[go: up one dir, main page]

JPS605893B2 - Bearing abnormality monitoring device - Google Patents

Bearing abnormality monitoring device

Info

Publication number
JPS605893B2
JPS605893B2 JP51040616A JP4061676A JPS605893B2 JP S605893 B2 JPS605893 B2 JP S605893B2 JP 51040616 A JP51040616 A JP 51040616A JP 4061676 A JP4061676 A JP 4061676A JP S605893 B2 JPS605893 B2 JP S605893B2
Authority
JP
Japan
Prior art keywords
bearing
peak
signal
abnormality
peak sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51040616A
Other languages
Japanese (ja)
Other versions
JPS52123677A (en
Inventor
宣善 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP51040616A priority Critical patent/JPS605893B2/en
Publication of JPS52123677A publication Critical patent/JPS52123677A/en
Publication of JPS605893B2 publication Critical patent/JPS605893B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は軸受の異常監視装置に関し、荷重を受けて回転
する軸受における剥離等の損傷を検知し、その損傷の程
度を効果的に表示警報することを目的とするものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bearing abnormality monitoring device, and an object of the present invention is to detect damage such as peeling in a bearing that rotates under load, and to effectively display and warn the extent of the damage. It is.

ころがり軸受等は、使用条件の異常や疲労による寿命に
より、軌道面に剥離、焼付き等の異常を来たすが「特に
前記ころがり軸受の軌道面剥離の如く軌道形状に異常を
来たした場合には、特定の周期で、或いはランダムにィ
ンパルス性の衝撃糠動が発生することが一般に知られて
いる。
Rolling bearings, etc., may develop abnormalities such as peeling or seizure on the raceway surface due to abnormal usage conditions or fatigue life. It is generally known that impulse-like impact motions occur at specific cycles or randomly.

而して上記軸受の損傷の程度は、上述のィンパルス性の
衝撃振動の加速度成分に多分に相関があるので、軸受の
損傷の検知手段として、従来このィンパルス性の衝撃振
動を検出する種々の手段が講じられている。その一手段
として、ある種の振動ピックアップにより上述のィンパ
ルス性衝撃振動を電気信号に変換し、振幅を弁別するこ
とにより軸受の異常を検知するものがあるが、この場合
、検出パルスのパルス幅が非常に狭いため、電流計等の
如く動作速度の遅いアナログ計器で表示するためには前
記パルス信号のピークレベルをある程度の時間保持させ
ねばならない。しかるに藤受の異常時に発生する衝撃振
動のピークレベルは一定のものではなく常に変動してい
るので、正確に前記パルス信号のピーク振幅を表示する
為には、逐次リセットしなければならない。このような
動作を行なわせる具体例として、一周期内において最初
に入る信号の尖頭値を保持しその周期の終了時点でリセ
ットし、この動作を周期的に繰り返すようにしたものが
すでに知られているが、この例の場合には以下に述べる
ような問題点がある。すなわち、上記例においては軸受
の損傷による衝撃振動の発生周期が例えば軸受の回転周
期と一致するものと仮定すれば、前述のリセット周期を
回転周期に合せることにより十分な効果をあげうるが、
初めに述べた如く軸受の損傷に起因する衝撃振動の発生
周期には様々なものがあり、中には周期性を持たないラ
ンダムなものまであるから、リセット周期を軸受の損傷
による衝撃振動の発生周期に合わせるという操作は実質
的に困難であるばかりでなく、発生周期を異にする衝撃
振動が複合して生じた場合などにはその効果は半減する
ことは明らかである。本発明は軸受損傷によるィンパル
ス性衝撃振動を電気信号に変換したあと、前の半周期に
おいて入力信号のうちの最大振幅を常に更新しつ)記憶
するピークサンプリング動作をし、後の半周期において
その最大振幅を保持する二種類の動作の周期的な繰り返
し操作を軸受の回転周期に対し十分に長い周期で行なう
ピークサンプリングアンドホールド回路と称するものに
入力することによって「上述の例にみられる問題点を解
消し軸受の損傷程度を正確に検知しうるようにした軸受
の異常監視装置を提供するものである。
Since the degree of damage to the bearing is highly correlated to the acceleration component of the impulse shock vibration described above, various means for detecting this impulse shock vibration have conventionally been used as means for detecting damage to the bearing. are being taught. One way to do this is to convert the above-mentioned impulse shock vibration into an electrical signal using a vibration pickup, and detect an abnormality in the bearing by distinguishing the amplitude. In this case, the pulse width of the detection pulse is Since the area is very narrow, the peak level of the pulse signal must be maintained for a certain period of time in order to be displayed on a slow-operating analog meter such as an ammeter. However, the peak level of the shock vibration that occurs when the Fuji Uke is abnormal is not constant and constantly fluctuates, so in order to accurately display the peak amplitude of the pulse signal, it must be reset one after another. As a specific example of performing such an operation, one is already known in which the peak value of the signal that first enters within one cycle is held, reset at the end of that cycle, and this operation is repeated periodically. However, this example has the following problems. That is, in the above example, if it is assumed that the period of occurrence of impact vibration due to damage to the bearing coincides with the rotation period of the bearing, a sufficient effect can be achieved by matching the above-mentioned reset period with the rotation period.
As mentioned at the beginning, there are various occurrence cycles of shock vibrations caused by bearing damage, and some of them are random and do not have periodicity, so the reset cycle is determined by the occurrence of shock vibrations caused by bearing damage. It is clear that the operation of adjusting to the period is not only substantially difficult, but also that its effectiveness is halved if shock vibrations with different periods occur in combination. The present invention performs a peak sampling operation that constantly updates and stores the maximum amplitude of the input signal in the previous half cycle after converting impulse shock vibration caused by bearing damage into an electrical signal, and then performs a peak sampling operation that constantly updates and stores the maximum amplitude of the input signal in the previous half cycle. By inputting the input into a so-called peak sampling and hold circuit, which performs periodic repetition of two types of operations that maintain the maximum amplitude at a sufficiently long period relative to the rotation period of the bearing, the problems seen in the above example can be solved. An object of the present invention is to provide a bearing abnormality monitoring device that can eliminate the problem and accurately detect the degree of damage to a bearing.

