JPS6059834B2 - pulse power supply - Google Patents
pulse power supplyInfo
- Publication number
- JPS6059834B2 JPS6059834B2 JP8654178A JP8654178A JPS6059834B2 JP S6059834 B2 JPS6059834 B2 JP S6059834B2 JP 8654178 A JP8654178 A JP 8654178A JP 8654178 A JP8654178 A JP 8654178A JP S6059834 B2 JPS6059834 B2 JP S6059834B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- power supply
- pulse
- capacitors
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 90
- 230000001939 inductive effect Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 permanent magnets Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Generation Of Surge Voltage And Current (AREA)
Description
【発明の詳細な説明】
この発明は、電力エネルギを有効に利用して節電を図る
ようにしたパルス電源装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse power supply device that effectively utilizes power energy to save power.
通常、永久磁石等の磁性材を製造する場合、鉄等の材料
を熱処理加工したのち磁化を行なう。この磁化を行なう
には、コイルに大電流を供給して生じさせた高磁場に材
料を一定時間以上位置させ、着磁する。この時、磁石に
要求される保持力の数倍以上の磁化力を材料に加える必
要がある。そして、高磁場を発生させるコイルに大電流
を供給する従来の電源装置は、第1図または第2図に示
すような構成になつている。すなわち、第1図は20〜
60Vの直流電源Bにより負荷R。の高磁場発生用のコ
イルレに数千Aの直流大電流を連続して加える直流連続
給電方式の装置てあり、一方、第2図は、充電用スイッ
チ5、をオンして直流電源BによりコンデンサCを充電
したのち、充電用スインチSェをオフし、かつ放電用ス
イッチS2をオンしてコンデンサCの充電電荷をパルス
放電させ、大電流パルスを数回加える衝撃磁化方式の装
置である。なお、第1図および第2図におけるR。はコ
イルL。の抵抗と配線抵抗等の回路の抵抗であり、第2
図のDは、振動防止、負荷R。の電流の極性の反転防止
およびコンデンサCの逆充電防止用ダイオードである。
ところで、第1図の装置は、磁場発生用コイルLに大電
流を連続して給電するため、第3図の破線で示す材料に
必要な磁化レベル胤に対して、実線で示すように、一定
の電流Aを供給し、一定の磁化力を保持てきる利点があ
る反面、電力消費量が大きく、かつ電源装置が大型化す
ると云う欠点がある。Normally, when manufacturing magnetic materials such as permanent magnets, materials such as iron are heat treated and then magnetized. To perform this magnetization, the material is placed in a high magnetic field generated by supplying a large current to a coil for a certain period of time, and then magnetized. At this time, it is necessary to apply a magnetizing force to the material that is several times more than the holding force required of the magnet. A conventional power supply device that supplies a large current to a coil that generates a high magnetic field has a configuration as shown in FIG. 1 or 2. That is, in Figure 1, 20~
Load R with 60V DC power supply B. This is a continuous DC power supply system that continuously applies a large DC current of several thousand A to a coil coil for generating a high magnetic field. After charging the capacitor C, the charging switch S is turned off and the discharging switch S2 is turned on to discharge the charge in the capacitor C in pulses, and a large current pulse is applied several times. Note that R in FIGS. 1 and 2. is coil L. resistance and circuit resistance such as wiring resistance, and the second
D in the diagram is vibration prevention and load R. This is a diode for preventing reversal of the polarity of the current and for preventing reverse charging of the capacitor C.
By the way, the device shown in Fig. 1 continuously supplies a large current to the magnetic field generating coil L, so that the magnetization level required for the material shown by the broken line in Fig. 3 is constant as shown by the solid line. Although it has the advantage of supplying a current A of 100% and maintaining a constant magnetizing force, it has the disadvantage that it consumes a large amount of power and increases the size of the power supply device.
