[go: up one dir, main page]

JPS6058829A - Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion - Google Patents

Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Info

Publication number
JPS6058829A
JPS6058829A JP58166527A JP16652783A JPS6058829A JP S6058829 A JPS6058829 A JP S6058829A JP 58166527 A JP58166527 A JP 58166527A JP 16652783 A JP16652783 A JP 16652783A JP S6058829 A JPS6058829 A JP S6058829A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
crystal polymer
linear expansion
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58166527A
Other languages
Japanese (ja)
Inventor
Yoshito Shiyudo
義人 首藤
Fumio Yamamoto
山本 二三男
Shinzo Yamakawa
山川 進三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58166527A priority Critical patent/JPS6058829A/en
Publication of JPS6058829A publication Critical patent/JPS6058829A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled molding large in the elastic modulus but small in the coefficient of linear expansion with an excellent dimensional stability by extruding a polymer of a melt liquid crystal at a specified shearing speed to form a thermotropic liquid crystal with polymer molecules oriented lengthwise. CONSTITUTION:A polymer of a melt liquid crystal is extruded at the shearing speed of almost more than 10<2>sec<-1> from an extruder cross head die 2, solidified by cooling through a cooling tank 4 or the like and then, wound with a winder 5 to obtain a polymer molding with polymer molecules oriented lengthwise. It should be noted that the liquid crystal polymer shall have the intrinsic viscosity of at least 0.3 and aromatic polyester is preferably used to enable the formation of an anisotropic melt phase at a lower temperature than 300 deg.C, containing the group of (A) formula I , the group of (B) formula II and the group of (C) formula III while containing 37.5-16.7mol% of the components A and B in the equal quantity each and 25.0-66.6mol% of the component C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は長さ方向の線膨張率が小さく弾性率が大きい液
晶ポリマー成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a liquid crystal polymer molded article having a small coefficient of linear expansion in the longitudinal direction and a large modulus of elasticity.

〔従来技術〕[Prior art]

一般に、グラスチック成形品は押出装置によりポリマー
を溶融状にして押出すことにより得られるが、このよう
にして得られたプラスチック成形品は分子鎖がランダム
に配向しているため、線膨張率は太き(、弾性率は小さ
い。したがって、長さ方向の線膨張率を小さく、弾性率
る工程が必要不可欠であった。このような延伸方法とし
ては、従来専ら熱ロール等により外部より均一に力0熱
し延伸する方法がとられてきた。
Generally, plastic molded products are obtained by extruding a molten polymer using an extrusion device, but because the molecular chains of the plastic molded products obtained in this way are randomly oriented, the coefficient of linear expansion is low. Thick (and elastic modulus is small. Therefore, a process to reduce the coefficient of linear expansion in the longitudinal direction and to increase the elastic modulus was essential. Conventionally, such stretching methods have only been used to uniformly stretch the film from the outside using hot rolls, etc.) A method of stretching with zero force heating has been used.

しかし、この方法では延伸により配向結晶化した部分も
加熱され強夏が低下し応力不足となり高配向結晶化に限
界があった。このため、線膨張率及び弾性率は理論的に
期待できる値に比べて満足できるものではなかった。ま
た、こうして作製さ几たグラスチック成形品は室温に長
期同放置するか、軟化温度以上に21II熱することに
よって配向の戻りによる収縮が起り、寸法安定性が悪い
という欠点を有していた。
However, in this method, the portions that were oriented and crystallized by stretching were also heated, resulting in a decrease in strength and insufficient stress, which placed a limit on highly oriented crystallization. Therefore, the coefficient of linear expansion and modulus of elasticity were not satisfactory compared to theoretically expected values. In addition, the glass molded product thus produced shrinks due to reorientation when left at room temperature for a long period of time or is heated to 21 II above the softening temperature, resulting in poor dimensional stability.

〔発明の目的〕[Purpose of the invention]

本発明はこれらを解決するためになされたものであり、
その目的は、寸法安定性に優れ、線膨張率が小さく、弾
性率が大きいプラスチック成形品の製造方法を提供する
ことにある。
The present invention was made to solve these problems,
The purpose is to provide a method for producing a plastic molded product that has excellent dimensional stability, a low coefficient of linear expansion, and a high modulus of elasticity.

〔発明の構成〕[Structure of the invention]

本発明を概説″すれば、本発明は低線膨張率で高弾性率
な液晶ポリマー成形品の製造方法の発明であって、溶融
液晶状態にあるポリマーを、はぼ102sec−’ 以
上のせん断速度で押出して、ポリマー分子が長手方向に
配向したポリマー成形品を得ることを特徴とする。
To summarize the present invention, the present invention is an invention of a method for producing a liquid crystal polymer molded article having a low coefficient of linear expansion and a high modulus of elasticity. It is characterized in that it is extruded to obtain a polymer molded article in which the polymer molecules are oriented in the longitudinal direction.

ある種の結晶性ポリマーは、加熱されるとき、融解して
液体となる前に、結晶の異方性と液体の流動性を有する
状態を経由することがある。
When certain crystalline polymers are heated, they may go through a state of crystalline anisotropy and liquid fluidity before melting into a liquid.

