[go: up one dir, main page]

JPS6058086A - Production of ester - Google Patents

Production of ester

Info

Publication number
JPS6058086A
JPS6058086A JP16629583A JP16629583A JPS6058086A JP S6058086 A JPS6058086 A JP S6058086A JP 16629583 A JP16629583 A JP 16629583A JP 16629583 A JP16629583 A JP 16629583A JP S6058086 A JPS6058086 A JP S6058086A
Authority
JP
Japan
Prior art keywords
water
acid
lipase
polymer particles
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16629583A
Other languages
Japanese (ja)
Inventor
Yasuo Kihara
木原 康夫
Takeshi Hibino
健 日比野
Isao So
宗 伊佐雄
Keiichi Ushiyama
敬一 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP16629583A priority Critical patent/JPS6058086A/en
Publication of JPS6058086A publication Critical patent/JPS6058086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To separate and recover an immobilized enzyme easily and stably, and to obtain an ester in high yield, by reacting an acid with an alcohol in the presence of a small amount of water and an immobilized enzyme obtained by immobilizing lipase to a polymer particles dispersed in water. CONSTITUTION:An acid such as a fatty acid is made to react with an alcohol such as glycerol at 3-11pH and 20-50 deg.C in the presence of (A) 0.01-30wt% water and (B) an immobilized enzyme prepared by (1) dispersing a dispersible polymer particles having an average particle diameter of 0.03-2mum and obtained e.g. by the coplymerization of a vinyl monomer and a polyfunctional internal crosslinking monomer, in water, and (2) reacting a polyamine with a dialdehyde in the dispersion in the presence of a lipase.

Description

【発明の詳細な説明】 本発明はカルボン酸エステル類の製造方法に関し、詳し
くは、平均粒子径0.03〜2μmの水分散型高分子重
合体粒子にリパーゼを固定化した固定化酵素の存在下に
酸とアルコールとを反応させてカルボン酸エステル類を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carboxylic acid esters, and more specifically, the present invention relates to a method for producing carboxylic acid esters, and specifically, the presence of an immobilized enzyme in which lipase is immobilized on water-dispersed polymer particles having an average particle diameter of 0.03 to 2 μm. The present invention relates below to a method for producing carboxylic acid esters by reacting acids and alcohols.

リパーゼのような加水分解酵素がその逆反応であるカル
ボン酸エステル類の生成反応に触媒作用を有することは
既に古くより知られている。しかしながら、この反応は
、従来の文献によれば、一般にカルボン酸エステル類の
収率が低いうえに、酵素が不安定であって、反応後に分
離回収することが困難であるのみならず、失活が著しい
ために再使用に耐えない等の問題を有し、従って、工業
的に実施し得るような安定性、生産性、経済性にすぐれ
る方法は未だ見い出されていない。
It has been known for a long time that hydrolytic enzymes such as lipases have a catalytic effect on the reverse reaction, which is the production of carboxylic acid esters. However, according to conventional literature, this reaction generally has a low yield of carboxylic acid esters, and the enzyme is unstable, making it difficult to separate and recover after the reaction, as well as deactivating the enzyme. There are problems such as not being able to withstand reuse due to the significant amount of oxidation, and therefore, a method with excellent stability, productivity, and economic efficiency that can be implemented industrially has not yet been found.

本発明者らはリパーゼを用いるカルボン酸エステル類の
製造における上記した問題を解決するために鋭意研究し
た結果、平均粒子径0.03〜2μmの水分散型高分子
重合体粒子にリパーゼを固定化した固定化酵素と可及的
に少量の水の存在下に酸とアルコールとを反応させるこ
とにより、固定化酵素を安定に且つ容易に反応混合物か
ら分離回収し得ると共に、高収率にて対応するエステル
類を得ることができることを見出して本発明に至ったも
のである。
The present inventors conducted extensive research to solve the above-mentioned problems in the production of carboxylic acid esters using lipase, and as a result, lipase was immobilized on water-dispersed polymer particles with an average particle size of 0.03 to 2 μm. By reacting the immobilized enzyme with acid and alcohol in the presence of as little water as possible, it is possible to stably and easily separate and recover the immobilized enzyme from the reaction mixture and achieve a high yield. The present invention was achieved by discovering that it is possible to obtain esters that

