JPS606426A - Non-interacting controlling apparatus of injection molder heating cylinder - Google Patents
Non-interacting controlling apparatus of injection molder heating cylinderInfo
- Publication number
- JPS606426A JPS606426A JP11441483A JP11441483A JPS606426A JP S606426 A JPS606426 A JP S606426A JP 11441483 A JP11441483 A JP 11441483A JP 11441483 A JP11441483 A JP 11441483A JP S606426 A JPS606426 A JP S606426A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resin
- cylinder
- heating cylinder
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/78—Measuring, controlling or regulating of temperature
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は射出成形機の樹脂を加熱して溶融−混練する加
熱シリンダの温度制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for a heating cylinder for heating, melting and kneading resin in an injection molding machine.
射出成形機は、加熱シリンダ内に樹脂を供給して、加熱
し、溶解し乍ら混練した後、射出を行なうものであるが
、この際、樹脂は加熱量に応じて性状が変化するため、
樹脂の温度を一定に保つ必要がある。Injection molding machines supply resin into a heating cylinder, heat it, melt it, and knead it before injecting it.At this time, the properties of the resin change depending on the amount of heating.
It is necessary to keep the temperature of the resin constant.
従来、射出成形機の加熱シリンダ温度制御は。Traditionally, injection molding machine heating cylinder temperature control is.
加熱シリンダの温度を測定し、バンドヒータ等の加熱源
に供給する電力をON 、 OFF して、加熱シリン
ダを一定温度に保つように制御していた。しかしながら
、この温度制御では、加熱シリンダの外表面の温度を測
定しておシ、加熱シリンダの半径方向の熱遅れを考慮に
入れておらず、加熱シリンダ内で溶融、混練された樹脂
の正確な温度制御が行なえなかった。また1例えば2本
発明者が昭和57年4月26日提出した特願昭57−6
8704号に「射出成形機等の温度・母ターン検出方法
」の名称で記載された方法等を用いることによシ、樹脂
の温度を正確に検出し得るものの、加熱シリンダの拡散
する熱流等を考慮されていないためバンドヒータに供給
する電力を制御しているにすぎず。The temperature of the heating cylinder was measured and the power supplied to a heating source such as a band heater was turned on and off to control the heating cylinder to maintain a constant temperature. However, this temperature control measures the temperature of the outer surface of the heating cylinder, does not take into account the heat lag in the radial direction of the heating cylinder, and does not accurately measure the temperature of the resin melted and kneaded in the heating cylinder. Temperature control was not possible. In addition, 1 For example, 2 Patent application No. 57-6 filed by the inventor on April 26, 1982
Although it is possible to accurately detect the temperature of the resin by using the method described in No. 8704 entitled "Temperature/mother turn detection method for injection molding machines, etc.", it is possible to accurately detect the temperature of the resin. Since this is not taken into consideration, it merely controls the power supplied to the band heater.
樹脂の正確な温度制御を行うには十分ではなかった。This was not sufficient to provide accurate temperature control of the resin.
本発明の目的は、上記従来の欠点を解決し、樹脂の温度
を正確に制御できる射出成形機の加熱シリンダ温度制御
装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a heating cylinder temperature control device for an injection molding machine that can solve the above-mentioned conventional drawbacks and accurately control the temperature of resin.
本発明によれば、射出成形機の加熱シリンダの温度を制
御する装置において、前記加熱シリンダの軸方向にm(
m〉2)側設けられ、該加熱シリンダ内の樹脂の温度を
検出する手段と、該温度検出手段のm個の出力を受け、
非干渉制御アルゴリズムによる演算を実行する手段と、
該演算手段のm個の出力によって制御され、前記射出成
形機の加熱源に電力を供給する手段とを有する射出成形
機加熱シリンダ非干渉制御装置が得られる。According to the present invention, in a device for controlling the temperature of a heating cylinder of an injection molding machine, m(
m〉2) means for detecting the temperature of the resin in the heating cylinder, and receiving m outputs of the temperature detecting means;
means for performing calculations using a non-interfering control algorithm;
An injection molding machine heating cylinder non-interference control device is obtained, which is controlled by m outputs of the calculation means and has means for supplying electric power to a heating source of the injection molding machine.
