JPS60626A - Optical pickup - Google Patents
Optical pickupInfo
- Publication number
- JPS60626A JPS60626A JP58107181A JP10718183A JPS60626A JP S60626 A JPS60626 A JP S60626A JP 58107181 A JP58107181 A JP 58107181A JP 10718183 A JP10718183 A JP 10718183A JP S60626 A JPS60626 A JP S60626A
- Authority
- JP
- Japan
- Prior art keywords
- light
- beam splitter
- polarized
- reflected
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0908—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は光学式ディスクプレーヤ等における円盤状情
報記録媒体(以下ディスクと称する)忙記録された記録
ピットより情報を光学的に読み出す光ピツクアップに係
り、特にフォーカシング誤差信号を発生するだめの光学
°系忙関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical pickup for optically reading out information from recording pits recorded on a disk-shaped information recording medium (hereinafter referred to as a disk) in an optical disk player, etc. The damage that occurs is related to the optical system.
光学式ディスクプレーヤ等ではディスク上に記録された
記録ピットより情報信号を読み出すために光学式の光ピ
ツクアップを用い、情報読取り用ビームを記録ピットか
つ存在するディスク面上に7オーカシングをし、かつ記
録ピットをトラッキングして読取り光を常にディスク面
上の記録ピットに正確に照射し、記録ピットよりの反射
光を受光する必要がある。In optical disc players, an optical optical pickup is used to read out information signals from the recording pits recorded on the disc, and an information reading beam is orcused over the recording pits and the existing disc surface, and the information is recorded. It is necessary to track the pits, to always accurately irradiate the recording pits on the disk surface with reading light, and to receive the reflected light from the recording pits.
光ビームを常に上記ディスク面上にフォーカシングをす
るため、7オーカシングのズレを検知する方法として非
点収差法が知られている。The astigmatism method is known as a method for detecting deviations in focusing so that the light beam is always focused on the disk surface.
第1図fA)は非点収差法を用いた従来の光ピツクアッ
プの実施例を示す図である。図においてレーザ光源(1
)を出射する発散レーザ光束(2)はコリメータレンズ
(3)に入射した後平行光束に変換されて偏光ビームス
プリッタ+41,1/4波長板(5)を透過し、対物レ
ンズ(6)によってディスク(7)の記録面上に集光さ
れる。集光されたレーザ光束はディスク(7)で反射さ
れて逆進し、対物レンズを透過後平行光束となって1/
4波長板(5)を透過し、偏光ビームスプリブタ(4)
で分離され。FIG. 1 fA) is a diagram showing an example of a conventional optical pickup using the astigmatism method. In the figure, the laser light source (1
), the diverging laser beam (2) enters the collimator lens (3), is converted into a parallel beam, passes through the polarizing beam splitter +41, 1/4 wavelength plate (5), and is sent to the disk by the objective lens (6). (7) The light is focused on the recording surface. The focused laser beam is reflected by the disk (7) and travels backwards, and after passing through the objective lens, it becomes a parallel beam and becomes 1/
The polarized beam splitter (4) passes through the 4-wavelength plate (5).
separated by.
凸レンズ(8)とシリンドリカルレンズ(9)かうする
光束形状変換光学糸軸を透過して光検出器Iで受光され
る。上記光束形状−変換光学系a1は平行光束から集束
性の非点光束へ変換するために設けられている。The light beam is transmitted through the convex lens (8) and the cylindrical lens (9) through the light beam shape converting optical fiber axis, and is received by the photodetector I. The light beam shape conversion optical system a1 is provided to convert a parallel light beam into a convergent astigmatic light beam.