この状態を液晶といい、加熱によって生じる液晶をサー
モトロピック液晶という。外力が加えられていない液晶
状態にあるポリマーは、一般に一定の配列秩序にあるド
メインの集合体である。この系に機械的な外力が加わる
と、ドメインは変形、流動を起し、更には崩壊し、高分
子鎖が流動方向に配向することが知られている。
This state is called liquid crystal, and the liquid crystal produced by heating is called thermotropic liquid crystal. A polymer in a liquid crystal state when no external force is applied is generally an aggregate of domains in a certain arrangement order. It is known that when an external mechanical force is applied to this system, the domains deform, flow, and even collapse, and the polymer chains become oriented in the flow direction.

このように、液晶は流動方向処配向するので、サーモ)
0ピツク液晶ポリマーの溶融粘度は著しく低(、またせ
ん断流勤王ではせん断速度が大きいほど溶融粘度が低い
ことが知られている。
In this way, the liquid crystal is oriented according to the direction of flow, so thermo
The melt viscosity of zero-pick liquid crystal polymers is extremely low (and it is known that in shear flow, the higher the shear rate, the lower the melt viscosity.

サーモトロピック液晶ポリマーを流動、配向させる方法
として、小さなノズルから液晶ポリマーを吐出させる方
法がある。すなわち射出成型によって、又は押出成型で
は/JXさなダイスからサーモトロピック液晶ポリマー
を吐出させることにより、射出方向又は押出し方向忙高
分子giヲ配向させることができる。このように配向し
た液晶は、降温後もその配向状態を維持するので、寸法
安定性がよ(配向方向の線膨張率は低く、かつ高い弾性
率を有する。
As a method for fluidizing and aligning a thermotropic liquid crystal polymer, there is a method of discharging the liquid crystal polymer from a small nozzle. That is, by injection molding, or in extrusion molding, by discharging the thermotropic liquid crystal polymer from a /JX small die, the polymer GI can be oriented in the injection direction or extrusion direction. The liquid crystal oriented in this manner maintains its oriented state even after the temperature is lowered, so it has good dimensional stability (the coefficient of linear expansion in the orientation direction is low and the modulus of elasticity is high).

本発明者等は、この手法において吐出出口でのせんUT
速度に線膨張率の値が大きく依存することを既に%顔昭
5+ 8−80797号・1元ファイバ心線」の発明で
明らかにしている。押出機ヘッドのノズルでは/”f、
10sec 以上、好ましくは10〜10 sec の
せん断速度を受げた液晶ポリマーは10−5 C−1以
下の低線膨張率を示す。
In this method, the inventors have discovered that the
It has already been clarified in the invention of ``One-Element Fiber Corded Wire'', No. 8-80797, 1983, that the value of the coefficient of linear expansion greatly depends on the speed. At the nozzle of the extruder head /”f,
A liquid crystal polymer subjected to a shear rate of 10 sec or more, preferably 10 to 10 sec, exhibits a low coefficient of linear expansion of 10-5 C-1 or less.

本発明はこのサーモトロピック液晶ポリ−q−をプラス
チック成形材料に適用したものであり、本発明によれば
寸法安定性に優れ、低線膨張率より容易に得られる。
The present invention applies this thermotropic liquid crystal poly-q- to a plastic molding material, and according to the present invention, excellent dimensional stability and a low linear expansion coefficient can be easily obtained.

本発明でプラスチック成形材料として用いられる液晶ポ
リマーとしては、固有粘度が少なくとも0.3以上であ
り、溶融状態で液晶状態を呈するポリマー(サーモトロ
ピック液晶ポリマー)であるならば使用可能である。こ
のうち、特に好ましいものは下記の二価の基(AJ、(
BJ及び(0)を包含し、かつ基(AJ及び基(BJを
10〜50モル%ずつ等加金み、基(0)を40〜80
モル%含む。
The liquid crystal polymer used as the plastic molding material in the present invention can be used as long as it has an intrinsic viscosity of at least 0.3 and exhibits a liquid crystal state in a molten state (thermotropic liquid crystal polymer). Among these, particularly preferred are the following divalent groups (AJ, (
BJ and (0) are included, and the group (AJ and group (BJ) are equally added in 10 to 50 mol%, and the group (0) is added to 40 to 80 mol%.
Including mole%.

約3aaCまりも低い温度で異方性溶融a(液晶相)を
形成しつる芳香族ポリエステルである。
It is an aromatic polyester that forms an anisotropic melting phase (liquid crystal phase) at temperatures as low as about 3 aaC.

0 0 (BJ −0〜0H2−0H2−0− 〔実施例〕 以下、本発明の実施例を図面に基づき!明するが、本発
明はこれら実施例に限定されない。
0 0 (BJ -0~0H2-0H2-0- [Examples] Examples of the present invention will be explained below based on the drawings, but the present invention is not limited to these examples.

実施例で用いる製造装置の構成概略図である。FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used in Examples.

