[go: up one dir, main page]

JPS6059967B2 - Method for preventing surface defects in low Mn-low Al slabs - Google Patents

Method for preventing surface defects in low Mn-low Al slabs

Info

Publication number
JPS6059967B2
JPS6059967B2 JP56110277A JP11027781A JPS6059967B2 JP S6059967 B2 JPS6059967 B2 JP S6059967B2 JP 56110277 A JP56110277 A JP 56110277A JP 11027781 A JP11027781 A JP 11027781A JP S6059967 B2 JPS6059967 B2 JP S6059967B2
Authority
JP
Japan
Prior art keywords
low
slab
heating temperature
surface defects
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110277A
Other languages
Japanese (ja)
Other versions
JPS5811739A (en
Inventor
豊治 須田
晴夫 三辻
脩 室賀
健治 荒木
正敏 高橋
正和 石園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP56110277A priority Critical patent/JPS6059967B2/en
Publication of JPS5811739A publication Critical patent/JPS5811739A/en
Publication of JPS6059967B2 publication Critical patent/JPS6059967B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は低Mn−低にスラブの表面欠陥の発生防止法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing the occurrence of surface defects in low Mn-low slabs.

低Mn−低川系Alキルド鋼は、薄板向の連続鋳造汎用
鋼として、冷間圧延性に優れ、またコスト面からも安価
てあることから最近広く使用されている。
Low Mn-low aluminum killed steel has recently been widely used as a general-purpose continuous casting steel for thin plates because it has excellent cold rollability and is inexpensive in terms of cost.

しかしながらこのスラブを圧延に際して高温加熱すると
、熱延板表面にヘゲ状の表面欠陥が発生する場合があり
、表面品質上問題がある。この点に関しては、従来原因
も明確でなく、従って対策も一般に加熱温度を下げる方
向で行なわれているだけで、表面欠陥の発生を防止する
ために成分を考慮して定量的な加熱温度の管理を行なう
ことはなされていなかつた。この発明は上記のような実
情にかんがみてなされたものてあつて、その目的は成分
を考慮した定量的な加熱温度範囲内でスラブを加熱する
ことにより圧延鋼板の表面欠陥の発生を防止できるよう
にした低Mn−低Alスラブの表面欠陥の発生防止法を
提供しようとするものである。
However, if this slab is heated to a high temperature during rolling, sludge-like surface defects may occur on the surface of the hot-rolled sheet, which poses a problem in terms of surface quality. Regarding this point, the cause has not been clear in the past, and therefore countermeasures have generally only been taken in the direction of lowering the heating temperature.In order to prevent the occurrence of surface defects, the heating temperature has been quantitatively controlled by considering the components. Nothing was done. This invention was made in view of the above-mentioned circumstances, and its purpose is to prevent the occurrence of surface defects in rolled steel sheets by heating the slab within a quantitative heating temperature range that takes into account the ingredients. The present invention aims to provide a method for preventing the occurrence of surface defects in low Mn-low Al slabs.

この発明の低Mn−低Nスラブの加熱方法の特徴は、M
n:0.03〜0.25%、501A10.005〜0
.020%を有するスラブを加熱するに際し、加熱炉内
最高加熱温度T℃を、Mn含有%を〔Mn〕とした場合
に1000くT<、562〔Mn〕+1165の範囲内
として加熱することである。
The characteristics of the low Mn-low N slab heating method of this invention are as follows:
n: 0.03-0.25%, 501A10.005-0
.. When heating a slab having 0.020%, the maximum heating temperature in the heating furnace T° C. is within the range of 1000 T<, 562 [Mn] + 1165, where Mn content % is [Mn]. .

以下この発明方法の一実施例を説明する。An embodiment of the method of this invention will be described below.