すなわち、シリンドリカルレンズ(9)の軸が仮に図の
鉛直方向を向いており、かつ前記シリンドリカルレンズ
(9)は光束を図の紙面−垂直な方向に集束させる性質
をもつものとすると、前記光束形状光学系a1に入射し
たレーザ光束は凸レンズによって回転対称性を有する集
束性光束とさり、 更にシリンドリカルレンズ(9)に
よって図の紙面に垂1縦な方向に集束されて2紙面平行
な第1の熱線(XZa)を形成し9次いで光検出器(I
llがない、嚇合姉は紙面に垂直な第2の焦線(12b
)を形成す石。That is, if the axis of the cylindrical lens (9) is oriented in the vertical direction of the figure, and the cylindrical lens (9) has the property of converging the light flux in a direction perpendicular to the paper plane of the figure, then the shape of the light flux is The laser beam incident on the optical system a1 is converted into a convergent beam having rotational symmetry by a convex lens, and is further focused by a cylindrical lens (9) in a direction perpendicular to the plane of the drawing to form a first heat ray parallel to the plane of the paper. (XZa) and then a photodetector (I
There is no ll, the second focal line perpendicular to the paper (12b
) forming stones.
光検出器(lυはディスク(7)がベストフォーカス位
置にあるとき延前肥第1の焦線(12a)と第2の焦線
(x2b)の中間にある非点光束の最小錯乱円の位置に
配設される。なお、上記偏光ビームスプリブタ及び1/
4波長板の光ピツクアップにおける作用はよく知られて
bるところである第1図([3)は光検出器aυの形状
例とベストフォーカス状態にあるときの光検出器上での
光束断面形状を示す図である。光検出器αυは直交する
直線状の電気的絶縁領域によって4分割されてお!λ、
ペストフォーカス状態では光束断面は円形で9分割され
た光検出器(11a)、(xxb)、(oc)(11d
)の各々に均等に分配されている。第1図(fl)はデ
ィスク(7)がベストフォーカス状態より対物レンズ側
にちる場合の光検出器a0と光束断面形状の関係を示す
図である。この暢合第1図(A)Kおける泥1の焦線(
12a)が光検出器(II)に近づくため、光束断面は
縦長の形状を示す。The photodetector (lυ) is the position of the circle of least confusion of the astigmatic light beam located between the first focal line (12a) and the second focal line (x2b) when the disk (7) is at the best focus position. Note that the polarization beam splitter and 1/
The effect of a four-wavelength plate on optical pickup is well known. Figure 1 ([3)] shows an example of the shape of the photodetector aυ and the cross-sectional shape of the light beam on the photodetector when it is in the best focus state. FIG. The photodetector αυ is divided into four by orthogonal linear electrically insulating regions! λ,
In the pest focus state, the beam cross section is circular and divided into 9 photodetectors (11a), (xxb), (oc) (11d).
) are equally distributed among each other. FIG. 1 (fl) is a diagram showing the relationship between the photodetector a0 and the cross-sectional shape of the light beam when the disk (7) is tilted toward the objective lens side from the best focus state. This alignment Figure 1 (A) The focal line of mud 1 in K (
12a) approaches the photodetector (II), the beam cross section has a vertically elongated shape.
第1図(D)はディスク(7)がベストフォーカス状態
より遠ざかってbる場合の光検出器11υと光束断面形
状の関係を示す図である。この場合第1の焦線(12a
)は光検出器Iから遠ざかり、第2の焦線(x2b)が
近づくため、光束断面は横長の形状を示す。以上の第1
図(B)((1)(D)及びそれらの説明から9分割さ
れた光検出器(11a)と(ttc)の出力の和と、同
じ< (llb)と(lid)の出力の和を互いに差動
増幅することによシ7オーカシング誤差信号を得ること
が理解できよう。FIG. 1(D) is a diagram showing the relationship between the photodetector 11υ and the cross-sectional shape of the light beam when the disk (7) moves away from the best focus state. In this case, the first focal line (12a
) moves away from the photodetector I and the second focal line (x2b) approaches, so the beam cross section shows a horizontally elongated shape. The first of the above
From Figure (B) ((1) and (D) and their explanations, the sum of the outputs of the photodetectors (11a) and (ttc) divided into nine parts, and the sum of the outputs of the same < (llb) and (lid). It will be understood that the two orcasing error signals are obtained by differentially amplifying each other.
しかし、先の第1図体)忙示した非点収差を用いる従来
の光ピツクアップは、光束形状変換光学系<Illが凸
レンズ(8)とシリンドリカルレンズ(9)の2組の部
分の光学系で構成されているため。However, the conventional optical pickup using astigmatism as shown in Figure 1 above consists of an optical system consisting of two sets of parts: a convex lens (8) and a cylindrical lens (9). Because it has been.