また、第2図の装置は、第3図に示す磁化レベルMLを
上回るレベルの電流を一定時間T1保持できるパルス幅
T2のパルス電流PAを加える必要があり、そのため、
コンデンサCとしては、大容量(静電容量)の電解コン
デンサが用いられる。しかし、磁化有効のエネルギは、
パルス電流PAの磁化レベルMLを越えた時間ちのエネ
ルギ分のみである。すなわちコンデンサCの放電エネル
ギのうち磁化に有効なエネルギは、第3図の斜線で示し
た面積に相当するエネルギのみであり、その他のエネル
ギは全て無効となり、電力損失が大きい。さらに、磁場
発生用コイルL。のL/Rが大きいため、磁化に有効な
時間T1に比し放電時間T2か数秒〜数十秒と非常に長
くなり、着磁時間が長くなり、磁性材の製造に際しその
生産能力が著しく制限される。この発明は、前記従来の
欠点に留意し、電力エネルギを有効に利用できる構成に
し、かつ磁性材の製造等に際し、材料を短時間て着磁で
きるパルス電流を出力できるようにしたものであり、つ
ぎにこの発明を、その実施例を示した第4図以下の図面
とともに詳細に説明する。Furthermore, the device shown in FIG. 2 requires the application of a pulse current PA with a pulse width T2 that can maintain a current at a level higher than the magnetization level ML shown in FIG. 3 for a certain period of time T1.
As the capacitor C, a large capacity (electrostatic capacitance) electrolytic capacitor is used. However, the effective energy of magnetization is
This is only the energy for the time when the pulse current PA exceeds the magnetization level ML. That is, of the discharge energy of the capacitor C, the energy effective for magnetization is only the energy corresponding to the area indicated by diagonal lines in FIG. 3, and all other energy is ineffective, resulting in a large power loss. Furthermore, a coil L for generating a magnetic field. Because L/R is large, the discharge time T2 is extremely long, from several seconds to several tens of seconds, compared to the effective time T1 for magnetization, which lengthens the magnetization time and significantly limits the production capacity when manufacturing magnetic materials. be done. The present invention takes into account the above-mentioned drawbacks of the conventional technology, and has a configuration that allows effective use of electric energy, and outputs a pulsed current that can magnetize materials in a short time when manufacturing magnetic materials, etc. Next, this invention will be explained in detail with reference to the drawings from FIG. 4 onwards showing an embodiment thereof.
1実施例を示した第4図において、Bl,B,は蓄電池
等の第1および第2直流電源、SWl,SW2はそれぞ
れ第1および第2直流電源Bl,B2に直列接続された
第1および第2スイッチ、CHは第1および第2直流電
源B.,B2と第1および第2スイッチSWl,SW2
により構成された充電器であり、両出力端了01,02
間に、両直流電源Bl,B2がそれぞれ両スイッチSW
l,SW2を介して逆極性に接続されている。In FIG. 4 showing one embodiment, Bl and B are first and second DC power supplies such as storage batteries, and SWl and SW2 are first and second DC power supplies connected in series to the first and second DC power supplies Bl and B2, respectively. The second switch, CH, is connected to the first and second DC power supplies B. , B2 and the first and second switches SWl, SW2
This is a charger configured with both output terminals 01 and 02.
In between, both DC power supplies Bl and B2 are connected to both switches SW.
1, and are connected with opposite polarity via SW2.
Cl,C2は充電器CHの両出力端子01,02間に逆
極性に直列接続された電解コンデンサ等のエネルギ蓄積
用第1および第2コンデンサであり、両コンデンサCl
,C2が両直流電源Bl,B2に交互に充電できるよう
に接続されている。Dl,D2はそれぞれ第1および第
2コンデンサCl,C2に並列に接続された第1および
第2バイパスダイオード、SCは第1ないし第4サイリ
スタTHl〜TH4をブリッジ接続して構成されたスイ
ッチ回路であり、交流側端子の両人力側端子11,12
が第1および第2コンデンサCl,C2の直列回路の両
端に接続されている。R1は両端がスイッチ回路SCの
交流側端子の両出力端子01″,02″に接続された誘
導性負荷であり、コイルL1のインダクタンスとコイル
L1の抵抗と配線抵抗等の回路の抵抗r1からなる。つ
ぎに、前記実施例の動作を第5図を参照して説明する。Cl and C2 are first and second capacitors for energy storage such as electrolytic capacitors connected in series with opposite polarity between both output terminals 01 and 02 of the charger CH, and both capacitors Cl
, C2 are connected to both DC power sources Bl and B2 so that they can be charged alternately. Dl and D2 are first and second bypass diodes connected in parallel to the first and second capacitors Cl and C2, respectively, and SC is a switch circuit configured by bridge-connecting the first to fourth thyristors THl to TH4. Yes, both AC side terminals and power side terminals 11 and 12
is connected across the series circuit of the first and second capacitors Cl and C2. R1 is an inductive load whose both ends are connected to both output terminals 01'' and 02'' of the AC side terminal of the switch circuit SC, and is composed of the inductance of the coil L1, the resistance of the coil L1, and circuit resistance r1 such as wiring resistance. . Next, the operation of the above embodiment will be explained with reference to FIG.