まず、この発明方法の対象となる低Mn−低Alスラブ
の材質は、C:0.06%以下、Si:0.03%以下
、SolA1:0.005〜0.020%、N:0.0
025%以下で、Mnを除いて残部は鉄と不可避的不純
物よりなり、特にMn含有量を0.03〜0.25%(
Mn/ 5>7)とした、いわゆる低Mn−低N系キル
ド鋼である。cは鋼の強度を上昇させに値を低下させ、
かつ冷間加工性を著しく低下させるので、上限を0.0
6%とした。(・Siは製鋼上必要な成分であるが、多
量に含まれると冷間加工性を低下させるので、上限を0
.03%とした。SOlAlは上限を0.020%とし
たが、これは1これ以上の含有量にすると高価になり、
安価な低A1鋼の特質が無くなるというコスト面、並び
に2A1の固溶硬化により鋼が硬化すること及び加熱温
度を下げた場合に発生しやすい熱延板での異常粗大粒の
発生を防止すること等の材質面の理由によるものである
First, the materials of the low Mn-low Al slab that is the target of the method of this invention are: C: 0.06% or less, Si: 0.03% or less, SolA1: 0.005 to 0.020%, N: 0. 0
025% or less, except for Mn, the remainder consists of iron and unavoidable impurities.
It is a so-called low Mn-low N type killed steel with Mn/5>7). c decreases the value to increase the strength of the steel,
Since it also significantly reduces cold workability, the upper limit is set to 0.0.
It was set at 6%. (・Si is a necessary component for steelmaking, but if it is included in a large amount, it will reduce cold workability, so the upper limit should be set to 0.
.. 03%. The upper limit of SOlAl was set at 0.020%, but this means that if the content is higher than 1, it becomes expensive.
To prevent the cost aspect of eliminating the characteristics of inexpensive low A1 steel, and to prevent the steel from hardening due to solid solution hardening of 2A1 and the occurrence of abnormally coarse grains in hot rolled sheets that tend to occur when the heating temperature is lowered. This is due to material issues such as.

一方下限は鋼の清浄性、表面性状及び歪時効性の低下防
止等から0.005%とした。Nはその上限を0.00
25%としたが、これは冷間圧延性即ちこれを超えると
冷間圧延中のワークロールの摩耗が激しくなるからであ
る。
On the other hand, the lower limit was set at 0.005% in order to prevent deterioration of the cleanliness, surface texture, and strain aging properties of the steel. N is the upper limit of 0.00
The reason for this is 25% because of cold rolling properties, and if it exceeds this value, the wear of the work rolls during cold rolling becomes severe.

Mnに関しては、低Mn化が1熱延板における軟質化及
び延性の向上並びに2冷延板における〒値向上(面内異
方性の減少を含む)等に示される如く機械的性質の向上
及び冷間圧延性の向上等に等しい効果があることから、
上限を0.25%とした。
Regarding Mn, lowering Mn improves mechanical properties and improves mechanical properties, as shown in (1) softening and improvement of ductility in hot-rolled sheets, and (2) improvement in 〒 value (including reduction in in-plane anisotropy) in cold-rolled sheets. Since it has the same effect as improving cold rolling properties,
The upper limit was set at 0.25%.

なお下限を0.03%としたのは、これ未満に下げるこ
とは工業上極めて困難であるという理由による。またS
は熱間脆性防止の観点から、Mn/S≧7を満たす範囲
とした。
The lower limit was set at 0.03% because it is industrially extremely difficult to lower the content below this. Also S
From the viewpoint of preventing hot embrittlement, the range was set to satisfy Mn/S≧7.

次に加熱温度については、低Mn一低A1スラブを高温
加熱すると圧延鋼板上にヘケ状の表面欠陥が発生するの
は、加熱炉中におけるスラブ表層部の撰択酸化に起因す
るものと考えられるので、本発明者等は加熱炉条件をシ
ミユレートした高温酸化実験によりスラブ表層部の酸化
状況を調査した。
Next, regarding the heating temperature, when a low Mn-low A1 slab is heated to a high temperature, sagging surface defects occur on the rolled steel sheet, which is thought to be due to selective oxidation of the surface layer of the slab in the heating furnace. Therefore, the present inventors conducted a high temperature oxidation experiment simulating heating furnace conditions to investigate the oxidation status of the surface layer of the slab.

その結果を第1図に示す。これはMn:0.13%及び
0.3%のスラブについて、加熱温度を1150〜13
00゜Cの範囲で4水準とり、それぞれ3吟間加熱した
とき、スラブ表層部のある単位長さ(ここては507T
r1nの線上を採用)の線上に発生した撰択酸化部分の
個数を断面検鏡により測定したものである。この結果は
Mn含有量が低く且つ加熱温度が高い方が撰択酸化部分
の個数が多く、また深さの深いものが多く発生すること
を示しており、スラブ表層部の酸化状況はMn含有量と
加熱温度に関係があることが明らかになつた。そこで圧
延鋼板の表面性状の良否とスラブのMn含有量及び加熱
最高温度との関係を調査したところ第2図に示す結果が
得られた。
The results are shown in FIG. This means that for Mn: 0.13% and 0.3% slabs, the heating temperature is 1150-13%.
When heated at 4 levels in the range of 00°C for 3 minutes each, a certain unit length of the surface layer of the slab (here, 507T
The number of selectively oxidized portions generated on the line r1n is measured using a cross-sectional microscope. This result shows that when the Mn content is low and the heating temperature is high, the number of selectively oxidized parts is large, and many of them are deep. It became clear that there is a relationship between heating temperature and heating temperature. Therefore, the relationship between the surface quality of the rolled steel sheet, the Mn content of the slab, and the maximum heating temperature was investigated, and the results shown in FIG. 2 were obtained.