部品点数が多く、シかも光検出器aυを最小散乱円の位
置忙設置する組立と調整は簡単ではなく時間がかかり、
更忙横方向に出っばり光ピツクアップの小形軽量化が困
難であるという欠点があった。There are many parts, and the assembly and adjustment of the photodetector aυ to the position of the minimum scattering circle is not easy and takes time.
Furthermore, there was a drawback in that the optical pickup protruded laterally, making it difficult to make it smaller and lighter.
この発明は非点収差法を用いた従来の光ピツクアップの
前述の欠点を解決するため偏光ビームスプリッタに複屈
折を有する結晶で構成されているものを用いたものであ
シ、以下図面について詳細に説明する。In order to solve the above-mentioned drawbacks of the conventional optical pickup using the astigmatism method, this invention uses a polarizing beam splitter made of a crystal having birefringence. explain.
第2図(4)はこの発明の実施例を示す図である。図に
おいて(4)は複屈折を有する結晶によって構成されて
いる偏光ビームスプリブタであり。FIG. 2(4) is a diagram showing an embodiment of the present invention. In the figure, (4) is a polarizing beam splitter made of a crystal having birefringence.
フォスタープリズムを示している。上記偏光ビームスプ
リッタは三角柱状の部分(4a)と四角柱状の部分(4
b)とから構成されており、それぞれは偏光分離面(L
3により張り合されている。三角柱状の部分(4a)の
頂角θは光軸傾に平行でかつ偏光方向がS偏光(電界の
振動面が紙面に垂直)である光を臨界角で全反射するよ
うに設定されている。また1反射面04は入射光を一反
射するようになっており、頂角汐は光軸(Lf9に平行
な光が偏光分離面α騰によって反射された光を透過面(
+!9に垂直な方向に反射するように設定されている。Showing Foster prism. The polarizing beam splitter has a triangular prism-like part (4a) and a quadrangular prism-like part (4a).
b), each of which has a polarization separation plane (L
It is bound by 3. The apex angle θ of the triangular prism-shaped portion (4a) is set to be parallel to the optical axis tilt and to totally reflect light whose polarization direction is S-polarized (the vibration plane of the electric field is perpendicular to the plane of the paper) at a critical angle. . In addition, the 1-reflection surface 04 is designed to reflect one incident light, and the apex angle is the light parallel to the optical axis (Lf9).
+! It is set to reflect in a direction perpendicular to 9.
次に、偏光ビームスプリッタ(4)の作用を詳しく図面
を用りて説明する。第3図は偏光ビームスプリッタ(4
)の作用を示す図である。図のように、P偏光光(第3
図如おいて記号←→で示した)とS偏光光(第3図にお
いて記号■で示した)が偏光分離面03に入射角度θO
で入射したとすると、偏光ビームスプリッタ(4)を構
成している結晶は複屈折を有するため各々の偏光に対す
る屈折率が異っているので全反射が起る入射角度が異っ
てくる。ここではS偏光を臨界角で全反射するように第
3図における頂角θをきめているので、S偏光成分は偏
光分離面alで全反射される。しかし、P偏光成分に対
しては全反射の条件を満さないのでそのまま偏光分離面
01を透過する。第4図はS偏光の臨界角oS付近にお
ける入射角θ0と反射率との関係を模式的に書いたもの
である。入射角度がO3より大きくなると8偏光成分は
全反射されるが、入射角度がθSより小さくなると反射
率が1より小さくなり、第3図における偏光分離面(1
3を透過するS偏光成分を生じ、偏光分離面餞で反射さ
れるS偏光成分の割合が減少する。この臨界角08前後
における反射率の変化は急峻である。Next, the action of the polarizing beam splitter (4) will be explained in detail using the drawings. Figure 3 shows a polarizing beam splitter (4
) is a diagram showing the effect of As shown in the figure, P-polarized light (third
(indicated by the symbol ←→ in the figure) and S-polarized light (indicated by the symbol ■ in Fig. 3) enter the polarization separation surface 03 at an incident angle θO.