実施例について説明すれば、第1図において1は振動ピ
ックアップで軸受箱A等の適当な位置に固定しておき、
適当な荷重を受けて回転中の供試軸受Bに剥離等の異常
が発生した場合、前述の軸受損傷による振動を含む機械
振動を拾い電気信号に変換する。
To explain the embodiment, in Fig. 1, 1 is a vibration pickup fixed at an appropriate position such as the bearing box A.
If an abnormality such as peeling occurs in the test bearing B while it is rotating under an appropriate load, mechanical vibrations, including vibrations due to the bearing damage described above, are picked up and converted into electrical signals.

該ピックアップ1からの出力信号は次の増幅器2により
処理しやすい適当なしベルまで増幅し、これを適当な周
波数範囲に設定した帯城炉波器3にかける。該炉波器3
により、軸受Bの異常によるィンパルス性の衝撃振動に
よる信号から、他の機械要素による振動の影響を除去し
た出力信号は第2図aに示すような波形となり「全波検
波器4により全波整流された結果第2図bに示す波形に
なる。検波器4からの出力信号はピークサンプリングア
ンドホールド回路5により、第2図dに示すような波形
に変換され「 この出力信号が指示計6を作動させて、
前記供試軸受Bの異常の程度を表示する。
The output signal from the pickup 1 is amplified by the next amplifier 2 to an appropriate level that is easy to process, and then applied to a radio wave generator 3 set in an appropriate frequency range. The furnace wave device 3
As a result, the output signal obtained by removing the influence of vibrations caused by other mechanical elements from the signal caused by impulse shock vibration caused by abnormality in bearing B has a waveform as shown in Fig. As a result, the waveform shown in Fig. 2b is obtained.The output signal from the detector 4 is converted by the peak sampling and hold circuit 5 into the waveform shown in Fig. 2d. Activate it,
The degree of abnormality of the test bearing B is displayed.

上記ピークサンプリングアンドホールド回路5の機能を
詳述すれば、該回路は入力信号のうちの最大振幅を常に
更新しつ)記憶するピークサンプリング動作とその動作
によりとらえたピーク値を保持するのみでピーク値検出
動作を行わないホールド動作とを「矩形波発生回路7か
らの第2図cに示す周期:T=t,十t2の矩形波によ
るタイミングにより、ち及びらの時間間隔で交互に行う
ようにしたものである。
To explain the function of the peak sampling and hold circuit 5 in detail, this circuit constantly updates the maximum amplitude of the input signal, performs a peak sampling operation to store it, and holds the peak value captured by that operation. The hold operation without a value detection operation is performed alternately at time intervals according to the timing of the rectangular wave from the rectangular wave generating circuit 7 with a cycle shown in FIG. This is what I did.