いま、第1コンデンサC1が第1直流電源八により第1
直流電淵膿,の電源電圧EBに充電されているとし、ち
時に第5図c図に示すような点弧パルスにより第1およ
び第2サイリスタTHl,TH2を導通させると、第1
コンデンサC1の充電電荷が、同e図に示すように、第
1サイリスタTHl,コィルレ、抵抗r1、第2サイリ
スタTH2および第2コンデンサC2を介して放電され
る。Now, the first capacitor C1 is connected to the first capacitor C1 by the first DC power source 8.
Assuming that the DC current is charged to the power supply voltage EB, if the first and second thyristors THl and TH2 are made conductive by a firing pulse as shown in FIG.
As shown in Figure e, the charge in the capacitor C1 is discharged through the first thyristor THl, the coil resistor, the resistor r1, the second thyristor TH2, and the second capacitor C2.
したがつて、負荷R1のコイルレに、同g図に示すよう
に、TWのパルス幅の電源パルスが供給されるとともに
、同f図に示すように、第2コンデンサ・C2が第1コ
ンデンサC1の放電エネルギにより充電されていき、そ
の両端電圧EC2は、抵抗r1により消費されたエネル
ギ分Δeだけ電源電圧EBより低く充電される。そして
、第2コンデンサC2の充電が終了すると、コイルレに
発生する逆起電圧により第1および第2サイリスタTH
l,TH2がターンオフされる。つぎに、ち時に、同b
図に示すように、第2スイッチSW2をオンすると、第
2直流電源B2により第2コンデンサC2が、同f図に
示すようにエネ”ルギΔeだけ追加充電され、第2コン
デンサC2の両端電圧EC2は電源電圧EBとなる。Therefore, as shown in Figure G, a power pulse with a pulse width of TW is supplied to the coil of load R1, and as shown in Figure F, the second capacitor C2 is connected to the first capacitor C1. It is charged by the discharge energy, and the voltage EC2 across it becomes lower than the power supply voltage EB by an amount Δe of the energy consumed by the resistor r1. When the charging of the second capacitor C2 is completed, the back electromotive force generated in the coil leads to the first and second thyristors TH.
l, TH2 is turned off. Next, at a later time, the same b.
As shown in the figure, when the second switch SW2 is turned on, the second capacitor C2 is additionally charged by the energy Δe by the second DC power supply B2, as shown in the figure f, and the voltage across the second capacitor C2 is EC2. becomes the power supply voltage EB.
そして、T2時に、同b図に示すように、第2スイッチ
SW2をオフするとともに、同d図に示すように、第3
および第4サイリスタTH3,TH4に点弧パルスを印
加してそれぞれ導通させると、第2コンデンサC2の充
電電荷が、同f図に示すように、第3サイリスタTH3
、コイルL1、抵抗r1、第4サイリスタTlilおよ
び第1コンデンサC1を介して放電され、同g図に示す
ように、コイルレに電流パルスが供給されるとともに、
同e図に示すように、第1コンデンサC1がこの第2コ
ンデンサC2の放電エネルギにより充電されていく。そ
して、T3時に、同a図に示すように、第1スイッチS
Wlをオンすると、前述と同様に、第1コンデンサC1
が電源電圧上Bまで追加充電される。以下同様の動作を
繰り返えし、負荷R1に電流パルスが断続的に供給され
ていく。したがつて、着磁装置に使用する場合、両コン
デンサCl,C2の定格と着磁作業の状態に応じてパル
ス電流の周期を決定すれは、磁化に対するる電力損失は
回路構成上の抵抗r1分による損失のみで、他の電力は
全て放電されていない方のコンデンサCl,C2に回収
され、電力エネルギが有効に利用される。ところで、前
記実施例において、もし、第1および第2バイパスダイ
オードDl,D2が設けられていないとすると、例えば
、第1コンデンサC1に第1直流電源2の電源電圧が印
加された時、第2コンデンサC2に逆電圧が印加され、
第2コンデンサC2が破壊されてしまう。Then, at time T2, the second switch SW2 is turned off as shown in FIG.