If the polarizing beam splitter (4) is made of a crystal having birefringence, the refractive index for each polarized light is different, and therefore the angle of incidence at which total reflection occurs will be different. Here, since the apex angle θ in FIG. 3 is determined so that the S-polarized light is totally reflected at the critical angle, the S-polarized light component is totally reflected at the polarization separation surface al. However, since the P-polarized light component does not satisfy the conditions for total reflection, it passes through the polarization separation surface 01 as is. FIG. 4 schematically depicts the relationship between the incident angle θ0 and reflectance near the critical angle oS of S-polarized light. When the incident angle is larger than O3, the 8 polarized light components are totally reflected, but when the incident angle is smaller than θS, the reflectance becomes smaller than 1, and the polarization separation surface (1
3, and the proportion of the S-polarized light component reflected by the polarization separation surface is reduced. The change in reflectance around this critical angle of 08 is steep.
第2図にもどり動作を説明する。第2図においてレーザ
光源(1)から出射されるレーザ光はP偏光とすると、
上記説明により、コリメータレンズ(3)を通過した平
行光は、偏光ビームスプリッタ(4)の偏光分離面(2
)で反射されることなく透過し、l/4波長板(5)に
入射する。174波長板(5)を透過した後は円偏光に
なり対物レンズ(6)でディスク(7)の面上に集光さ
れる。ディスク(7)の面で反射された光は再び対物レ
ンズ(6)を透過し入射平行光とは進行方向が逆の平行
光となシ、再び1/4波長板(5)に入射する。1/4
波長板(5)を透過した後にはS偏光となり偏光ビーム
スプリッタ(4)の偏光分離面(I罎に入射するがすべ
ての入射光の入射角度は臨界角になっているので全反射
される。また、偏光ビームスプリッタの反射面0で十反
射され進行方向が変えられて光検出器αυに入射する。Returning to FIG. 2, the operation will be explained. Assuming that the laser light emitted from the laser light source (1) in FIG. 2 is P-polarized,
According to the above explanation, the parallel light that has passed through the collimator lens (3) is
) without being reflected, and enters the 1/4 wavelength plate (5). After passing through the 174 wavelength plate (5), the light becomes circularly polarized light and is focused onto the surface of the disk (7) by the objective lens (6). The light reflected by the surface of the disk (7) passes through the objective lens (6) again, becomes parallel light whose traveling direction is opposite to that of the incident parallel light, and enters the quarter-wave plate (5) again. 1/4
After passing through the wavelength plate (5), it becomes S-polarized light and enters the polarization separation surface (I) of the polarizing beam splitter (4), but since the incident angle of all the incident light is a critical angle, it is totally reflected. Further, the light is sufficiently reflected by the reflective surface 0 of the polarizing beam splitter, and the traveling direction is changed, and the light is incident on the photodetector αυ.
第2図(B)はジャストフォーカス状態における光検出
器上での光束断面形状を示す図である。光検出器aυは
直線状の電気的絶縁領域によって2分割されており、ベ
ストフォーカス状態では光束断面は円形で9分割された
光検出器(xxa) (xlb)の各々に均等に配分さ
れている。FIG. 2(B) is a diagram showing a cross-sectional shape of a light beam on a photodetector in a just-focus state. The photodetector aυ is divided into two by a linear electrically insulating region, and in the best focus state, the cross section of the light beam is equally distributed to each of the nine circular photodetectors (xxa) (xlb). .