本発明によるカルボン酸エステル類の製造方法は、可及
的に少量の水と平均粒子径が0.03〜2μmである水
分散型高分子重合体粒子にリパーゼを固定化した固定化
酵素との存在下に酸とアルコールとを反応させて対応す
るエステルを生成させることを特徴とする。
The method for producing carboxylic acid esters according to the present invention uses as little water as possible and an immobilized enzyme in which lipase is immobilized on water-dispersed polymer particles having an average particle size of 0.03 to 2 μm. It is characterized by reacting an acid and an alcohol in the presence of alcohol to produce a corresponding ester.

本発明において固定化酵素の担体として用いる水分散型
高分子重合体粒子は、例えば、一部は特開昭5’115
0380号公報等によって既に知られている。本発明に
おいては、スチレンやその誘導体、(メタ)アクリル酸
エステル、(メタ)アクリロニトリル等の第1のビニル
単量体又はこれらの混合物と、(メタ)アクリル酸、(
メタ)アクリル酸グリシジル、(メタ)アクリルアミド
等の反応性官能基を有する第2のビニル単量体又はこれ
らの混合物とを乳化共重合させて得られる水分散型高分
子重合体粒子を用いることができるが、好ましくは上記
単量体に加えて、ジビニルベンゼン、多価アルコールの
ポリ (メタ)アクリレート等のような多官能性内部架
橋用単量体を共重合させて得られる水分散型高分子重合
体粒子が、反応系に存在する酸やアルコールに膨潤溶解
しないので好ましく用いられる。尚、この乳化共重合に
おいては乳化剤を用いないのが好ましい。乳化剤が存在
するときは、得られる水分散型高分子重合体粒子に乳化
剤が混入し、酵素の固定化時に酵素を失活させるおそれ
があるからである。但し、かかるおそれがない場合は、
乳化剤の存在下に乳化共重合させてもよいのは勿論であ
る。
In the present invention, some of the water-dispersed polymer particles used as carriers for immobilized enzymes are, for example,
This is already known from Publication No. 0380 and the like. In the present invention, a first vinyl monomer such as styrene or its derivative, (meth)acrylic acid ester, (meth)acrylonitrile, or a mixture thereof; (meth)acrylic acid, (
It is possible to use water-dispersed polymer particles obtained by emulsion copolymerization with a second vinyl monomer having a reactive functional group such as glycidyl meth)acrylate or (meth)acrylamide, or a mixture thereof. However, preferably, in addition to the above monomers, a water-dispersed polymer obtained by copolymerizing a polyfunctional internal crosslinking monomer such as divinylbenzene, poly(meth)acrylate of a polyhydric alcohol, etc. The polymer particles are preferably used because they do not swell and dissolve in the acid or alcohol present in the reaction system. Note that it is preferable not to use an emulsifier in this emulsion copolymerization. This is because when an emulsifier is present, there is a risk that the emulsifier will be mixed into the resulting water-dispersed polymer particles and deactivate the enzyme during enzyme immobilization. However, if there is no risk of this happening,
Of course, emulsion copolymerization may be carried out in the presence of an emulsifier.