本発明では、加熱シリンダ層内熱交流、加熱されながら
送シ込捷れる溶融した樹脂の動きに応じての熱の流れ及
び混練スクリューの回転にともない樹脂内に発生する剪
断発熱等の影響等を相互干渉系としてとらえ、相互干渉
系を非干渉化することによって加熱源の電力の制御を行
っている。In the present invention, effects such as heat exchange within the heating cylinder layer, heat flow due to the movement of the molten resin that is injected and shattered while being heated, and shear heat generated within the resin as the kneading screw rotates are considered. The power of the heating source is controlled by treating it as a mutual interference system and making the mutual interference system non-interfering.
以下、射出成形機の系の特性について、第1図を参照し
て説明する。図において、1はシリンダ。The characteristics of the injection molding machine system will be explained below with reference to FIG. In the figure, 1 is a cylinder.
2はヒータ、3は樹脂、4はヌクリーーを示している。2 indicates a heater, 3 indicates a resin, and 4 indicates a glue.
射出成形[−第1図に示されるように軸方向にゾーンに
分割したときのiゾーンにおけるシリンダ温度θ。1〔
℃〕と樹脂温度θ、□〔℃〕は。Injection molding [-Cylinder temperature θ in zone i when divided into zones in the axial direction as shown in FIG. 1 [
℃] and the resin temperature θ, □[℃].
次の微分方程式で表わされる。It is expressed by the following differential equation.
以下余白 ・−ハ へ の Q′′ 二 −− 名 パQ ”喝 ここで、各記号は、へ〇:ヌクリュ溝断面積〔m2〕。Margin below ・-ha to Q′′ 2 -- given name Pa Q "Kake" Here, each symbol is 〇: Nucle groove cross-sectional area [m2].
A ニジリンダ断面積C,m2:] + BOニジリン
クゝ内表面積〔m2〕、B1ニジリンダ外表面積〔m2
〕、ΔX:1ゾーンの軸方向長さ〔m〕、、aシ1ノン
ダの密度〔kJ/m3〕、Ccニジリンダの比熱(:J
k・℃〕。A Nijilinda cross-sectional area C, m2:] + BO Nijilinkinner surface area [m2], B1 Nijilinda outer surface area [m2]
], ΔX: axial length of one zone [m], a density of Nijilinda [kJ/m3], Cc specific heat of Nijilinda (: J
k・℃].
λニジリンダの熱伝導率〔W/m・℃〕、αi:放熱係
数〔W/m2・℃〕、β、:シリンタ゛と樹月旨の間の
〃シ伝達率(W/m2・℃L q4,4 :面積当9の
ヒータ力)らの供給熱量(J/m2) 、θa:周囲温
度〔℃〕。Thermal conductivity of λ Nijilinda [W/m・℃], αi: Heat radiation coefficient [W/m2・℃], β,: Transfer coefficient between the cylinder and the cylinder (W/m2・℃L q4, 4: Amount of heat supplied (J/m2) (heating force per area of 9), θa: Ambient temperature [°C].
の比熱〔J/に!、・℃)、V:樹脂の流速(m/5)
(v−2πr60 ) 1 n :ヌクリー回転数[r
pm〕+r:スクリュ半径〔m〕、Qdi:体積当りの
剪断発熱量[W/m” ]を表わしている。The specific heat of [J/! ,・℃), V: Resin flow rate (m/5)
(v-2πr60) 1 n: Nucle rotation speed [r
pm]+r: screw radius [m], Qdi: shear calorific value per volume [W/m''].
従って、3ゾーンの場合1式(1) 、 (2)の微分
方程式−@ i= 1 、2 、3についてめ、第2図
に示されるシステム図に対応した状態方程式でちられす
と。Therefore, in the case of three zones, the differential equations of equations (1) and (2) -@i=1,2,3 can be reduced to the state equation corresponding to the system diagram shown in Figure 2.