実施例1 第1図に押出成型によるプラスチックテープ製造の一例
を示す。第1図において、符号1はテープ状の液晶ポリ
マー、2は押出機のクロスヘッドグイ、3は該ダイの直
線部、4は冷却槽、5は巻取機である。溶融液晶状態に
あるポリマーはクロスヘッドグイ2を通り、ダイの直線
部3を通過する時にテープ状に成型され、冷却槽4で固
化した後、巻取機5に巻取られる。この実施例では、テ
ープ材料として、ポリエチレンテレフタレート(以下P
ETと略記する)40モル%tp−アセトキシ安息香酸
60モル%で処理し、サーモトロピック液晶としたもの
を用いている。テープ製造時のグイ出口におけるせ・ん
IQT速度は樹脂の押出速度、グイ出口における溝の寸
法によって決まる。
Example 1 FIG. 1 shows an example of manufacturing a plastic tape by extrusion molding. In FIG. 1, reference numeral 1 is a tape-shaped liquid crystal polymer, 2 is a crosshead of an extruder, 3 is a straight part of the die, 4 is a cooling tank, and 5 is a winder. The polymer in a molten liquid crystal state is formed into a tape as it passes through the crosshead gouer 2 and the linear section 3 of the die, solidifies in the cooling tank 4, and then is wound up by the winder 5. In this example, the tape material is polyethylene terephthalate (hereinafter referred to as P
(abbreviated as ET) was treated with 40 mol % of tp-acetoxybenzoic acid (60 mol %) to form a thermotropic liquid crystal. The IQT speed at the exit of the goo during tape production is determined by the extrusion speed of the resin and the size of the groove at the exit of the goo.

今、グイ出口の平溝がio、1+u+、横100圏、直
線部長さ4國であるようなりロスへラドダイを具えた押
出PAを用い、前記変性PET樹脂を240C1押出速
度20 crl/分テ押出し、2゜m7分で巻取った場
合には、グイ出口でのせん断速度は2 X j 05s
ec−’であり、得られた厚さ0.1論、幅100■の
テープの線膨張率は一2X10 C−、引張弾性率は1
8 GPaであることがわかった。またこのテープを1
70cで1日放置しても、寸法変化は認められなかった
Now, the flat groove at the exit of the goo is io, 1+u+, 100 mm horizontally, and the straight section length is 4 mm. Using an extrusion PA equipped with a rad die, extrude the modified PET resin at 240C1 at an extrusion speed of 20 crl/min. , when winding at 2゜m for 7 minutes, the shearing speed at the goo exit is 2 X j 05s
ec-', the coefficient of linear expansion of the resulting tape with a thickness of 0.1 mm and a width of 100 cm is -2X10 C-, and the tensile modulus is 1
It was found to be 8 GPa. Also, use this tape 1
Even after being left at 70c for one day, no dimensional change was observed.

なお、本発明のノ°ラスチックテープは特願昭56−2
08031号のグラスチックの延伸方法を併用すること
により、より一層の扁弾性率化が可能である。すなわち
第1図に示した製造方法により作製した厚さ1.0鰭、
幅100mmのテープを誘゛亀加熱装置(発振周波数2
.45 GHz。
The plastic tape of the present invention is disclosed in Japanese Patent Application No. 56-2.
By using the glass stretching method of No. 08031 in combination, it is possible to further increase the flat elastic modulus. That is, a fin with a thickness of 1.0 manufactured by the manufacturing method shown in FIG.
A tape with a width of 100 mm is heated using an induction heating device (oscillation frequency 2
.. 45 GHz.

出力1.5 KW)を用い、雰囲気温度170rで延伸
速夏150n 7分で延伸した場合(延伸倍率10倍)
には、得られた厚さ0.5鰭幅20mmのテープの弾性
率は21 GPaであり、g電加熱延伸を行わない場合
に比べて約1.2倍の弾性率の向上が見られた。
When stretched at an ambient temperature of 170 r and a stretching speed of 150 n for 7 minutes (stretching ratio: 10 times) using an output of 1.5 KW)
The elastic modulus of the obtained tape with a thickness of 0.5 mm and a fin width of 20 mm was 21 GPa, which was about 1.2 times higher than that without electric heating stretching. .

実施例2 第2図にカレンダー成型によるプラスチックテープ製造
の1例を示す。第2図において符号1と5は第1図と同
義であり、6はカレンダーロール、7は加熱溶融した樹
脂の液溜である。
Example 2 FIG. 2 shows an example of plastic tape production by calendar molding. In FIG. 2, numerals 1 and 5 have the same meanings as in FIG. 1, 6 is a calender roll, and 7 is a reservoir of heated and melted resin.

液溜7の中で溶融液晶状態にある熱可塑性樹脂は、カレ
ンダーロール6を通過する時にテープ状に成型、固化さ
れ、巻取ff15に巻取られる。
The thermoplastic resin in a molten liquid crystal state in the liquid reservoir 7 is molded into a tape shape when passing through the calender roll 6, solidified, and wound onto the winder ff15.