水分散型高分子重合体粒子の平均粒子径はo、03〜2
μmであることが必要であり、特に、o、07〜1μm
であるのが好ましい。重合体粒子の平均粒子径が0.0
3μmよりも小さいときは、これを担体としてリパーゼ
を固定化した固定化酵素を反応系に分散させてエステル
類の生成反応を行なわせた後の基質や反応生成物からの
分離が困難となり、一方、平均粒子径が2μmを越える
とき′は、反応系中に分散させることが困難となると共
に、粒子の単位体積当りの表面積が小さく、固定化酵素
の酵素活性が相対的に低下して、反応効率が悪くなる。
The average particle diameter of the water-dispersed polymer particles is o, 03-2
μm, especially o, 07 to 1 μm
It is preferable that The average particle diameter of the polymer particles is 0.0
When it is smaller than 3 μm, it becomes difficult to separate the immobilized enzyme with lipase as a carrier from the substrate and reaction products after the ester production reaction is carried out by dispersing the immobilized enzyme on which lipase is immobilized in the reaction system. When the average particle diameter exceeds 2 μm, it becomes difficult to disperse the particles in the reaction system, and the surface area per unit volume of the particles is small, resulting in a relative decrease in the enzyme activity of the immobilized enzyme, which hinders the reaction. It becomes less efficient.

用いるリパーゼは特に制限されないが、好ましくは例え
ば、リゾプスデルマー又はアスペルギルス起源のリパー
ゼが用いられる。
The lipase used is not particularly limited, but preferably, for example, a lipase derived from Rhizopus derma or Aspergillus is used.

上記水分散型高分子重合体粒子へのリパーゼの固定化方
法は特に制限されず、従来より知られている物理吸着法
、イオン吸着法、包括法、架橋法、共有結合法等により
リパーゼを固定化した固定化酵素を用いることができる
。しかし、本発明の方法においては、特に、水分散型高
分子重合体粒子を水中に分散させ、リパーゼの存在下に
ポリアミンとジアルデヒドとを反応させることにより、
酵素をポリアミンとジアルデヒドとのシッフ塩基からな
る重合体と共に沈着固定した固定化酵素を用いることが
望ましい。このようなシッフ塩基からなる重合体中に酵
素を沈着法によって固定化した場合は、シッフ塩基が疎
水性の−CH= N−結合を有するために、疎水性であ
る基質、例えば、脂肪酸に対する親和性が高いために反
応効率が高く、反応が円滑に進行し、高い収率にてエス
テル類を得ることができる。
The method of immobilizing lipase on the water-dispersed polymer particles is not particularly limited, and lipase is immobilized by conventionally known physical adsorption methods, ion adsorption methods, entrapment methods, crosslinking methods, covalent bonding methods, etc. An immobilized enzyme can be used. However, in the method of the present invention, in particular, by dispersing water-dispersible polymer particles in water and reacting polyamine and dialdehyde in the presence of lipase,
It is desirable to use an immobilized enzyme in which the enzyme is deposited and immobilized together with a polymer consisting of a Schiff base of polyamine and dialdehyde. When an enzyme is immobilized in a polymer made of such a Schiff base by a deposition method, the Schiff base has a hydrophobic -CH=N- bond, so it has a low affinity for hydrophobic substrates such as fatty acids. Because of its high properties, the reaction efficiency is high, the reaction proceeds smoothly, and esters can be obtained in high yields.

また、この沈着法による酵素の固定化においては、酵素
は一部は遊離状態で上記シッフ塩基からなる重合体中に
包括され、一部は共有結合によりシッフ塩基重合体中に
組み込まれる。従って、水分散型高分子重合体粒子が当
初よりアミノ基を有する場合、又は乳化共重合に用いた
単量体に由来する官能性反応基を利用して重合体粒子上
にアミノ基を導入し、若しくは形成させた場合には、酵
素はジアルデヒドによって架橋されて重合体粒子にも共
有結合にて固定化され、かくして、酵素の粒子への固定
化が一層強固になるので有利である。
Furthermore, in the immobilization of an enzyme by this deposition method, part of the enzyme is entrapped in the Schiff base polymer in a free state, and part of the enzyme is incorporated into the Schiff base polymer through covalent bonds. Therefore, if the water-dispersed polymer particles have amino groups from the beginning, or if amino groups are introduced onto the polymer particles using a functional reactive group derived from the monomer used for emulsion copolymerization. , or when formed, the enzyme is advantageously cross-linked by the dialdehyde and also covalently immobilized on the polymer particles, thus making the immobilization of the enzyme on the particles even stronger.