When a firing pulse is applied to the fourth thyristors TH3 and TH4 to make them conductive, the charge in the second capacitor C2 is transferred to the third thyristor TH3, as shown in the figure f.
, is discharged through the coil L1, the resistor r1, the fourth thyristor Tlil, and the first capacitor C1, and as shown in Fig. g, a current pulse is supplied to the coil L, and
As shown in Figure e, the first capacitor C1 is charged by the discharge energy of the second capacitor C2. Then, at T3, the first switch S
When Wl is turned on, the first capacitor C1
is additionally charged to B above the power supply voltage. Thereafter, similar operations are repeated, and current pulses are intermittently supplied to the load R1. Therefore, when used in a magnetizing device, the period of the pulse current is determined according to the ratings of both capacitors Cl and C2 and the state of the magnetizing operation.The power loss due to magnetization is equal to the resistance r1 in the circuit configuration. All other power is recovered to the undischarged capacitors Cl and C2, and the power energy is effectively used. By the way, in the above embodiment, if the first and second bypass diodes Dl and D2 are not provided, for example, when the power supply voltage of the first DC power supply 2 is applied to the first capacitor C1, the second A reverse voltage is applied to capacitor C2,
The second capacitor C2 will be destroyed.
したがつて、両コンデンサCl,C2の逆電圧による破
壊を防止するために両バイパスダイオードDl,D2が
接続されており、逆電圧の印加されるコンデンサCl,
C2の電圧を、バイパスダイオードDl,D2の順方向
電圧(約1V)におさえている。また、前記実施例にお
いて2個のコンデンサCl,C2を逆極性に直列接続し
ているのは次のような理由による。Therefore, in order to prevent both capacitors Cl and C2 from being destroyed by reverse voltage, both bypass diodes Dl and D2 are connected, and the capacitors Cl and C2 to which the reverse voltage is applied are connected.
The voltage of C2 is suppressed to the forward voltage (approximately 1V) of bypass diodes Dl and D2. Further, in the above embodiment, the two capacitors Cl and C2 are connected in series with opposite polarities for the following reason.
すなわち、前記実施例は、負荷R1として着磁装置の磁
場発生用のコイルL1を想定しており、コイルL1はL
/Rが非常に大きいため、放出される電流パルスのパル
ス幅TWが数十Ms〜数百Msと比較的大きく、かつ電
流パルス間の時間的インターバルも1秒〜数秒と長くな
る。たとえば、コイルL1のインダクタンスが大きいか
ら回路の抵抗r1を無視すれば、パルス電流のパルス中
酊Wは、TW=πJL(17・・・(1)の式で示され
、かつパルス電流の最大値1pは、Ip=EB×/l・
・・(2)の式で示される。なお、C″はコンデンサC
l,C2の容量、Lは負荷R1のインダクタンスである
。いま、負荷R1のインダクタンスLを?ボ、パルス電
流の最大値1pを5000A1パルス電流のパルス幅貰
を50rnsとすれば、前述の式を変形して、 −
..−ーー。となる。That is, in the above embodiment, the coil L1 for generating the magnetic field of the magnetizing device is assumed as the load R1, and the coil L1 is L1.
Since /R is very large, the pulse width TW of the emitted current pulse is relatively large, from several tens of Ms to several hundred Ms, and the time interval between current pulses is also long, from 1 second to several seconds. For example, if the resistance r1 of the circuit is ignored because the inductance of the coil L1 is large, the pulse current W is expressed by the formula TW=πJL(17...(1)), and the maximum value of the pulse current 1p is Ip=EB×/l・
...It is shown by the formula (2). In addition, C″ is the capacitor C
l, the capacitance of C2, and L the inductance of the load R1. Now, what is the inductance L of load R1? Bo, if the maximum value 1p of the pulse current is 5000 A, and the pulse width of the 1 pulse current is 50 rns, then by transforming the above equation, -
.. .. ---. becomes.