即ち第2図cにおいて、“4”レベルではピークサンプ
リング動作、“0”レベルではホールド動作を行なわせ
る。なお、図示しないが上記ピークサンプリングアンド
ホールド回路5の後段に、あらかじめ適当なしベル設定
を行なった振幅弁別回路を設け、該回路の出力により自
動的に軸受異常の警報を発するようにしてもよい。
That is, in FIG. 2c, the peak sampling operation is performed at the "4" level, and the hold operation is performed at the "0" level. Although not shown in the drawings, an amplitude discrimination circuit may be provided downstream of the peak sampling and hold circuit 5 to which an appropriate zero-bell setting has been made in advance, and the output of the circuit may automatically issue a bearing abnormality alarm.

本発明によれば、上述のピークサンプリング動作の時間
間隔三Lを、軸受の回転周期に対し十分長く設定してお
くことによって、様々な発生周期を有する軸受損傷によ
る衝撃振動をほとんど拾い取って検知できるから、指示
計から軸受の損傷の程度を正確に読み取ることができる
According to the present invention, by setting the time interval 3L of the above-mentioned peak sampling operation to be sufficiently long with respect to the rotation period of the bearing, most of the impact vibrations due to bearing damage having various occurrence periods are picked up and detected. This allows the degree of damage to the bearing to be accurately read from the indicator.

またホールド動作の時間間隔:t2の間は、入力信号を
受けつけないのでこの間に突発的な外乱信号が入力され
ても、外乱要素による振動成分を誤って感知する可能性
を半減させ、軸受損傷検知の信頼性を向上させると共に
、その状態を数値で表示するピークレベルの指示値を保
持する時間が既知の逐次リセット方式ピークホールド方
式の保持時間に比較し、十分長いので指示計の値が講取
り易く、且つ安定した良否判定ができる利点をもたらす
In addition, during the hold operation time interval: t2, no input signal is accepted, so even if a sudden disturbance signal is input during this period, the possibility of erroneously sensing vibration components due to disturbance elements is halved, and bearing damage is detected. In addition to improving the reliability of the indicator, the time it takes to hold the indicated value at the peak level, which displays the status numerically, is sufficiently long compared to the holding time of the known sequential reset peak hold method. This provides the advantage of being able to easily and stably determine pass/fail.

また上記保持期間中は振動を受付けないので「軸受の異
常振動を感知しない事が考えられるが、軸受損傷時に発
生する振動(パルス)の周期は、上記ピーク検出及び、
ホールドの繰返し周期より非常に短か〈且つ軸受の回転
周期の数分の一から数十分の−で繰返し発生するので、
感知しない恐れはない。
Also, since no vibrations are accepted during the above holding period, it is possible that abnormal vibrations of the bearing are not detected, but the period of vibration (pulse) that occurs when the bearing is damaged is
This is much shorter than the holding cycle, and occurs repeatedly at a fraction of the rotational cycle of the bearing.
There is no fear that it will not be detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のブロックダイアグラム、第2図は第1
図の各部における出力波形を示す図である。 3・・・・・・帯城炉波器、4……全波検波器、5・・
・・・・ピークサンプリングアンドホールド回路、6・
・…・指示計、7…・・・矩形波発生器。 第1図 第2図
Figure 1 is a block diagram of the embodiment, Figure 2 is the block diagram of the first embodiment.
It is a figure which shows the output waveform in each part of a figure. 3...Obijo wave detector, 4...Full wave detector, 5...
...Peak sampling and hold circuit, 6.
...Indicator, 7...Square wave generator. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 荷重を受けて回転中の軸受から発生する機械的振動
を電気信号に変換して軸受の損傷等の異常を検知し警報
を発する装置において、軸受の異常に起因する衝撃振動
に対応するパルス信号を抽出する帯域濾波器と、該パル
ス信号を全波整流する全波検波器と、入力信号のうちの
最大振幅を常に更新しつゝ記憶する前半周期におけるピ
ークサンプリング動作と該動作による最大振幅を保持し
ピーク値検出動作を行わない後半周期におけるホールド
動作との二種類の動作を周期的に繰り返すピークサンプ
リングアンドホールド回路と、該回路の周期動作を軸受
の回転周期に対し十分に長い周期で行わせるタイミング
信号を発生する矩形波発生器とを備え、上記ピークサン
プリングアンドホールド回路の出力信号を指示、弁別さ
せて回転中の軸受の異常を検知し、警報を発するように
したことを特徴とする軸受の異常監視装置。
1. In a device that converts the mechanical vibration generated from a rotating bearing under load into an electrical signal to detect abnormalities such as damage to the bearing and issue an alarm, a pulse signal corresponding to impact vibration caused by abnormality in the bearing is used. a bandpass filter that extracts the pulse signal, a full-wave detector that full-wave rectifies the pulse signal, a peak sampling operation in the first half cycle that constantly updates and stores the maximum amplitude of the input signal, and a peak sampling operation that stores the maximum amplitude due to this operation. A peak sampling and hold circuit that periodically repeats two types of operations: a hold operation in the second half of the cycle in which the peak value is held and no peak value detection operation is performed, and the periodic operation of this circuit is performed at a sufficiently long period relative to the rotation period of the bearing. and a rectangular wave generator that generates a timing signal to indicate and discriminate the output signal of the peak sampling and hold circuit to detect an abnormality in the rotating bearing and issue an alarm. Bearing abnormality monitoring device.
JP51040616A 1976-04-09 1976-04-09 Bearing abnormality monitoring device Expired JPS605893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51040616A JPS605893B2 (en) 1976-04-09 1976-04-09 Bearing abnormality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51040616A JPS605893B2 (en) 1976-04-09 1976-04-09 Bearing abnormality monitoring device