上記の沈着法による酵素の固定化において用いる上記ポ
リアミンはアルデヒド基と反応し得るアミノ基を分子内
に2個又はそれ以上有する単量体又は重合体であって、
芳香族、脂肪族又゛は脂環族のジアミンやトリアミンが
用いられる。具体例として、例えば、フェニレンジアミ
ン、キシリレン・ジアミン、トリアミノベンゼン、トリ
アミノトルエン、エチレンジアミン、ヘキサメチレンジ
アミン等が用いられる。また、重合体の具体例としては
ポリエチレンイミンを挙げることができる。上記ジアル
デヒドとしては、芳香族や脂肪族のジアルデヒドが用い
られ、具体例として、例えば、グルタルアルデヒド、コ
ハク酸ジアルデヒド、グリオキザール、マレインジアル
デヒド、テレフタルアルデヒド等を挙げることができる
The above-mentioned polyamine used in the immobilization of the enzyme by the above-mentioned deposition method is a monomer or polymer having two or more amino groups in the molecule that can react with an aldehyde group,
Aromatic, aliphatic or alicyclic diamines and triamines are used. Specific examples include phenylenediamine, xylylene diamine, triaminobenzene, triaminotoluene, ethylenediamine, hexamethylenediamine, and the like. Moreover, polyethyleneimine can be mentioned as a specific example of the polymer. As the dialdehyde, aromatic or aliphatic dialdehydes are used, and specific examples thereof include glutaraldehyde, succinic dialdehyde, glyoxal, maleic dialdehyde, and terephthalaldehyde.

本発明の方法において基質として用いる酸及びアルコー
ルとしては特に制限されず、酸としては飽和及び不飽和
酸、−塩基酸及び多塩基酸を用いることができ、また、
アルコールとしても飽和及び不飽和アルコール、−価及
び多価アルコールを用いることができる。例えば、酸の
具体例とじて酢酸、プロピオン酸、酪酸、イソ酪酸、吉
草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン
酸、パルミチン酸、ステアリン酸、オレイン酸、リシノ
ール酸、シクロヘキサンカルボン酸、シクロヘキシル酢
酸、グルコン酸、セバシン酸、スペリン酸、ピメリン酸
、リンゴ酸、コハク酸等を挙げることができる。
The acids and alcohols used as substrates in the method of the present invention are not particularly limited, and as acids, saturated and unsaturated acids, -basic acids and polybasic acids can be used, and
Saturated and unsaturated alcohols, -hydric and polyhydric alcohols can also be used as alcohols. For example, specific examples of acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, palmitic acid, stearic acid, oleic acid, ricinoleic acid, cyclohexanecarboxylic acid, cyclohexyl Examples include acetic acid, gluconic acid, sebacic acid, speric acid, pimelic acid, malic acid, and succinic acid.

また、アルコールの具体例として、メタノール、エタノ
ール、プロパツール、フタノール、ペンタノール、ヘキ
サノール、ヘキサノール、オククノール、ドデカノール
、オレイルアルコール、ベンジルアルコール、ゲラニオ
ール、シトロネオール、ファルソネロール、フィトール
等の一価アルコール、エチレングリコール、プロパンジ
オール、l。
Specific examples of alcohol include monohydric alcohols such as methanol, ethanol, propatool, phthanol, pentanol, hexanol, hexanol, occuenol, dodecanol, oleyl alcohol, benzyl alcohol, geraniol, citrononeol, farsonellol, phytol, and ethylene. Glycol, propanediol, l.

4−ブタンジオール、1,5−ベンタンジオール、1,
6−ヘキサンジオール、1.8−オクタンジオール、■
、1゜−デカンジオール、バラキシリレンジオール、グ
リセリン等の多価アルコールを挙げることができる。尚
、理由は明らかではないが、一般にアルコールは酸に対
して50モル%以上の過剰を反応させることが反応効率
を高くするうえで好ましい。
4-butanediol, 1,5-bentanediol, 1,
6-hexanediol, 1.8-octanediol, ■
, 1°-decanediol, varaxylylene diol, glycerin, and other polyhydric alcohols. Although the reason is not clear, it is generally preferable to react alcohol in excess of 50 mol % or more relative to acid in order to increase reaction efficiency.