このよう1条件で使用出来るコンデンサCl,C2とし
ては、電解コンデンサのような静電容量の大きなものを
使用する方が安価となる。したがつて、電解コンデンサ
を用いるのであるから、2個のコンデンサCl,C2を
逆極性に直列接続する必要がある。つぎに、第6図につ
いて説明すると、同図は着磁装置を示し、前述のような
磁場発生用コイルレを用いず、筒状の大電流導体1に電
源装置2から大電流を供給して磁場を発生させ、大電流
導体1に磁化すべき材料3を慣通させて材料3を着磁す
る構成になつている。As the capacitors Cl and C2 that can be used under one condition, it is cheaper to use capacitors with large capacitance such as electrolytic capacitors. Therefore, since an electrolytic capacitor is used, it is necessary to connect the two capacitors Cl and C2 in series with opposite polarities. Next, referring to FIG. 6, this figure shows a magnetizing device in which a large current is supplied from a power supply device 2 to a cylindrical large current conductor 1 to generate a magnetic field without using the magnetic field generating coil array as described above. The structure is such that the material 3 to be magnetized is magnetized by causing the material 3 to be magnetized to pass through the large current conductor 1.
この着磁装置の場合は、電源装置2の負荷となる大電流
導体1のインダクタンスLの絶対値が前記実施例のコイ
ルL1に比し桁違いに小さくなる。このようにインダク
タンスLの小さい負荷または磁場発生用コイルのインダ
クタンスLを著しく小さくした場合は、負荷に供給する
電流パルス幅TWを数十μS〜数百μSとしかつ電流パ
ルス数を前記実施例の場合に比し1秒〜数秒間に×1σ
程度増加すれば、材料を着磁することができる。例えば
、電流パルスの最大値1pを5000A1負荷のインダ
クタンスLを10μH1電流パルスのパルス幅TWを5
00μSとすれば、前述の1,2式より、コンデンサの
容量となるiこのように負荷のインダクタンスLが小さ
くなり、さらに、電流パルスのパルス幅TWが小さくか
つその周波数が高くなると、電解コンデンサを損傷する
ことになる。そこで、パルス電源装置を第7図に示すよ
うな構成にすればよい。すなわち、同図において、第4
図と同一記号は同一のものを示し、CH″は充電器であ
り、両出力端子COl,CO2間にサイリスタからなる
第1および第2直流電源回路BCl,BC2が逆極性に
接続されて構成されている。C3充電器CH″の両出力
端子COl,CO2間に接続された容量の小さい交流コ
ンデンサ、R2はスイッチ回路SCの両出力端子01″
,02″間に接続された負荷であり、前述の大電流導体
のような誘導性負荷L2と回路構成上の抵抗R2分から
なる。つぎに、前記実施例の動作について説明する。In the case of this magnetizing device, the absolute value of the inductance L of the large current conductor 1 serving as the load of the power supply device 2 is orders of magnitude smaller than that of the coil L1 of the above embodiment. In this way, when the inductance L of the load is small or the inductance L of the magnetic field generating coil is significantly reduced, the current pulse width TW supplied to the load should be set to several tens of μS to several hundred μS, and the number of current pulses should be set as in the case of the above embodiment. ×1σ for 1 second to several seconds compared to
With increasing degrees, the material can be magnetized. For example, the maximum value of the current pulse is 1p, the inductance L of the 5000A1 load is 10μH, the pulse width TW of the current pulse is 5
If it is 00 μS, then from equations 1 and 2 above, the capacitance of the capacitor is i.As the inductance L of the load becomes smaller, and furthermore, the pulse width TW of the current pulse becomes smaller and its frequency becomes higher, the electrolytic capacitor becomes It will cause damage. Therefore, the pulse power supply device may be configured as shown in FIG. That is, in the same figure, the fourth
The same symbols as in the figure indicate the same things, CH'' is a charger, and the first and second DC power supply circuits BCl and BC2, which are composed of thyristors, are connected between both output terminals COl and CO2 with opposite polarity. C3 is a small-capacity AC capacitor connected between both output terminals COl and CO2 of charger CH'', and R2 is both output terminal 01'' of switch circuit SC.
.