この実施例においてはテープ材料として、実施例1と同
じPET −1)−アセトキシ安息香酸共重合体を用い
た。この樹脂がカレンダーロール6を通過する際にセん
断応力を受け、圧延方向に高度に分子配向する。樹脂に
かかるせん@速度はロール間のすきまが小さいほど、ま
たロールの回転速度が速いほど大きくなる。今、ロール
直径50cn、ロール間のすきまを0.1胴とし、目−
ル回転速度が30m/分の場合にはせん断速度は1.6
 X 103sec−1であり、得られた厚さ011m
、幅100−のテープの線膨張率は一2X10 C”−
、引張弾性率は16 GPaであり、170C空気恒温
槽中で1日放置しても寸法変化は認められなかった。
In this example, the same PET-1)-acetoxybenzoic acid copolymer as in Example 1 was used as the tape material. When this resin passes through the calender rolls 6, it is subjected to shear stress, resulting in highly oriented molecular orientation in the rolling direction. The speed of cracking applied to the resin increases as the gap between the rolls becomes smaller and as the rotational speed of the rolls increases. Now, the roll diameter is 50cm, the gap between the rolls is 0.1cm, and the
If the rotation speed is 30 m/min, the shear rate is 1.6
X 103 sec-1 and the obtained thickness is 011 m
, the coefficient of linear expansion of a tape with a width of 100 cm is -2X10 C"-
The tensile modulus was 16 GPa, and no dimensional change was observed even after being left in a 170C air constant temperature bath for one day.

実施例3 第3図に押出成型によるプラスチックパイプ製造の1例
を示す。第3図において符号8はバイブ状の液晶ポリマ
ー、2〜5は第1図と同義である。溶融状態にある液晶
ポリマーは、クロスへラドダイ2を通り、ダイの直線部
3を通過する時にバイブ状に成型され、冷却槽4で固化
した後、巻取機5に巻取られる。この実施例においては
パイプ材料にPET 50モル%をp−アセトキシ安息
香酸50モル%で処理し、サーモトロピック液晶とした
ものを用いている。今、グイ内径4.4m、=ップル外
径s、2 rcm 、 M 線部長さ20閣であるよう
なりロスへラドダイを具えた押出機を用い、前記変性P
gT樹脂を220C1押出速度50d/分で押出し、7
0m/分で巻取った場合には、グイ出口でのせん断速度
は’1.I X 103sビ1であり、得られた外径4
.4m。
Example 3 FIG. 3 shows an example of manufacturing a plastic pipe by extrusion molding. In FIG. 3, numeral 8 is a vibrator-shaped liquid crystal polymer, and 2 to 5 have the same meanings as in FIG. 1. The liquid crystal polymer in a molten state crosses through a Rad die 2 and is shaped into a vibrator as it passes through a straight section 3 of the die, solidifies in a cooling tank 4, and then is wound up by a winder 5. In this embodiment, the pipe material used is a thermotropic liquid crystal obtained by treating 50 mol% of PET with 50 mol% of p-acetoxybenzoic acid. Now, using an extruder equipped with a rad die, the modified P
gT resin was extruded at a 220C1 extrusion speed of 50 d/min, 7
When winding at 0 m/min, the shear speed at the goo exit is '1. I
.. 4m.

内径3.1諺のパイプの長手方向の融膨張率は1X 1
0−61:”、引張弾性率は15 GPaであり、この
パイプを1500空気恒温槽中に1日放置しても寸法変
化は認められなかった。
The coefficient of longitudinal melt expansion of a pipe with an inner diameter of 3.1 is 1X 1
0-61:'', the tensile modulus was 15 GPa, and no dimensional change was observed even when this pipe was left in a 1500 air constant temperature bath for one day.

実施例4 第4図に溶融防糸法によるフィラメント製造の1例を示
す。第4図において、符号4及び5は第1図と同義であ
り、9はフィラメント状の液晶ポリマー、10は押出機
ヘッドの紡糸口金ブロック、11は紡糸口金孔、12は
プーリーである。浴融液晶状態にあるポリマーは紡糸口
金孔11を通過する時にフィラメント状に成型され、冷
却槽4で固化した後、プーリー12を通過して巻取機5
に巻取られる。本実施例では、フィラメント材料として
実施例3と同じ変性pg’r樹脂を用いている。フィラ
メント製造時のせん断速度は、樹脂の押出速度、紡糸口
金孔の穴径によって決まる。今、直径0.1mの紡糸口
金孔を具えた押出機を用い、前記変性PgT樹脂を22
0C1押出速度305m37分で溶融紡糸し、3.8 
m 7分で巻取った場合には、口金孔出口でのせん断速
度は5 X I Q3set:1であり、得られた0、
1111IIφのフィラメントの線膨張率は一2×1o
 −7G−1、引張弾性率は20 GPaであることが
わかった。また、このフィラメントを150C空気恒温
槽中に1日放置しても、寸法変化は認められなかった。
Example 4 FIG. 4 shows an example of filament production by the melt-proofing method. In FIG. 4, numerals 4 and 5 have the same meanings as in FIG. 1, 9 is a filamentary liquid crystal polymer, 10 is a spinneret block of the extruder head, 11 is a spinneret hole, and 12 is a pulley. The polymer in the bath-molten liquid crystal state is formed into a filament when passing through the spinneret hole 11, solidified in the cooling bath 4, and then passed through the pulley 12 to the winder 5.
It is wound up. In this example, the same modified pg'r resin as in Example 3 is used as the filament material. The shear rate during filament production is determined by the extrusion rate of the resin and the hole diameter of the spinneret hole. Now, using an extruder equipped with a spinneret hole with a diameter of 0.1 m, the modified PgT resin was
Melt spinning at 0C1 extrusion speed 305 m 37 minutes, 3.8
m When winding takes 7 minutes, the shear rate at the mouth hole exit is 5 X I Q3set: 1, and the obtained 0,
The coefficient of linear expansion of the filament of 1111IIφ is -2×1o
-7G-1, the tensile modulus was found to be 20 GPa. Further, no dimensional change was observed even when this filament was left in a 150C air constant temperature bath for one day.