但し、これに限定されるものではない。However, it is not limited to this.

本発明の方法は、特にグリセリンの脂肪酸エステル類の
製造に好適に適用することができる。′本発明の方法に
おいては、反応系に可及的に少量の水を存在させ、反応
系をリパーゼが活性を有するpH範囲、即ち、pu 3
〜11に保持することが望ましい。反応系における水の
量は、通常、全重量の0.O1〜30重量%、好ましく
は0.1〜20重量%である。反応系に水が存在しない
ときは酵素活性が低く、また、水の量が多すぎるときは
、エステル類の加水分解反応が顕著となり、同様に反応
効率が低い。可及的に少量の水と酸に対して大過剰のア
ルコールを反応媒体として反応を行なわせることもでき
る。基質と水とを含有するこのような反応系に前記した
固定化酵素を分散させ、通常、攪拌下に反応させる。反
応温度は酵素が活性を保持している温度範囲であり、通
常、20〜50℃である。リパーゼ固定化粒子の使用量
は、特に制限されるものではないが、酵素量に換算すれ
ば、通常、r!11モルに対して0.1〜50g程度で
ある。また、反応に要する時間は上記のような条件下で
通常、0.5〜24時間程度である。
The method of the present invention can be particularly suitably applied to the production of fatty acid esters of glycerin. 'In the method of the present invention, as little water as possible is present in the reaction system, and the reaction system is maintained at a pH range in which lipase is active, that is, pu 3
It is desirable to maintain the temperature between 11 and 11. The amount of water in the reaction system is usually 0.0% of the total weight. O1 to 30% by weight, preferably 0.1 to 20% by weight. When no water is present in the reaction system, the enzyme activity is low, and when the amount of water is too large, the hydrolysis reaction of esters becomes significant, and the reaction efficiency is similarly low. The reaction can also be carried out using as little water and acid as possible and a large excess of alcohol as the reaction medium. The above-mentioned immobilized enzyme is dispersed in such a reaction system containing a substrate and water, and the reaction is usually carried out under stirring. The reaction temperature is a temperature range in which the enzyme retains its activity, and is usually 20 to 50°C. The amount of lipase-immobilized particles used is not particularly limited, but when converted to the amount of enzyme, it is usually r! The amount is about 0.1 to 50 g per 11 moles. Further, the time required for the reaction is usually about 0.5 to 24 hours under the above conditions.

反応終了後は、例えば、固定化酵素を精密濾過膜や限外
濾過膜を用いる膜分離、遠心分離等の手段により分離し
た後、液相から反応生成物であるエステルを濃縮晶析、
抽出等の方法にて分離することができる。また、分離さ
れた固定化酵素は再使用に供することができる。
After the reaction is completed, for example, the immobilized enzyme is separated by membrane separation using a microfiltration membrane or ultrafiltration membrane, centrifugation, etc., and then the ester, which is the reaction product, is concentrated and crystallized from the liquid phase.
It can be separated by methods such as extraction. Moreover, the separated immobilized enzyme can be reused.

本発明の方法によれば、固定化酵素の担体として平均粒
子径0.03〜2μmの水分散型高分子重合体粒子を用
いるので、反応系において遊離の酵素と同様に移動する
ことができ、従って、反応効率が高い。特に、前記した
沈着法による固定化酵素を用いる方法によれば、固定化
酵素が基質に対して高い親和性を有するために反応が円
滑に進行し、高い収率でエステル類を得ることができる
According to the method of the present invention, water-dispersed polymer particles with an average particle diameter of 0.03 to 2 μm are used as carriers for immobilized enzymes, so that they can move in the reaction system in the same manner as free enzymes. Therefore, the reaction efficiency is high. In particular, according to the method using an immobilized enzyme by the above-mentioned deposition method, the reaction proceeds smoothly because the immobilized enzyme has a high affinity for the substrate, and esters can be obtained in high yield. .