この結果より圧延鋼板の表面欠陥は、上述の酸化実験の
場合と同様に、■含有量が低いほど、また加熱最高温度
が高いほど発生しやすい傾向にあることが分つた。また
SOlAlも低い程発生しやすい傾向にあつた。しかし
調査した結果、鋼板の表面性状の良否とMn/Sとは特
に相関がなかつたので、一般に言われているMn/Sが
低目なことによる熱間脆性に起因するものとは考え難く
、前述の酸化実験との関連から圧延時の表面欠陥はスラ
ブ表層部の撰択酸化に起因するものと考えられる。そし
て、第2図を整理した結果、許容される最高加熱温度は
成分、特にMn含有量に依存しているので低Mn一低A
lスラブで、表面品質の優れた鋼板を得るためには、ス
ラブ最高加熱温度T℃を、Mn含有%を〔Mn〕とした
場合、Mn含有量に応じての範囲に保持して操業すれば
よいことが明らかになつた。
From this result, it was found that, as in the case of the oxidation experiment described above, the surface defects of the rolled steel sheet tend to occur more easily as the content (1) is lower and the maximum heating temperature is higher. In addition, the lower SOlAl was, the more likely it was to occur. However, as a result of the investigation, there was no particular correlation between the quality of the surface texture of the steel sheet and Mn/S, so it is difficult to think that hot embrittlement is caused by the generally considered low Mn/S. In connection with the oxidation experiment described above, it is thought that surface defects during rolling are caused by selective oxidation of the surface layer of the slab. As a result of organizing Figure 2, the maximum allowable heating temperature depends on the components, especially the Mn content, so low Mn and low A
In order to obtain a steel plate with excellent surface quality, the maximum slab heating temperature T°C should be maintained within the range corresponding to the Mn content, where the Mn content% is [Mn]. Something good has become clear.

なお温度の下限はAlNの溶解挙動及び圧延作業性の観
点から1000′Cとした。次にMn:0.16%の低
Mnの試料A1〜ん及びMn:0.3%の高Mnの試料
Xl,X2について、板厚2.6噸に熱延後酸洗して表
面性状の良否を調査した結果を第1表に示す。
Note that the lower limit of temperature was set at 1000'C from the viewpoint of melting behavior of AlN and rolling workability. Next, low Mn samples A1 to 0.16% and high Mn samples Xl and X2 of 0.3% were hot-rolled to a thickness of 2.6 mm and then pickled to improve the surface texture. Table 1 shows the results of the quality inspection.

高温加熱をした試料A1を除き、本発明方法にょり加熱
したものの鋼板の表面性状はすべて良好であつた。
Except for sample A1, which was heated at a high temperature, all the steel plates heated by the method of the present invention had good surface properties.

またこれら試料の冷延板の引張特性値も、第2表に示す
ように良好な結果であつた。
The tensile properties of the cold-rolled sheets of these samples also showed good results, as shown in Table 2.

これは巻取温度680℃て巻取つた熱延鋼板を、70%
冷圧して板厚0.8w!nとした冷延板を、680℃で
焼鈍したものである。
This is a 70%
Cold pressed plate thickness 0.8w! A cold-rolled plate with a temperature of n is annealed at 680°C.

この発明の低Mn一低Nスラブの表面欠陥の発生防止法
は上記のようなもので、成分を考慮した定量的な加熱温
度範囲内でスラブを加熱することにより、圧延鋼板の表
面欠陥の発生を防止することができる。
The method for preventing the occurrence of surface defects in a low Mn-low N slab according to the present invention is as described above. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラブのMn含有量及び加熱温度とスラブ表層
部に発生した撰択酸化部分の個数との関係を示す説明図
、第2図は圧延鋼板の表面性状とスラブのMn含有量及
び加熱炉内最高加熱温度との関係を示す説明図である。
Figure 1 is an explanatory diagram showing the relationship between the Mn content and heating temperature of the slab and the number of selectively oxidized parts generated on the surface layer of the slab. Figure 2 is an explanatory diagram showing the relationship between the Mn content and heating temperature of the slab and the number of selectively oxidized parts generated on the surface layer of the slab. Figure 2 is the relationship between the Mn content and heating temperature of the slab. It is an explanatory view showing the relationship with the maximum heating temperature in the furnace.