Publications (2)

Publication Number Publication Date
JPS52123677A JPS52123677A (en) 1977-10-18
JPS605893B2 true JPS605893B2 (en) 1985-02-14

Family

ID=12585449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51040616A Expired JPS605893B2 (en) 1976-04-09 1976-04-09 Bearing abnormality monitoring device

Country Status (1)

Country Link
JP (1) JPS605893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187570A1 (en) 2018-03-30 2019-10-03 株式会社芝浦電子 Temperature detection device and assembly body
WO2020026394A1 (en) 2018-08-02 2020-02-06 株式会社芝浦電子 Temperature sensing device and assembly
JP2020144072A (en) * 2019-03-08 2020-09-10 株式会社日立製作所 State monitoring system and state monitoring method of rolling bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174846U (en) * 1984-04-27 1985-11-19 三菱重工業株式会社 Malfunction monitoring device for instrumentation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067183A (en) * 1973-10-15 1975-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067183A (en) * 1973-10-15 1975-06-05

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187570A1 (en) 2018-03-30 2019-10-03 株式会社芝浦電子 Temperature detection device and assembly body
WO2020026394A1 (en) 2018-08-02 2020-02-06 株式会社芝浦電子 Temperature sensing device and assembly
JP2020144072A (en) * 2019-03-08 2020-09-10 株式会社日立製作所 State monitoring system and state monitoring method of rolling bearing

Also Published As

Publication number Publication date
JPS52123677A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
US8285498B2 (en) Method for detection and automatic identification of damage to rolling bearings
US5679900A (en) Envelope enhancement system for detecting paper machine press section anomalous vibration measurements
US5511422A (en) Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
JPS599842B2 (en) Damage detection device for rotating bodies
EP0087813B1 (en) Method and apparatus for monitoring cracks of a rotatable body
GB1367773A (en) Damage detection system for machine elements utilizing vibrations therefrom
KR100323900B1 (en) Monitoring system for displaying vibration status of multiple blades on rotating wheels
US4481819A (en) Method and apparatus for detecting metal wipe damages of plane bearing
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JPS605893B2 (en) Bearing abnormality monitoring device
US5031459A (en) Turbine generator shaft torsion monitor
JPS63304128A (en) Detecting device for abnormality of bearing
SU1606910A1 (en) Method of determining condition of machine units
Trivedi et al. Study Of Bearing Rolling Element Defect Using Emperical Mode Decomposition Technique
JPH0249384Y2 (en)
JP2963144B2 (en) Bearing abnormality detection device
JPS59116526A (en) Method for detecting abnormality of rolling bearing
JPH05231992A (en) Abnormality detection method of low speed rotation bearing
JPS644611B2 (en)
JP2889255B2 (en) Reactor noise monitoring device
JPS59173720A (en) Method and device for diagnosing vibration of low-speed rotary machine
JPS61182530A (en) Torsional vibration detection device
Frarey Pitfalls in the analysis of machinery vibration measurements
JPS5940267B2 (en) Damage detection device for rotating bodies
JPS59212512A (en) How to monitor plain bearings