooled transformers
JPH056649Y2 (en)
JPS6058602A (en) Split type transformer apparatus
EP1034547A2 (en) Switch gear station
JPH07203628A (en) Ac/dc converting station
JP2002015920A (en) Gas-insulated induction electrical apparatus
JPH02112211A (en) Lightning-proof transformer
JPH1169537A (en) Lightning insulator device
JPH10126913A (en) Overvoltage suppression device and gas insulated switchgear
JPS6148909A (en) Foil wound transformer