第5図(4)はディスク(7)がベストフォーカス状態
よシ遠ざかっている場合を示したものである。ディスク
(7)の面で反射された光は対物ノンズ(6)を透過し
たのちは収束する光束αυa8に変換される。さて、こ
のような収束光が偏光ビームスプリッタ(4)に入射し
たとき偏光分離面α罎に対する入射角度が光束αηと光
束O1とでは異っており、光束aηは入射角度が臨界角
以上になるので偏光分離面一で全反射されるが、光束(
180入射角度は臨界角以下であるので偏光分離面03
を透過する。第5図IA)に透過する光束を斜線を施し
た部分で示す。第5図(B)はデ、fスク(7)がベス
トフォーカス状態より遠ざかっているときの光検出器α
υと光束断面形状の関係を示す図であり、光束断面は半
円形で9分割された光検出器(11a)のみに入射する
。FIG. 5(4) shows a case where the disk (7) is further away from the best focus state. The light reflected by the surface of the disk (7) passes through the objective lens (6) and is then converted into a converging light beam αυa8. Now, when such convergent light enters the polarization beam splitter (4), the angle of incidence on the polarization separation surface α is different for the light flux αη and the light flux O1, and the angle of incidence of the light flux aη is greater than the critical angle. Therefore, it is totally reflected at the polarization separation surface, but the luminous flux (
180 Since the incident angle is less than the critical angle, the polarization separation plane 03
Transparent. In FIG. 5 IA), the transmitted light beam is shown by the shaded area. Figure 5 (B) shows the photodetector α when the de, f screen (7) is further away from the best focus state.
It is a diagram showing the relationship between υ and the cross-sectional shape of a light beam, where the cross-section of the light beam is incident only on a photodetector (11a) divided into nine semicircular parts.
第6図IA)はディスク(7)がベストフォーカス状態
より対物レンズ(6)に近づいた場合を示したものであ
る。この場合には、ディスク(7)の面で反射された光
は対物レンズ(61を透過したのちは発散光束(111
21に変換される。このような発散光が明光ビームスプ
リッタ(4)に入射したとき偏光分離面餞に対する入射
角度が光束(IIと光束(川とでは異っており、光束Q
lは入射角度が臨界角以下になるので偏光分離面0漕を
透過するが、光束C11は入射角度が臨界角以上になる
ので偏光分離而413で全反射される。第6図(A)に
透過する光束を斜線で示す。第6図(B)はディスク(
7)がベストフォーカス状態より対物レンズ(6)に近
づいたときの光検出器01)と光束断面形状の関係を示
す図である。光束形状は左半分の半円形で9分割された
光検出器(11b)のみに入射する。FIG. 6 IA) shows a case where the disk (7) is closer to the objective lens (6) than in the best focus state. In this case, the light reflected on the surface of the disk (7) passes through the objective lens (61) and then becomes a divergent beam (111
21. When such diverging light enters the bright light beam splitter (4), the angle of incidence on the polarization splitting surface is different between the luminous flux (II) and the luminous flux (river), and the luminous flux Q
Since the incident angle of light C11 is less than the critical angle, it is transmitted through the polarization separation surface 0, but the light beam C11 is totally reflected by the polarization separation surface 413 because its incidence angle is greater than the critical angle. In FIG. 6(A), the transmitted light flux is indicated by diagonal lines. Figure 6 (B) shows the disk (
7) is a diagram showing the relationship between the photodetector 01) and the cross-sectional shape of the light beam when it approaches the objective lens (6) from the best focus state. The light flux is incident only on the photodetector (11b), which is divided into nine semicircular parts on the left side.
以上の第2図(B)、第5図(B)、第6図(B)及び
それらの説明から分割された光検出器(11a)と(1
1b)の出力を差動増幅することによりフォーカシング
誤差信号を得られることがわかる。The photodetector (11a) and (1
It can be seen that the focusing error signal can be obtained by differentially amplifying the output of 1b).
第7図はこの発明の他の実施例を示す図であシ、光検出
器aυが偏光ビームスプリッタ(4)に接着され一体と
なっている。FIG. 7 is a diagram showing another embodiment of the present invention, in which a photodetector aυ is glued and integrated with a polarizing beam splitter (4).
なお9以上は複屈折結晶で構成される偏光ビームスプリ
ッタとしてフォスタープリズムを用いた場合について説
明したが、この発明はこれに限らず、グラントムソンプ
リズム等複屈折結晶で構成される他の偏光ビームスプリ
ッタを用いてもよい。In addition, although the case in which a Foster prism is used as a polarizing beam splitter made of a birefringent crystal has been described above, the present invention is not limited to this, and can be applied to other polarizing beam splitters made of a birefringent crystal such as a Glan-Thompson prism. may also be used.