以下余6
交=AX+Bu+W
y=Cx
×=(θ・。10′c2θ′o5θ’yl ”β2吟い
′(4)”= (qhI J、2qh3)’
y−(θ′r10′、、2θ′r6)′w=(000q
41 Qd2 Qd3)’となシ、行列Aの各要素は。Remainder 6 Cross=AX+Bu+W y=Cx ×=(θ・.10'c2θ'o5θ'yl ``β2ginii'(4)''= (qhI J, 2qh3)'y-(θ'r10',,2θ' r6)′w=(000q
41 Qd2 Qd3)', each element of matrix A is.
以下金白
all”” CKai+にλ4+にβ1)’ a12=
にλ1’ a14=にβ1’a21−にλ2・ a22
=−(Kα2+2にλ2+にβ2)・ a23=にλ2
・β252にβ2(6)
”52”Kλ5’ a+3−CKa5+にλ5+に83
)” a56=にβ3a412にβ1’a21ユにβr
1
a52”Kβr2”54=Kv2 ’ a55= (K
f?r2+Kv2)β65=KBr5’ ”65−Kv
5 ”66− (Kl?r3+Kv3)となる。ここで
、()′は転置行列を示し。The following is Kinpaku all"" CKai+, λ4+, β1)' a12=
to λ1' a14= to β1'a21- to λ2・a22
=-(Kα2+2 to λ2+ to β2)・a23= to λ2
・β252 to β2(6) ``52''Kλ5' a+3-CKa5+ to λ5+ 83
)” a56= to β3a412 to β1'a21u to βr
1 a52"Kβr2"54=Kv2' a55= (K
f? r2+Kv2) β65=KBr5' ``65-Kv
5''66- (Kl?r3+Kv3).Here, ()' indicates the transposed matrix.
θ′c1″″θc1−θa・ θ′c2=θc2−θa
・ θ′c3=θC「θa(7)
θ′r1=θr1−08・θ′r2=θr2−08.θ
’r5−θr3−08である。θ′c1″″θc1−θa・θ′c2=θc2−θa
・θ'c3=θC"θa(7) θ'r1=θr1-08・θ'r2=θr2-08.θ
'r5-θr3-08.
このようなシステムに対し、非干渉化が可能であるだめ
の条件は
で表わされ、Dの各要素は(6)式を参照してに1?r
iで構成されている。K7?riはシリンダ1と樹脂3
の熱伝達に関する係数であり 、 (8)式の条件を満
足するので非干渉化が常に可能である。For such a system, the condition under which non-interference is possible is expressed as, where each element of D is 1? with reference to equation (6). r
It is composed of i. K7? ri is cylinder 1 and resin 3
Since it is a coefficient related to heat transfer and satisfies the condition of equation (8), non-interference is always possible.
以上の系に対して第3図に示すように。As shown in Figure 3 for the above system.
u=Kx十Lv ””(’1 ’2 ’3)・ °゛ 3状態フィードバックを施して非干渉化を行う。u=Kx10Lv ””(’1 ’2 ’3)・ °゛ Deinterference is achieved by applying three-state feedback.
ここで、フィードバック行列にの各要素は、Aの要素を
用いて。Here, each element in the feedback matrix is an element of A.
k12″−β121に21ニー(a54a41/a52
)−β211に23ニー物に24=a54(a22+に
22−β44)/′a521に32−(85286)’
63) ”32 (1])ksa−−a511a65/
a63. k3s−β65(85+ks5a55)/a
uのように表わされる。なお+ kll + k22
r k55 + k14 + k25 +に、S は所
定の特性を得るように設定する。k12″-β121 to 21 knees (a54a41/a52
) - β211 to 23 knees 24 = a54 (a22+ to 22 - β44) / 'a521 to 32 - (85286)'
63) ``32 (1])ksa--a511a65/
a63. k3s-β65(85+ks5a55)/a
It is expressed as u. Note + kll + k22
In r k55 + k14 + k25 +, S is set to obtain predetermined characteristics.