更に、本発明の方法によれば、固定化酵素の分離回収が
容易である。
Furthermore, according to the method of the present invention, it is easy to separate and recover the immobilized enzyme.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 +l) 固定化リパーゼの製造 メチルメタクリレート47.5g、アクリロニトリル7
.5g、アクリル酸2.5g及びトリエチレングリコー
ルジメタクリレート2gを蒸留水230gに加え、過硫
酸カリウム0.3gを水10gに溶解した重合開始剤水
溶液を70℃の温度で窒素気流下に加え、120 rp
mで攪拌しつつ8時間重合させて、平均粒子径0.36
μmの水分散型高分子重合体粒子の水分散液を得た。こ
の重合体粒子を遠心分離し、水洗した後、蒸留水240
 mlに再分散させて、固形分20%の水分散液とした
Example 1 +l) Production of immobilized lipase Methyl methacrylate 47.5 g, acrylonitrile 7
.. 5 g of acrylic acid, 2.5 g of triethylene glycol dimethacrylate were added to 230 g of distilled water, and an aqueous polymerization initiator solution prepared by dissolving 0.3 g of potassium persulfate in 10 g of water was added at a temperature of 70° C. under a nitrogen stream. rp
Polymerization was carried out for 8 hours while stirring at m, and the average particle size was 0.36.
An aqueous dispersion of water-dispersible polymer particles of μm size was obtained. After centrifuging and washing the polymer particles with distilled water,
ml to obtain an aqueous dispersion with a solid content of 20%.

この重合体粒子水分散液50m1にm−キシリレンジア
ミン3 mmol及び1−シクロへキシル−3−(2−
モルホリノエチル)カルボジイミド−メト−p−トルエ
ンスルホン酸7.5 mmolを加え、IN塩酸にてp
Hを5.0に調整した後、10℃の温度で一夜反応させ
た。このようにして表面にアミノ基を形成させた重合体
粒子を遠心分離、水洗を繰り返した後、蒸留水50m1
に再分散させた。
3 mmol of m-xylylenediamine and 1-cyclohexyl-3-(2-
Add 7.5 mmol of morpholinoethyl)carbodiimide-meth-p-toluenesulfonic acid, and dilute with IN hydrochloric acid.
After adjusting H to 5.0, the reaction was carried out at a temperature of 10° C. overnight. After repeating centrifugation and water washing of the polymer particles with amino groups formed on their surfaces in this way, 50ml of distilled water was added.
was redispersed.

次いで、上記重合体粒子の水分散液5mlに0.1重量
%m−キシリレンジアミン水溶液4mlとリパーゼAP
6 (大野製薬@製、アスペルギルス属起源)100m
gを水6mlに溶解した水溶液を加え、攪拌しながら0
.1重量%グルクルアルデヒド水溶液5mlを加え、5
℃で5時間反応させた後、遠心分離、水洗を繰り返し、
この後、固形分が60重量%となるように再び緩衝液中
に分散させた。
Next, 4 ml of a 0.1% by weight m-xylylene diamine aqueous solution and lipase AP were added to 5 ml of the aqueous dispersion of the above polymer particles.
6 (manufactured by Ohno Pharmaceutical @, Aspergillus origin) 100m
Add an aqueous solution of g dissolved in 6 ml of water, and add 0 while stirring.
.. Add 5 ml of 1% by weight aqueous gluturaldehyde solution,
After reacting at ℃ for 5 hours, centrifugation and water washing were repeated.
Thereafter, it was again dispersed in a buffer solution so that the solid content was 60% by weight.