実施例5 第5図に押出成型によるプラスチック抗張力線製造の1
例を示す。第5図にお(・て、符号13はロッド状の液
晶ポリマー、2〜5は第1図と同義である。加熱され、
液晶状態にあるポリマーはクロスへラドダイ2及びダイ
の直線部3を通過した後にロッド状に成型され、冷却槽
4で固化した後、巻取機5に巻取られる。本実施例では
、抗張力線材料として実施例1と同一組成の変性PIE
T樹脂を用いている。今、ダイ直線部4日、樹脂吐出穴
径1.2日φの押出機を用い、前記変性PgT樹脂を2
40C1押出速度20 cl/分で押出し、25.5m
/分で巻取った場合には、グイ出口でのせん断速度は2
X10311であり、得られた1、Orunφのロッド
の弾性率は190Paであることがわかった。また、こ
のロッドを170Cで1日放置しても寸法変化は認めら
れなかった。
Example 5 Figure 5 shows one example of manufacturing plastic tensile strength wire by extrusion molding.
Give an example. In FIG. 5, the reference numeral 13 is a rod-shaped liquid crystal polymer, and 2 to 5 are the same as in FIG. 1.
The polymer in a liquid crystal state is formed into a rod shape after passing through a cross-radial die 2 and a linear part 3 of the die, solidified in a cooling tank 4, and then wound up by a winding machine 5. In this example, modified PIE having the same composition as Example 1 was used as the tensile strength wire material.
T resin is used. Now, using an extruder with a die straight section of 4 days and a resin discharge hole diameter of 1.2 days, the modified PgT resin was
40C1 Extruded at extrusion speed 20 cl/min, 25.5 m
/min, the shear rate at the goo exit is 2
X10311, and the elastic modulus of the obtained rod of 1, Orunφ was found to be 190 Pa. Further, even when this rod was left at 170C for one day, no dimensional change was observed.

実施例6 本発明によるプラスチック抗張力体では、二層同時押出
法により、外被の被覆が可能である。
Example 6 The plastic tensile strength body according to the invention can be coated with a jacket by a two-layer coextrusion method.