上記のようにして非干渉化を施すことにょシ。It is recommended to perform non-interference as described above.
新しい入力ベクトルVのうちの一つの入力V・(1≦1
≦3)が出力ベクトルyのうちの一つの出力θ’ri(
’≦i≦3)にだけ影響を力えることになり。One input V・(1≦1
≦3) is one output θ'ri(
'≦i≦3).
また一つの出力θ′r1は一つの入力Vの影響しかうけ
ないことになる。その結果、射出成形機では。Further, one output θ'r1 is influenced by only one input V. As a result, in injection molding machines.
ゾーンごとに樹脂の状態に合せて制御系を構成すること
ができ、温度制御の粒度を上げることが可能となる。A control system can be configured for each zone according to the state of the resin, making it possible to increase the granularity of temperature control.
本発明では、新しいベクトルVを第4図に示すように。In the present invention, the new vector V is as shown in FIG.
r ”” (r 1r 2 r 3 )’とする。ここ
で、rは系の目標値、すなわち設定温度を示す。Let r ”” (r 1r 2 r 3 )'. Here, r indicates the target value of the system, that is, the set temperature.
第5図は上述した非干渉化を適用した本発明の一実施例
を示したブロック図である。図において。FIG. 5 is a block diagram showing an embodiment of the present invention to which the above-described non-interference is applied. In fig.
lは射出成形機の加熱シリンダであり、厚みのある鉄製
の円筒形をしている。この加熱シリンダ1の外側には加
熱源なる3個のバンドヒーク21〜23が巻かれている
。Sr1〜Sr5は樹脂3の温度θ7.〜θ′1.3を
検出する温度検出端+Sc+〜Sc5はシリンダ1の温
度θ′c1〜θ’c5を検出する温度検出端である。こ
のうち温度検出端Sr1〜Sr3は9例えば本発明者が
既に出願している上記特願昭57−68704号の記載
に基づいた。加熱シリンダ1に向って深く挿入された熱
電対からなり、はぼ樹脂温に近い温度θ′r] (1<
i<3)に見合った起電力を出力する。1 is the heating cylinder of the injection molding machine, and is made of thick iron and has a cylindrical shape. Three band heaks 21 to 23, which serve as heating sources, are wound around the outside of the heating cylinder 1. Sr1 to Sr5 are the temperature of the resin 3 θ7. Temperature detection terminals +Sc+ to Sc5 for detecting temperatures .theta.'1.3 are temperature detection terminals for detecting temperatures .theta.'c1 to .theta.'c5 of the cylinder 1. Among these, the temperature detection terminals Sr1 to Sr3 are based on the description in the above-mentioned Japanese Patent Application No. 1987-68704, which has already been filed by the present inventor. It consists of a thermocouple inserted deeply toward the heating cylinder 1, and the temperature θ′r] (1<
output an electromotive force commensurate with i<3).
このxA=(θ−1”c2 θ′c6θ−4 ”f2
”j3 )の起電力は、アナログ量・ゾタル変換器5に
よシデジタル量xDに変換され、演算回路6に入力する
。この演算回路6では、上述の非干渉制御アルゴリズム
による演算を実行する。すなわち、XDはマトリクス演
算器61と62に入力する。マトリクス演算器32はC
xDの演算を実行して検出温度yD=(θ71θ′r2
0′r3)′ を出力する。この検出温度yDは表示器
7により表示されるとともに減算器63に入力する。一
方、入力装置8から入力した設定温度rDに対応したデ
ソタル量は、減算器63に入力し。This xA=(θ-1"c2 θ'c6θ-4"f2
The electromotive force of "j3) is converted into a digital quantity xD by the analog/zotal converter 5 and inputted to the arithmetic circuit 6. The arithmetic circuit 6 executes the arithmetic operation based on the above-mentioned non-interference control algorithm. That is, XD is input to matrix calculation units 61 and 62. Matrix calculation unit 32 inputs C
Execute the calculation of xD and find the detected temperature yD=(θ71θ′r2
0'r3)' is output. This detected temperature yD is displayed on the display 7 and is input to the subtracter 63. On the other hand, the desotal amount corresponding to the set temperature rD inputted from the input device 8 is inputted to the subtracter 63.