Claims (1)

【特許請求の範囲】 1 Mn:0.03〜0.25%、SolAl0.00
5〜0.020%を有するスラブを加熱するに際し、加
熱炉内最高加熱温度T℃を、Mn含有%を〔Mn〕とし
た場合に1000≦T≦562〔Mn〕+1165の範
囲内として加熱することを特徴とする低Mn−低Alス
ラブの表面欠陥の発生防止法。
[Claims] 1 Mn: 0.03 to 0.25%, SolAl 0.00
When heating a slab having 5 to 0.020%, the maximum heating temperature in the heating furnace T° C. is within the range of 1000≦T≦562 [Mn] + 1165 when the Mn content % is [Mn]. A method for preventing the occurrence of surface defects in a low Mn-low Al slab.
JP56110277A 1981-07-15 1981-07-15 Method for preventing surface defects in low Mn-low Al slabs Expired JPS6059967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110277A JPS6059967B2 (en) 1981-07-15 1981-07-15 Method for preventing surface defects in low Mn-low Al slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110277A JPS6059967B2 (en) 1981-07-15 1981-07-15 Method for preventing surface defects in low Mn-low Al slabs

Publications (2)

Publication Number Publication Date
JPS5811739A JPS5811739A (en) 1983-01-22
JPS6059967B2 true JPS6059967B2 (en) 1985-12-27

Family

ID=14531604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110277A Expired JPS6059967B2 (en) 1981-07-15 1981-07-15 Method for preventing surface defects in low Mn-low Al slabs

Country Status (1)

Country Link
JP (1) JPS6059967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299860U (en) * 1985-12-16 1987-06-25

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154044A (en) * 1984-12-26 1986-07-12 Toyo Electric Mfg Co Ltd Probe card of prober
JPS62290144A (en) * 1986-06-09 1987-12-17 Yokogawa Electric Corp Probe device for semiconductor wafer
JPH07109840B2 (en) * 1989-03-10 1995-11-22 松下電器産業株式会社 Semiconductor IC test apparatus and test method
JPH03218042A (en) * 1990-01-23 1991-09-25 Toshiba Corp High-frequency fixing card

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863523A (en) * 1973-06-25 1975-02-04 Caterpillar Tractor Co Hydraulic safety system for a vehicle transmission
JPS5430964A (en) * 1977-08-03 1979-03-07 Gunze Kk Stretch braid and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299860U (en) * 1985-12-16 1987-06-25

Also Published As

Publication number Publication date
JPS5811739A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JPS6059967B2 (en) Method for preventing surface defects in low Mn-low Al slabs
US4284439A (en) Process for the production of sheet and strip from ferritic, stabilized, stainless chromium-molybdenum-nickel steels
JPH0794688B2 (en) Manufacturing method for improving the toughness of a high Al content ferritic stainless steel hot rolled steel strip
JPH0368104B2 (en)
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3350351B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent shape and magnetic properties
JPH086143B2 (en) Manufacturing method of steel plate for ultra-thin welding can with excellent stripping property
JPS6330969B2 (en)
JP2714994B2 (en) Manufacturing method of steel plate for welding can with excellent stripping property
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH07157844A (en) Hot-rolled steel sheet with excellent workability and method for producing the same
JP4696341B2 (en) Manufacturing method of thin steel sheet with excellent surface properties
JPH06271943A (en) Method for producing ferritic stainless steel sheet with excellent formability and ridging resistance and low anisotropy
JPH0477049B2 (en)
JP2000042604A (en) Manufacturing method of steel sheet with excellent surface properties
JPH11323514A (en) Steel sheet with excellent surface properties
JP2002038221A (en) Method for producing high-purity Cr-containing thin steel sheet excellent in press formability
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JPH07118800A (en) High-strength hot-rolled steel sheet containing Sn and Ti-B having good surface properties and method for producing the same
JPH0118969B2 (en)
JPH02232342A (en) Thin steel plate for deep drawing without embrittlement cracking by welding molten metal and its manufacturing method
JP3873352B2 (en) Manufacturing method of hot-rolled steel sheet
JPS62270726A (en) Manufacture of cold rolled steel sheet having superior workability
JPS6240318A (en) Method for manufacturing cold-rolled steel sheets with excellent deep drawability