以上のように、この発明に係る光ピツクアップでは、フ
ォスタープリズムを用いることによシ臨界角近傍忙おけ
る反射率の変化によりフォーカシング誤差信号を得るこ
とができるので。As described above, in the optical pickup according to the present invention, by using a Foster prism, a focusing error signal can be obtained from changes in reflectance near the critical angle.
従来の非点収差法のように光束形状を変換する光学系が
なくてすみ、軽量化が計れるとともに、光束径が大きい
ため光検出器の位置合せが容易になり、しかも光検出器
と偏光ビームスプリフタとを一体化することも可能で、
光検出器の位置ずれのおきにくb構造にすることができ
るという利点がある8There is no need for an optical system that converts the shape of the beam as in the conventional astigmatism method, which reduces weight, and the large diameter of the beam makes it easy to align the photodetector. It is also possible to integrate it with a prelifter.
It has the advantage of being able to use a b-structure that prevents the photodetector from being misaligned8.
第1図(4)は非点収差法を用いた従来の光ピツクアッ
プの実施例を示す図、第1図(B)は光検出器の形状例
とベスト7オーカス状態での光束断面形状を示す図、第
1図(n)はディスクが近づいた場合の光検出器と光束
断面形状の関係を示す図、第1図(I))はディスクが
遠くにある場合の光検出器と光束断面形状の関係を示す
図、第2図(4)はこの発明の実施例を示す図、第2図
(B)は光検出器の形状例とベストフォーカス状態での
光束断面形状を示す図、第3図はフォスタープリズムの
作用を示す図、第4図はフォスタープリズムの臨界角近
傍における反射率の変化を示す模式図、第5図(A)は
ディスクが遠ざかったときの模式図、第5図(B)はデ
ィスクが遠ざかった場合の光検出器と光束断面形状の関
係を示す図。
第6図(A)はディスクが近づ込たときの模式図。
第6図(B)はディスクが近づいた場合の光検出器と光
束断面形状の関係を示す図、第7図はこの発明に係る他
の実施例を示す図である。
図中、(1)はレーザ光源、(3)はコリメータレンズ
、(4)は偏光ビームスプリッタ、(5)は1/4波長
板、(6)は対物レンズ、(7)はディスク、顛は光束
形状変換光学系、αυは光検出器、峙は偏光分離面、(
I4は反射面、αη傾は収束光束、α1(至)は発散光
束である。
なお9図中同一あるいは相当部分には同一符号を付して
示しである。
代理人 大岩増雄
第 1 図
(A)
第2図
(A)
第3図
第4図
第6図
(八)
第7図Figure 1 (4) shows an example of conventional optical pickup using the astigmatism method, and Figure 1 (B) shows an example of the shape of a photodetector and the cross-sectional shape of the light beam in the best 7 orcus state. Figure 1 (n) is a diagram showing the relationship between the photodetector and the cross-sectional shape of the light beam when the disk approaches, and Figure 1 (I) is a diagram showing the relationship between the photodetector and the cross-sectional shape of the light beam when the disk is far away. FIG. 2 (4) is a diagram showing an embodiment of the present invention. FIG. The figure shows the action of the Foster prism. Figure 4 is a schematic diagram showing the change in reflectance near the critical angle of the Foster prism. Figure 5 (A) is a schematic diagram when the disk moves away. B) is a diagram showing the relationship between the photodetector and the cross-sectional shape of the light beam when the disk moves away. FIG. 6(A) is a schematic diagram when the disk approaches. FIG. 6(B) is a diagram showing the relationship between the photodetector and the cross-sectional shape of the light beam when the disk approaches, and FIG. 7 is a diagram showing another embodiment according to the present invention. In the figure, (1) is a laser light source, (3) is a collimator lens, (4) is a polarizing beam splitter, (5) is a quarter-wave plate, (6) is an objective lens, (7) is a disk, and the frame is The beam shape conversion optical system, αυ is the photodetector, the opposite side is the polarization separation plane, (
I4 is a reflective surface, αη inclination is a converging light flux, and α1 (to) is a diverging light flux. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Masuo Oiwa Figure 1 (A) Figure 2 (A) Figure 3 Figure 4 Figure 6 (8) Figure 7
Claims (3)
するコリメータレンズと、前記平行光束を情報記録媒体
上に集光する対物レンズと、上記コリメータレンズと上
記対物レンズに至る光路中に上記情報記録媒体によって
反射された光束が再び上記対物レンズを透過してできる
上記平行光束とは逆光する平行光束を分岐するための偏
光ビームスプリッタ及び1/4波長板を有し、上記偏光
ビームスズ1ノツクにより分離された上記反射光を受光
する光検出器を備えた光ピツクアップにおいて、上記偏
光ビームスプリッタが複屈折を有する結晶を張り合せた