減算器63では’D VDを実行しvD−(v1v2v
6)′を出力する。VDはマトリクス演算器64に入力
する。マ) +Jクス演算器61及び64からそれぞれ
出力されるKXD及びLvDは加算器65で加算さtて
、uDとして演算回路6から出力される。演算回路6か
ら出力されたデソタル量のuDはデジタルアナログ変換
器9に入力して、アナログ量のuAを出力する。この鴨
は電力制御装置101〜103の制御信号として入力し
、電力制御装置101〜103ではこの制御信号鴨に従
った電力をそれぞれバンドヒータ21〜23に供給する
。ここで、電力制御装置101〜103.バンドヒータ
21〜23゜及び加熱シリンダ1等からなる制御対象は
、第3図の点線に囲丑れた部分に対応しており、uAを
入力して温度検出端Sri〜Sr3 、 Sci〜S已
よりXAを出力する。The subtracter 63 executes 'DVD' and calculates vD-(v1v2v
6) Output '. VD is input to the matrix calculator 64. KXD and LvD output from the +Jx calculation units 61 and 64, respectively, are added together by an adder 65 and output from the calculation circuit 6 as uD. The desotal quantity uD outputted from the arithmetic circuit 6 is input to the digital-to-analog converter 9, which outputs the analog quantity uA. This signal is input as a control signal to the power control devices 101 to 103, and the power control devices 101 to 103 supply power according to this control signal to the band heaters 21 to 23, respectively. Here, power control devices 101 to 103. The control object consisting of the band heaters 21 to 23 degrees and the heating cylinder 1 corresponds to the part surrounded by the dotted line in Fig. 3, and uA is input and the temperature detection terminals Sri to Sr3 and Sci to S are Outputs XA.
なお、演算回路6としてマイクロコンピュータを使用す
る場合、マトリクス演算器61のKの値をこのマイクロ
コンビーータによって計算し、決定された定数値をその
内部に記憶してもよいし。Note that when a microcomputer is used as the arithmetic circuit 6, the value of K of the matrix arithmetic unit 61 may be calculated by this microcomputer, and the determined constant value may be stored therein.
Kの値の計算を予め他の計算機によって計算し。The value of K is calculated in advance by another calculator.
その定数値だけをマイクロコンビーータの記憶装置に入
れて置いてもよい。いずれにせよ、操業中は、これらの
定数値を用いてマイクロコンピュータによジオンライン
制御される。!、た。射出成形機の加熱シリンダ1が交
換された場合も、マイクロコンビーータの記憶装置に充
分の余裕があるので、予め予定された加熱シリンダにつ
いて、上記の定数値を記憶装置に記憶させておくことも
できる。Only the constant value may be stored in the memory of the microconbeater. In any case, during operation, online control is performed by a microcomputer using these constant values. ! ,Ta. Even if the heating cylinder 1 of the injection molding machine is replaced, there is sufficient room in the storage device of the microconbeater, so the above constant values for the scheduled heating cylinders should be stored in the storage device in advance. You can also do it.
以上の説明で明らかなように1本発明によれば。According to one aspect of the present invention, as is clear from the above description.
少なくとも2以上の温度検出点の樹脂温の情報を集め、
非干渉化の巧妙な適用により、樹脂の温度を正確に制御
できるという効果がある。Collect information on resin temperature at at least two or more temperature detection points,
The clever application of decoupling has the effect of precisely controlling the temperature of the resin.