基本的動作は第4図の場合と全く同様であり、まず、第
1直流電源回路BClのサイリスタを導通させてコンデ
ンサC3を図示の充電極性に充電する。そして、コンデ
ンサC3の充電が終了したのち、第1および第2サイリ
スタTHl,TH2を導通させると、コンデンサC3の
充電電荷が放電され、第1直流電源回路BClのサイリ
スタがターンオフされ、かつ負荷R2に電流パルスが供
給されるとともに、この放電エネルギによりコンデンサ
C3の図示と逆の充電極性に充電されていく。コンデン
サC3の図示と逆の充電極性の充電が終了すると、負荷
R2に生じる逆起電圧により第1および第2サイリスタ
THl,TH2がターンオフされる。つぎに、第2直流
電源回路BC2のサイリスタを導通させてコンデンサC
3を第2直流電源回路BC2の電源電圧まで追加充電し
、その後、第3および第4サイリスタTH3,TFI4
を導通させてコンデンサC3の充電電荷を放電させ、負
荷R2に電流パルスを供給し、以下前述と同様の動作を
繰り返えす。したがつて、容量の小さい交流コンデンサ
C3とサイリスタからなる直流電源回路BCl,BC2
により、電流パルスの周波数を大きくしても、高周波で
も使用できる交流コンデンサC3が用いられているから
問題がない。以上のように、この発明のパルス電源装置
によると、コンデンサに充電された電荷を、誘導性負荷
の共振現象を利用してパルス放電させるパルス電源装置
において、前記コンデンサの両端に接続され前記コンデ
ンサの充電極性を交互に反転させて充電する充電器と、
交流側端子が前記コンデンサの両端に接続され直流側端
子が前記負荷の両端に接続されサイリスタからなるブリ
ッジ接続のスイッチ回路とを備えたことにより、電力エ
ネルギを有効に利用することができ、電力損失を回路の
抵抗分により消費されるエネルギのみに抑えることがで
き、多大な省電力効果を得ることができる。The basic operation is exactly the same as that shown in FIG. 4, and first, the thyristor of the first DC power supply circuit BCl is made conductive to charge the capacitor C3 to the charging polarity shown. After the charging of the capacitor C3 is completed, when the first and second thyristors THl and TH2 are made conductive, the charge in the capacitor C3 is discharged, the thyristor of the first DC power supply circuit BCl is turned off, and the load R2 is turned off. As the current pulse is supplied, the discharge energy charges the capacitor C3 to a charging polarity opposite to that shown in the drawing. When the charging of the capacitor C3 with the charging polarity opposite to that shown in the drawing is completed, the first and second thyristors THl and TH2 are turned off by the back electromotive voltage generated in the load R2. Next, the thyristor of the second DC power supply circuit BC2 is made conductive, and the capacitor C
3 is additionally charged to the power supply voltage of the second DC power supply circuit BC2, and then the third and fourth thyristors TH3 and TFI4 are
conducts to discharge the charge in the capacitor C3, supply a current pulse to the load R2, and repeat the same operation as described above. Therefore, the DC power supply circuits BCl and BC2 consisting of the AC capacitor C3 and the thyristor, each having a small capacity,
Therefore, even if the frequency of the current pulse is increased, there is no problem because the AC capacitor C3, which can be used even at high frequencies, is used. As described above, according to the pulse power supply device of the present invention, in the pulse power supply device that discharges the electric charge charged in the capacitor in pulses by utilizing the resonance phenomenon of an inductive load, the pulse power supply device is connected to both ends of the capacitor. A charger that charges by alternately reversing the charging polarity,
By providing a bridge-connected switch circuit consisting of a thyristor with AC side terminals connected to both ends of the capacitor and DC side terminals connected to both ends of the load, power energy can be used effectively and power loss can be reduced. The energy consumption can be reduced to only the energy consumed by the resistance of the circuit, resulting in a significant power saving effect.
さらに、前記コンデンサを互いに逆極性に直列接続した
2個のコンデンサにより構成することにより、一方のコ
ンデンサの放電時に他方のコンデンサを充電できるため
、電流パルスの周波数を大きくすることができる。また
、両コンデンサに、一方のコンデンサの放電時に他方の
コンデンサに逆電圧が生じないようバイパスダイオード
をそれぞれ並列に接続することにより、コンデンサとし
て電解コンデンサを用いた場合も、逆電圧印加によるコ
ンデンサの破壊を防止することができる。Furthermore, by configuring the capacitor with two capacitors connected in series with opposite polarities, one capacitor can be charged while the other capacitor is discharging, so that the frequency of the current pulse can be increased. In addition, by connecting bypass diodes in parallel to both capacitors so that reverse voltage does not occur in the other capacitor when one capacitor is discharged, even if an electrolytic capacitor is used as the capacitor, the capacitor will be destroyed due to reverse voltage application. can be prevented.