M6図は本発明による二層同時押出しの一実施例であり
、符号14は外板で被覆されたロッド状液晶ポリマー、
15はロッド材料の液晶ポリマー、16は外被材料の熱
可塑性樹脂、17は二層同時押出用のクロスへラドダイ
、3〜5は第1図と同義である。各各加熱され、溶融状
態にある外被用熱可塑性樹脂16及び液晶状態にある液
晶ポリマー15はクロスヘッドダイ17及びダイの直線
部3f、通過後パイプ状及びロッド状に成形され、冷却
槽4で固化した後に巻取4a5で巻取られる。上記実施
例で述べたように、二層同時押出しにおいても、中心の
樹脂吐出穴径、樹脂の押出速度を適当に選ぶことにより
、グイ直線部におけるせん断速度を変えることができる
。本実施例では、ダイ直線部4鰭、ロッド用樹脂吐出穴
径1,2 tsφ、外被用樹脂吐出内径2.2mφ、外
被用樹脂吐出大外径3.5t1mφのへラドダイを具え
た押出機を用い、ロッド用材料に実施例1で用いたPE
T −p−アセトキシ安息香酸共重合体、外被用材料に
ポリ塩化ビニルを用いて、ヘッドの中心部分を240C
1外周部分を220Cに設定し、ロッドの押出速度を2
0−7分、外被の押出速度を1o o crlZ分とし
て6各の樹脂を押出し、25.5 m 7分で巻取った
。得られたロッド径1 tnmφ、被覆外径2■φの抗
張力線の弾性率は18 GPaであった。本実施例では
外被用材料としてポリ塩化ビニルを用いたが、これに限
定するものではな(、他の熱可塑性樹脂、例えばポリエ
チレン、ポリプロピレン、ポリカーボネート、ナイロン
などを用いることができる。
Figure M6 shows an example of two-layer coextrusion according to the present invention, and numeral 14 is a rod-shaped liquid crystal polymer covered with an outer plate;
15 is a liquid crystal polymer as a rod material, 16 is a thermoplastic resin as a jacket material, 17 is a cross-to-rad die for two-layer coextrusion, and 3 to 5 have the same meanings as in FIG. After passing through the crosshead die 17 and the linear part 3f of the die, the thermoplastic resin 16 for the jacket 16 in a molten state and the liquid crystal polymer 15 in a liquid crystal state are formed into a pipe shape and a rod shape. After being solidified in step 4a5, it is wound up in winder 4a5. As described in the above embodiment, even in two-layer simultaneous extrusion, the shearing rate in the goo straight portion can be changed by appropriately selecting the diameter of the central resin discharge hole and the extrusion rate of the resin. In this example, the extruder was equipped with a Herado die with four fins on the die straight part, a resin discharge hole diameter for the rod of 1.2 tsφ, a resin discharge inner diameter of 2.2 mφ for the jacket, and a large outer diameter of 3.5t1 mφ for the resin discharge for the jacket. Using a machine, the PE used in Example 1 was used as the material for the rod.
T-p-acetoxybenzoic acid copolymer, using polyvinyl chloride as the outer covering material, and 240C in the center part of the head.
1 Set the outer peripheral part to 220C, and set the extrusion speed of the rod to 2.
Each of the six resins was extruded for 0-7 minutes at an extrusion speed of 1 o o crlZ for the jacket and wound up for 25.5 m in 7 minutes. The elastic modulus of the obtained tensile strength wire with a rod diameter of 1 tnmφ and a coating outer diameter of 2 mmφ was 18 GPa. In this example, polyvinyl chloride was used as the material for the jacket, but the material is not limited to this; other thermoplastic resins such as polyethylene, polypropylene, polycarbonate, nylon, etc. can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明ではほぼ102sec−’
以上のせん断速度で高度に分子配向しやすい液晶ポリマ
ーをプラスチック成形材料に用いるため、押出工程のみ
で寸法安定性に優れ、低線膨張率で高弾性率なプラスチ
ック成形品を作製できる利点がある。
As explained above, in the present invention, approximately 102 sec-'
Since a liquid crystal polymer that is highly susceptible to molecular orientation at the above shear rate is used as a plastic molding material, it has the advantage of being able to produce plastic molded products with excellent dimensional stability, low coefficient of linear expansion, and high modulus of elasticity just by the extrusion process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、本発明の一実施例に用いる製造装置
の構成概略図である。 1:テープ状液晶ポリマー、2:押出機クロスへラドダ
イ、3:押出機へラドダイの直線部、4:冷却槽、5:
巻取機、6:カレンダーロール、7:液溜、8:パイプ
状液晶ポリマー、9:フィラメント状液晶ポリマー、1
0:押出機ヘッドの紡糸口金ブロック、11:紡糸口金
孔、12:プーリー、15:日ツド状の液晶ポリマー、
14:外被を被覆したロンド状液晶ポリマー、15:液
晶ポリマー、16:外被用熱可塑性樹脂、17:二層同
時押出用クロスヘッドダ第 / 図 第 2 図 −)− 冒 θiコシ −3図 第 ゲ 図 7 ”LJ L/’) \ \ 手続補 正置(自発補正) 昭和59年9月17日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和58年特許願第166527号Z
発明の名称 低線膨張率で高弾性率な液晶ポリマー成形
品の製造方法 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区内幸町1丁目1番6号名 称 
(422)日本電信電話公社 代表者 真 藤 恒 5、補正命令の日付 自発補正 &補正の対象 (1)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 乙補正の内容 (1)明細書の特許請求の範囲の欄を別紙のとおシ補正
する。 (2)明細書の発明の詳細な説明の欄を下記のとおシ補
正する。 ビ) 明細書第6頁8行の「10〜50」を「57.5
〜16.74と、同頁9行の「40〜80」を「25.
0〜66.6」と補正する。 (ロ)同第7頁下から7行の「理し、」の次に以下の記
載を加入する。 「前記(4)、中)、(Cl各基を2a6モル%、2a
6モル%、42.8モル%の割合で含む」 ) 同第10頁11行の「処理し、」の次に以下の記載
を加入する。 [前記(4)、a3)、(C1各基を3五3モル%、3
3.3モル%、354モル%の割合で含む」 2、特許請求の範囲 1. 溶融液晶状態にあるポリマーを、はぼ102se
−以上のせん断速度で押出して、ポリマー分子が長手方
向に配向I〜だポリマー成形品を得ることを特徴とする
低線膨張率で高弾性率な液晶ポリマー成形品の製造方法
。 Z 該せん断速度が、約103〜1カ5eC1である特
許請求の範囲第1項記載の方法。 3、 該成形品が、テープ、パイプ、ロンド又はフィラ
メントである特許請求の範囲第1項記載の方法。 4、 該液晶ポリマーが、少なくとも0.3の固有粘度
をもぢ、下記の仏)、ω)及びiC1式で表される各基
: 田)−0−C馬−OH,−0− を包含し、かつ基(5)及び基の)を37.5〜1&7
モル%ずつ等加金み、基(C1を250〜66.6モル
%含む、約300℃よυ低い温度で異方性溶融相を形成
しうる芳香族ポリエステルからなるものである特許請求
の範囲第1項記載の方法。
1 to 6 are schematic diagrams of a manufacturing apparatus used in an embodiment of the present invention. 1: Tape-shaped liquid crystal polymer, 2: Rad die to extruder cross, 3: Straight part of Rad die to extruder, 4: Cooling tank, 5:
Winder, 6: Calendar roll, 7: Liquid reservoir, 8: Pipe-shaped liquid crystal polymer, 9: Filament-shaped liquid crystal polymer, 1
0: Spinneret block of extruder head, 11: Spinneret hole, 12: Pulley, 15: Sun-shaped liquid crystal polymer,
14: Rondo-shaped liquid crystal polymer covering the outer cover, 15: Liquid crystal polymer, 16: Thermoplastic resin for the outer cover, 17: Crosshead for two-layer coextrusion. Figure 7 ``LJ L/') \ \ Procedural amendment (voluntary amendment) September 17, 1980 Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case Patent Application No. 166527 of 1982 Z
Title of the invention Method for manufacturing a liquid crystal polymer molded product with a low coefficient of linear expansion and a high modulus of elasticity 3, Relationship to the amended person's case Patent applicant address 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Name
(422) Representative of Nippon Telegraph and Telephone Public Corporation Tsune Shinto 5, date of amendment order Voluntary amendment & subject of amendment (1) Scope of claims in the specification (2) Detailed explanation of the invention in the specification Contents of the amendment (1) The claims section of the specification will be amended as a separate sheet. (2) The detailed explanation of the invention section of the specification will be amended as follows. b) Change “10-50” on page 6, line 8 of the specification to “57.5”
~16.74, and “40-80” on line 9 of the same page is changed to “25.
0 to 66.6". (b) Add the following statement after ``Understanding,'' in the 7th line from the bottom of page 7. "Said (4), middle), (2a6 mol% of each Cl group, 2a
6 mol% and 42.8 mol%.'' ) Add the following statement next to ``processed'' on page 10, line 11 of the same. [Said (4), a3), (353 mol% of each C1 group, 3
3.3 mol% and 354 mol%.'' 2. Scope of Claims 1. The polymer in the molten liquid crystal state is
A method for producing a liquid crystal polymer molded article having a low coefficient of linear expansion and a high modulus of elasticity, characterized by extruding at a shear rate of - or higher to obtain a polymer molded article in which the polymer molecules are oriented in the longitudinal direction. 2. The method of claim 1, wherein Z the shear rate is about 103 to 1 eC1. 3. The method according to claim 1, wherein the molded article is a tape, pipe, rond, or filament. 4. The liquid crystal polymer has an intrinsic viscosity of at least 0.3 and contains the following groups represented by the following formulas: -0-C-OH, -0- and the group (5) and the group) are 37.5 to 1&7
The claims are made of an aromatic polyester containing 250 to 66.6 mol% of groups (C1) and capable of forming an anisotropic melt phase at a temperature lower than about 300°C. The method described in paragraph 1.