第1図は本発明の適用される射出成形機の系の特性を説
明するための図、第2図は状態空間法による射出成形機
のシステム図、第3図は状態空間法による射出成形機の
非干渉制御システム図、第4図は状態空間法による射出
成形機の本発明の適用される非干渉制御システム図、第
5図は第4図の非干渉化を適用した本発明の一実施例を
示したブロック図である。
1・・・加熱シリンダ、2.21〜23・・・バンドヒ
ータ、3・・・樹脂、4・・・スクリュー、5・・・ア
ナログデジタル変換器、6・・・演算回路、61,62
.64・・・マ)IJクス演算器、63・・減算器、6
5・・・加算器。
7・・・表示器、8・・・入力装置、9・・・デジタル
アナログ変換器、101〜103・・・電力制御装置。
第1図
第2図
第3図
第4図Figure 1 is a diagram for explaining the characteristics of the system of an injection molding machine to which the present invention is applied, Figure 2 is a system diagram of an injection molding machine using the state space method, and Figure 3 is an injection molding machine using the state space method. Figure 4 is a diagram of a non-interference control system to which the present invention is applied for an injection molding machine using the state space method, and Figure 5 is an implementation of the present invention to which the non-interference of Figure 4 is applied. FIG. 2 is a block diagram illustrating an example. DESCRIPTION OF SYMBOLS 1... Heating cylinder, 2.21-23... Band heater, 3... Resin, 4... Screw, 5... Analog-digital converter, 6... Arithmetic circuit, 61, 62
.. 64...Ma) IJ calculation unit, 63...Subtractor, 6
5...Adder. 7... Display device, 8... Input device, 9... Digital analog converter, 101-103... Power control device. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
において、前記加熱シリンダの軸方向にm(m>2)側
設けられ、該加熱シリンダ内の樹脂の温度を検出する手
段と、該温度検出手段のm個の出力を受け、非干渉制御
アルゴリズムによる演算を実行する手段と、該演算手段
のm個の出力によって制御され、前記射出成形機の加熱
源に電力を供給する手段とを有する射出成形機加熱シリ
ンダ非干渉制御装置。1. In a device for controlling the temperature of a heating cylinder of an injection molding machine, a means provided on the m (m>2) side in the axial direction of the heating cylinder and detecting the temperature of the resin in the heating cylinder; An injection molding machine comprising means for receiving m outputs of the means and performing calculations according to a non-interfering control algorithm, and means controlled by the m outputs of the calculation means for supplying power to a heating source of the injection molding machine. Molding machine heating cylinder non-interference control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11441483A JPS606426A (en) | 1983-06-27 | 1983-06-27 | Non-interacting controlling apparatus of injection molder heating cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11441483A JPS606426A (en) | 1983-06-27 | 1983-06-27 | Non-interacting controlling apparatus of injection molder heating cylinder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS606426A true JPS606426A (en) | 1985-01-14 |
JPS6348691B2 JPS6348691B2 (en) | 1988-09-30 |
Family
ID=14637090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11441483A Granted JPS606426A (en) | 1983-06-27 | 1983-06-27 | Non-interacting controlling apparatus of injection molder heating cylinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606426A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2574016A1 (en) * | 1984-12-05 | 1986-06-06 | Tsutsumi Shigeru | DISPLAY APPARATUS FOR CONTROLLING TEMPERATURE OF A CARROT CHANNEL HEATED IN A DEVICE FOR INJECTION MOLDING OF A THERMOPLASTIC SYNTHETIC RESIN |
JPS61143814U (en) * | 1985-02-25 | 1986-09-05 | ||
JPH01110925A (en) * | 1987-10-24 | 1989-04-27 | Nissei Plastics Ind Co | Temperature detecting method of injection molding machine |
EP0727297A1 (en) * | 1994-09-01 | 1996-08-21 | Fanuc Ltd. | Temperature control method for injection molding machine |
US6685458B2 (en) | 2001-10-11 | 2004-02-03 | Acushnet Company | Split metal die assembly with injection cycle monitor |
EP1658949A1 (en) * | 2003-08-27 | 2006-05-24 | Sumitomo Heavy Industries, Ltd. | Injection molding machine, and temperature control method for injection molding machine |
CN102476437A (en) * | 2010-11-29 | 2012-05-30 | 西安康瑞矿用设备有限公司 | Die temperature controller with cold/hot temperature switching function |