そして、インダクタンスの小さな誘導性負荷に電流パル
スを供給する場合、コンデンサとして容量の小さな1個
の交流コンデンサに、コンデンサの充電極性を交互に反
転させて充電する充電器を接続し、コンデンサの一方の
極から負荷に供給された放電エネルギをコンデンサの他
方の極に回収する構成であるから、電力エネルギを有効
に利用できるとともに、容量が小さくかつ高周波に耐え
る交流コンデンサを用いることができるため、電流パル
スの周波数をさらに大きくすることができる。When supplying current pulses to an inductive load with small inductance, connect a charger that alternately reverses the charging polarity of the capacitor to one small AC capacitor, and connect one of the capacitors to the Since the configuration is such that the discharge energy supplied from one pole to the load is recovered to the other pole of the capacitor, electric energy can be used effectively, and since an AC capacitor with small capacity and resistant to high frequencies can be used, current pulse frequency can be further increased.
特に、この発明のパルス電源装置は、鉄等の材料に磁化
力を与えて永久磁石等を作る着磁装置に適用すれば、電
流パルスの周波数を大きくすることができるため、永久
磁石等の生産能力を格段に向上することができる。In particular, if the pulse power supply device of the present invention is applied to a magnetizing device that applies magnetizing force to materials such as iron to create permanent magnets, etc., the frequency of current pulses can be increased. You can significantly improve your abilities.
第1図および第2図は従来の電源装置の結線図、第3図
は第1図および第2図の時間との電流の関係図、第4図
はこの発明の1実施例の結線図、第5図は第4図の各部
の動作および動作電圧を示し、同aおよびb図は第1お
よび第2スイッチのオンオフを示す図、同C図は第1お
よび第2サイリスタに印加される点弧信号の波形図、同
d図は第3および第4サイリスタに印加される点弧信号
の波形図、同eおよびf図は第1および第2コンデンサ
の両端電圧の波形図、同g図は負荷に・印加される電流
パルスの波形図、第6図はパルス電源装置の適用される
着磁装置の概略図、第7図は第6図に適用されるこの発
明の他の実施例の結線図である。
CH,CH″・・・充電器、Cl,C2,C3・・・コ
ンデンサ、SC・・・スイッチ回路、Rl,R2・・・
負荷。1 and 2 are connection diagrams of a conventional power supply device, FIG. 3 is a diagram showing the relationship between current and time in FIGS. 1 and 2, and FIG. 4 is a connection diagram of an embodiment of the present invention. Figure 5 shows the operation and operating voltage of each part in Figure 4, Figures A and B show on/off of the first and second switches, and Figure C shows the points applied to the first and second thyristors. Figure d is a waveform diagram of the firing signal applied to the third and fourth thyristors, Figures e and f are waveform diagrams of the voltage across the first and second capacitors, and Figure g is a waveform diagram of the ignition signal applied to the third and fourth thyristors. A waveform diagram of a current pulse applied to a load, FIG. 6 is a schematic diagram of a magnetizing device to which the pulse power supply device is applied, and FIG. 7 is a wiring diagram of another embodiment of the present invention applied to FIG. 6. It is a diagram. CH, CH''...Charger, Cl, C2, C3...Capacitor, SC...Switch circuit, Rl, R2...
load.