面が偏光分離面となっておシかつ情報記録媒体によって
生じる反射平行光に対して上記偏光分離面が臨界角とな
るように設定されているこ六を特徴とする光ビックブー
ツブ。(1) A light source, a collimator lens that converts the diverging light from the light source into a parallel beam, an objective lens that focuses the parallel beam onto an information recording medium, and an optical path between the collimator lens and the objective lens. The light beam reflected by the information recording medium is transmitted through the objective lens again to form a parallel light beam that is opposite to the parallel light beam. In an optical pickup equipped with a photodetector that receives the reflected light separated by a notch, the polarization beam splitter has a surface on which a birefringent crystal is pasted together, and serves as a polarization separation surface. What is claimed is: 1. An optical big boot tube characterized in that the polarization separation surface is set at a critical angle with respect to the generated reflected parallel light.
ることを特徴とする特許請求の範囲第(11項記載の光
ピツクアップ。(2) The optical pickup according to claim 11, wherein the polarizing beam splitter is a Foster prism.
ることを特徴とする特許請求の範囲第j1)項記載の光
ピツクアップ。(3) An optical pickup according to claim j1, characterized in that a polarizing beam splitter and a photodetector are bonded together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107181A JPS60626A (en) | 1983-06-15 | 1983-06-15 | Optical pickup |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107181A JPS60626A (en) | 1983-06-15 | 1983-06-15 | Optical pickup |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60626A true JPS60626A (en) | 1985-01-05 |
Family
ID=14452517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58107181A Pending JPS60626A (en) | 1983-06-15 | 1983-06-15 | Optical pickup |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2588671A1 (en) * | 1985-10-16 | 1987-04-17 | Canon Denshi Kk | HOUSEHOLD DETECTION APPARATUS |
-
1983
- 1983-06-15 JP JP58107181A patent/JPS60626A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2588671A1 (en) * | 1985-10-16 | 1987-04-17 | Canon Denshi Kk | HOUSEHOLD DETECTION APPARATUS |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100424837B1 (en) | Optical pickup apparatus | |
US5581403A (en) | Beam shaping and beam splitting device and optical head comprising the same | |
JPS6117103A (en) | Polarizing beam splitter | |
JPH1069681A (en) | Magnetooptical recording and reproducing device | |
US5751682A (en) | Compact size magneto-optical head with a hologram and a beam splitting means | |
JPS60626A (en) | Optical pickup | |
JPS605425A (en) | Optical information reader | |
JP2987049B2 (en) | Optical pickup and compound function prism used for optical pickup | |
JP2659239B2 (en) | Light head | |
JP2707361B2 (en) | Optical device for optical pickup | |
JP3735932B2 (en) | Optical pickup | |
KR0135859B1 (en) | Optical head | |
JP2748052B2 (en) | Light separation element and light receiving optical device using the same | |
JP3393680B2 (en) | Optical pickup | |
JP2578203B2 (en) | Light head | |
JPH0388155A (en) | Optical head | |
JP3466816B2 (en) | Optical pickup and recording / reproducing device | |
JPS61233442A (en) | Optical head device | |
JP2004103241A (en) | Optical head for optical disk device | |
JPH02148428A (en) | Optical pickup device | |
JPH0439131B2 (en) | ||
JPH04177623A (en) | Optical information recording/reproducing apparatus | |
JPH0120498B2 (en) | ||
JPH04143935A (en) | Optical pickup device | |
JPH0489645A (en) | Signal detection method in magneto-optical recording |