-
1983
- 1983-06-27 JP JP11441483A patent/JPS606426A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2574016A1 (en) * | 1984-12-05 | 1986-06-06 | Tsutsumi Shigeru | DISPLAY APPARATUS FOR CONTROLLING TEMPERATURE OF A CARROT CHANNEL HEATED IN A DEVICE FOR INJECTION MOLDING OF A THERMOPLASTIC SYNTHETIC RESIN |
JPS61143814U (en) * | 1985-02-25 | 1986-09-05 | ||
JPH01110925A (en) * | 1987-10-24 | 1989-04-27 | Nissei Plastics Ind Co | Temperature detecting method of injection molding machine |
JPH055651B2 (en) * | 1987-10-24 | 1993-01-22 | Nissei Plastics Ind Co | |
EP0727297A1 (en) * | 1994-09-01 | 1996-08-21 | Fanuc Ltd. | Temperature control method for injection molding machine |
EP0727297A4 (en) * | 1994-09-01 | 1998-10-14 | Fanuc Ltd | Temperature control method for injection molding machine |
US6685458B2 (en) | 2001-10-11 | 2004-02-03 | Acushnet Company | Split metal die assembly with injection cycle monitor |
EP1658949A1 (en) * | 2003-08-27 | 2006-05-24 | Sumitomo Heavy Industries, Ltd. | Injection molding machine, and temperature control method for injection molding machine |
EP1658949A4 (en) * | 2003-08-27 | 2009-11-11 | Sumitomo Heavy Industries | Injection molding machine, and temperature control method for injection molding machine |
CN102476437A (en) * | 2010-11-29 | 2012-05-30 | 西安康瑞矿用设备有限公司 | Die temperature controller with cold/hot temperature switching function |
Also Published As
Publication number | Publication date |
---|---|
JPS6348691B2 (en) | 1988-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS606426A (en) | Non-interacting controlling apparatus of injection molder heating cylinder | |
US4707310A (en) | Method for heat control of hot runner molds | |
WO2019138830A1 (en) | Heating device | |
WO2019016500A1 (en) | Method and apparatus for curing a composite article | |
CN115574964A (en) | Submarine cable factory joint temperature measuring method and device | |
JPH01267021A (en) | Simulation system of multi-zone temperature controlling system and method for identifying characteristic parameter | |
JP5064191B2 (en) | Injection molding machine temperature display device | |
JP7189395B1 (en) | Arithmetic device and program | |
JP3611667B2 (en) | Temperature control method for injection molding machine | |
JP4054548B2 (en) | Temperature control method and apparatus for injection molding machine | |
JP2001113588A (en) | Device for controlling temperature of molding machine and method for designing control system used in the same | |
JP3234001B2 (en) | Vulcanizer temperature controller | |
JPH05237892A (en) | Method and apparatus for controlling temperature of heating cylinder of plasticizing device | |
JP3351703B2 (en) | Temperature control method and temperature control device for nozzle for injection molding machine | |
JP3028281B2 (en) | Temperature control method for injection molding machine | |
JPH05128924A (en) | Insulating coating processing device for electric cable | |
JP2501892B2 (en) | Thermocouple input measuring instrument | |
JPS60168622A (en) | Temperature pattern measuring device of resin of injection molding machine | |
JPH09190871A (en) | Heating device and method for controlling its temperature | |
US20220097321A1 (en) | Scalable tooling system using highly parallel convection heating for processing of high temperature composite materials | |
JP3288147B2 (en) | Nozzle for injection molding machine | |
Hopmann et al. | Analysis of Radial Heat Transfer in an Injection Mold with Highly Dynamic Segmented Mold Tempering | |
JPS60139424A (en) | Resin temperature control for plastics molding machine | |
JP3233984B2 (en) | Vulcanizer temperature controller | |
JP2002160276A (en) | Method for controlling nozzle temperature of injection molding machine and nozzle temperature control device |