Claims (1)
現象を利用してパルス放電させるパルス電源装置におい
て、前記コンデンサの両端に接続され前記コンデンサの
充電極性を交互に反転させて充電する充電器と、交流側
端子が前記コンデンサの両端に接続され直流側端子が前
記負荷の両端に接続されサイリスタからなるブリッジ接
続のスイッチ回路とを備えたことを特徴とするパルス電
源装置。 2 コンデンサに充電された電荷を、誘導性負荷に共振
現象を利用してパルス放電させるパルス電源装置におい
て、前記コンデンサを互いに逆極性に直列接続した2個
のコンデンサにより構成し、前記両コンデンサの直列回
路の両端に接続され前記両コンデンサを交互に充電する
充電器と、交流側端子が前記コンデンサの両端に接続さ
れ直流側端子が前記負荷の両端に接続されサイリスタか
らなるブリッジ接続のスイッチ回路とを備えたことを特
徴とするパルス電源装置。 3 コンデンサに充電された電荷を、誘導性負荷に共振
現象を利用してパルス放電させるパルス電源装置におい
て、前記コンデンサを互いに逆極性に直列接続した2個
のコンデンサにより構成し、前記両コンデンサの直列回
路の両端に接続され前記両コンデンサを交互に充電する
充電器と、交流側端子が前記コンデンサの両端に接続さ
れ直流側端子が前記負荷の両端に接続されサイリスタか
らなるブリッジ接続のスイッチ回路と、前記コンデンサ
にそれぞれ並列に接続され前記一方のコンデンサの放電
時に前記他方のコンデンサに逆電圧を生じさせないバイ
パスダイオードとを備えたことを特徴とするパルス電源
装置。[Scope of Claims] 1. In a pulse power supply device that pulse-discharges the electric charge charged in a capacitor to an inductive load by utilizing a resonance phenomenon, the pulse power supply device is connected to both ends of the capacitor and alternately reverses the charging polarity of the capacitor. A pulse power supply device comprising: a charger for charging the capacitor; and a bridge-connected switch circuit comprising a thyristor, the AC side terminals of which are connected to both ends of the capacitor, and the DC side terminals of which are connected to both ends of the load. 2. In a pulse power supply device that pulse-discharges the electric charge charged in a capacitor to an inductive load by utilizing a resonance phenomenon, the capacitor is configured by two capacitors connected in series with opposite polarities, and the capacitors are connected in series with each other, and A charger connected to both ends of the circuit and alternately charging both capacitors, and a bridge-connected switch circuit consisting of a thyristor with AC side terminals connected to both ends of the capacitor and DC side terminals connected to both ends of the load. A pulse power supply device characterized by: 3. In a pulse power supply device that pulse-discharges the electric charge charged in a capacitor to an inductive load by utilizing a resonance phenomenon, the capacitor is composed of two capacitors connected in series with opposite polarities, and a charger connected to both ends of the circuit and alternately charging both capacitors; a bridge-connected switch circuit consisting of a thyristor with AC side terminals connected to both ends of the capacitor and DC side terminals connected to both ends of the load; A pulse power supply device comprising: a bypass diode connected in parallel to each of the capacitors so as not to generate a reverse voltage in the other capacitor when the one capacitor is discharged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8654178A JPS6059834B2 (en) | 1978-07-15 | 1978-07-15 | pulse power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8654178A JPS6059834B2 (en) | 1978-07-15 | 1978-07-15 | pulse power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5513674A JPS5513674A (en) | 1980-01-30 |
JPS6059834B2 true JPS6059834B2 (en) | 1985-12-26 |
Family
ID=13889853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8654178A Expired JPS6059834B2 (en) | 1978-07-15 | 1978-07-15 | pulse power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6059834B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57177285A (en) * | 1981-04-24 | 1982-10-30 | Hitachi Ltd | Power crow-bar power source |
-
1978
- 1978-07-15 JP JP8654178A patent/JPS6059834B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5513674A (en) | 1980-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW588498B (en) | Bipolar supply voltage generator and semiconductor device for same | |
GB920106A (en) | Improvements in or relating to inverters | |
US4567541A (en) | Electric power source for use in electrostatic precipitator | |
JPS61230758A (en) | Current supply method and apparatus of electric precipitator | |
JPS6059834B2 (en) | pulse power supply | |
ATE132412T1 (en) | ELECTRICAL POWER CIRCUIT FOR GENERATING INDIVIDUALLY CONTROLLED CURRENT PULSES | |
JP2004063431A (en) | Static eliminator | |
JP3250308B2 (en) | Gate drive circuit | |
JP2000323772A (en) | Pulse power unit | |
JPS6124912B2 (en) | ||
RU2113324C1 (en) | Pulse generator for electric erosion machining | |
SU746907A1 (en) | Pulse modulator | |
SU970657A1 (en) | Pulse generator | |
JPH0360611B2 (en) | ||
JP2000124530A (en) | Pulse power supply device | |
JPH06311757A (en) | Inverter | |
SU1720100A1 (en) | Pulsed magnetization device | |
JP2893232B2 (en) | Boost type uninterruptible power supply | |
SU871308A1 (en) | Device for inductancne coil power supply | |
RU1791897C (en) | Device for power supply of load | |
SU1517121A1 (en) | Pulser | |
JPH0714260B2 (en) | Rechargeable power supply | |
JPH0819757A (en) | Volumetric load drive circuit | |
SU1145325A1 (en) | Electric filter power supply device | |
JPS582152Y2 (en) | Gate control device for gate turn-off thyristor |