Claims (1)

【特許請求の範囲】 1、 溶融液晶状態にあるボI)−r−を、はぼ102
sec−’以上のせん断速度で押出して、ポリマー分子
が長手方向に配向したチリマー成形品を得ることを特徴
とする低線膨張率で高弾性率な液晶ポリマー成形品の製
造方法。 2 該セん断速度が、約103〜10’ 5ec−’で
ある特許請求の範囲第1項記載の方法。 & 該成形品が、゛テープ、パイプ、ロンド又はフィラ
メントである特許請求の範FiB第15、項記載の方法
。 4、該液晶ポリマーが、少なくとも0.3の固有粘度を
もち、下記の(A)、(BJ及び(C)式で表される各
基: を包含し、かつ基(AJ及び基(BJを10〜30モル
%ずつ等量含み、基(CiJを40〜80モル%含む、
約500Cより低い温度で異方性溶融相を形成しうる芳
香族ポリエステルからなるものである特許請求の範囲第
1項記載の方法。
[Claims] 1. Bo I)-r- in a molten liquid crystal state is
A method for producing a liquid crystal polymer molded product having a low coefficient of linear expansion and a high modulus of elasticity, which comprises extruding at a shear rate of sec-' or more to obtain a chilimer molded product in which polymer molecules are oriented in the longitudinal direction. 2. The method of claim 1, wherein the shear rate is about 103 to 10'5 ec-'. & The method according to claim 15, wherein the molded product is a tape, pipe, rond, or filament. 4. The liquid crystal polymer has an intrinsic viscosity of at least 0.3, contains each group represented by the following formulas (A), (BJ and (C)), and contains a group (AJ and a group (BJ) Contains an equal amount of 10 to 30 mol%, and groups (including 40 to 80 mol% of CiJ,
The method of claim 1, comprising an aromatic polyester capable of forming an anisotropic melt phase at temperatures below about 500C.
JP58166527A 1983-09-12 1983-09-12 Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion Pending JPS6058829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166527A JPS6058829A (en) 1983-09-12 1983-09-12 Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166527A JPS6058829A (en) 1983-09-12 1983-09-12 Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Publications (1)

Publication Number Publication Date
JPS6058829A true JPS6058829A (en) 1985-04-05

Family

ID=15832957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166527A Pending JPS6058829A (en) 1983-09-12 1983-09-12 Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion

Country Status (1)

Country Link
JP (1) JPS6058829A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130821A (en) * 1985-11-30 1987-06-13 Fukuvi Chem Ind Co Ltd Synthetic resin extrusion-molded body
JPS62149296A (en) * 1985-09-13 1987-07-03 Mitsubishi Electric Corp Manufacture of speaker diaphragm
JPS62189328A (en) * 1986-02-14 1987-08-19 Mazda Motor Corp Supercharger of engine
JPS62255113A (en) * 1986-04-28 1987-11-06 Diafoil Co Ltd Manufacture of film of liquid crystal
US4734240A (en) * 1986-01-24 1988-03-29 Hoechst Celanese Corporation Melt-extrusion of polymer which is capable of forming an anisotropic melt phase to form large shaped articles exhibiting improved polymeric orientation
US4891261A (en) * 1988-02-29 1990-01-02 Aluminum Company Of America Thermoplastic stock shape and method for making the same
US4973442A (en) * 1985-09-26 1990-11-27 Foster Miller Inc. Forming biaxially oriented ordered polymer films
JPH03505230A (en) * 1988-06-20 1991-11-14 フオスター・ミラー・インコーポレイテツド Multiaxially oriented heat-modified polymer support for printed wiring boards
JPH09106211A (en) * 1996-06-03 1997-04-22 Toray Ind Inc Production of sheet separation claw for fixing roll
US6132668A (en) * 1985-09-26 2000-10-17 Foster-Miller, Inc. Biaxially oriented ordered polymer films
KR100818562B1 (en) 2006-05-08 2008-04-02 서용석 Method for increasing molecular weight of polymer resin using liquid crystal unit (mesogen unit) having a reactor at both ends and preparing polymer resin with high impact resistance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149296A (en) * 1985-09-13 1987-07-03 Mitsubishi Electric Corp Manufacture of speaker diaphragm
JPH0439279B2 (en) * 1985-09-13 1992-06-29
US4973442A (en) * 1985-09-26 1990-11-27 Foster Miller Inc. Forming biaxially oriented ordered polymer films
US6132668A (en) * 1985-09-26 2000-10-17 Foster-Miller, Inc. Biaxially oriented ordered polymer films
JPS62130821A (en) * 1985-11-30 1987-06-13 Fukuvi Chem Ind Co Ltd Synthetic resin extrusion-molded body
US4734240A (en) * 1986-01-24 1988-03-29 Hoechst Celanese Corporation Melt-extrusion of polymer which is capable of forming an anisotropic melt phase to form large shaped articles exhibiting improved polymeric orientation
JPS62189328A (en) * 1986-02-14 1987-08-19 Mazda Motor Corp Supercharger of engine
JPS62255113A (en) * 1986-04-28 1987-11-06 Diafoil Co Ltd Manufacture of film of liquid crystal
US4891261A (en) * 1988-02-29 1990-01-02 Aluminum Company Of America Thermoplastic stock shape and method for making the same
JPH03505230A (en) * 1988-06-20 1991-11-14 フオスター・ミラー・インコーポレイテツド Multiaxially oriented heat-modified polymer support for printed wiring boards
JPH09106211A (en) * 1996-06-03 1997-04-22 Toray Ind Inc Production of sheet separation claw for fixing roll
KR100818562B1 (en) 2006-05-08 2008-04-02 서용석 Method for increasing molecular weight of polymer resin using liquid crystal unit (mesogen unit) having a reactor at both ends and preparing polymer resin with high impact resistance

Similar Documents

Publication Publication Date Title
JPS6058829A (en) Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion
JP2001098083A (en) Fiber reinforced polypropylene composite material
JPH023430A (en) Fully aromatic polyester film and its manufacturing method
CN1194855C (en) Method for producing high viscosity polyethylene glycol terephthalate sheet by multiple one-way stretching
JPH11105131A (en) Manufacture of simultaneously biaxially oriented film
US6332940B1 (en) Process for producing an invisible and writable biaxially oriented polypropylene (BOPP) raw processing film and the product thereof
JPH0733048B2 (en) Method for producing polybutylene terephthalate resin film
JPH0140962B2 (en)
JP4679679B2 (en) Method for producing thermoplastic liquid crystal polymer film
JP2001172821A (en) Production of polyoxymethylene fiber
JPS5964335A (en) Reinforced polymer product
JPS5889323A (en) Manufacture of film
Yang et al. Stress‐induced crystallization of biaxially oriented polypropylene
JPS6114616A (en) Optical fiber core
JPS6093407A (en) Optical fiber core
JPS63222833A (en) Manufacture of film
JPH0549613B2 (en)
JPS60249110A (en) Optical fiber core clad with layer of low linear expansion coefficient
CN118849585A (en) A kind of BOPP matte film and preparation method thereof
KR100238792B1 (en) Polypropylene film and manufacturing method for the same
JPS62255113A (en) Manufacture of film of liquid crystal
JPS58185226A (en) Manufacture of thermoplastic film
JPS6367460B2 (en)
JPH09295344A (en) Manufacture of thermoplastic resin film
JPH02263849A (en) Polyolefin molded product