(2) オレイン酸グリセリドの製造 グリセリン9 ml (123mn+ol) 、オレイ
ン酸0゜5ml (1,6mmol) 、0.1M、p
H7のリン酸塩緩衝液0.5 ml及び上で得た固定化
リパーゼの水分散液1mlを混合し、攪拌した。室温で
10時間の反応後のエステル収率は、反応混合物中の未
反応の酸をアルカリ滴定することによりめた結果、60
%であった。生成物を薄層クロマトグラフィー、元素分
析等により調べたところ、大部分がトリグリセリドであ
り、少量のモノ及びジグリセリドが認められた。
(2) Production of oleic acid glyceride Glycerin 9 ml (123 mn+ol), oleic acid 0.5 ml (1.6 mmol), 0.1 M, p
0.5 ml of H7 phosphate buffer and 1 ml of the aqueous dispersion of immobilized lipase obtained above were mixed and stirred. The ester yield after 10 hours of reaction at room temperature was determined by alkaline titration of unreacted acid in the reaction mixture, and was 60%.
%Met. When the product was examined by thin layer chromatography, elemental analysis, etc., it was found that most of the product was triglycerides, with small amounts of mono- and diglycerides.

実施例2 グリセリン9 ml、オレイン酸0.5 ml、 0.
1 M。
Example 2 Glycerin 9 ml, oleic acid 0.5 ml, 0.
1M.

pn 7のリン酸塩緩衝液0.5ml及び上で得た固定
化リパーゼの水分散液1mlを混合し、更にこれに所定
量の水を加え、反応系における水の全量を表に示すとお
りとして、攪拌下に室温で24時間反応させた。エステ
ル収率を表に示す。但し、実験番号5は比較法であって
、固定化リパーゼの代わりに0.5重量%の遊離のリパ
ーゼ水溶赦1.0 mlを用いた結果を示す。
Mix 0.5 ml of pn 7 phosphate buffer and 1 ml of the aqueous dispersion of immobilized lipase obtained above, add a predetermined amount of water to this, and make the total amount of water in the reaction system as shown in the table. The mixture was reacted for 24 hours at room temperature with stirring. The ester yield is shown in the table. However, Experiment No. 5 is a comparative method, and shows the results using 1.0 ml of 0.5% by weight free lipase in water instead of immobilized lipase.

反応系内に存在する水の量が少ないほど、エステルの収
率が高い。また、実験番号5と2とを比較すれば明らか
なように、本発明による方法は遊離のリパーゼを用いた
場合よりもエステルの収率が高い。これは本発明による
固定化リパーゼがシッフ塩基重合体の基質に対する親和
性が高いからであるとみられる。
The lower the amount of water present in the reaction system, the higher the yield of ester. Furthermore, as is clear from a comparison of Experiment Nos. 5 and 2, the method according to the present invention has a higher yield of ester than when using free lipase. This appears to be because the immobilized lipase according to the present invention has a high affinity for the Schiff base polymer substrate.

即ち、実施例1で得た固定化酵素を80℃で30分間加
熱して失活させた後、実施例1と同じ条件下においた場
合も、反応系中のオレイン酸が経時的に消費されること
が観察された。このオレイン酸の見掛けの消費は、重合
体粒子がオレイン酸に対し親和性を有するために、オレ
イン酸が重合体粒子に吸着されることに基づくものと考
えられる。
That is, even when the immobilized enzyme obtained in Example 1 was heated at 80°C for 30 minutes to inactivate it and then placed under the same conditions as in Example 1, oleic acid in the reaction system was consumed over time. It was observed that This apparent consumption of oleic acid is thought to be based on the fact that oleic acid is adsorbed onto the polymer particles because the polymer particles have an affinity for oleic acid.

尚、このように失活させていない固定化リパーゼを用い
た場合、オレイン酸の上記見掛けの消費量を差し引いた
オレイン酸の経時的な消費率を併せて図面に示す。
In addition, when the immobilized lipase that has not been inactivated in this way is used, the consumption rate of oleic acid over time, which is obtained by subtracting the above-mentioned apparent consumption amount of oleic acid, is also shown in the drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法において用いる固定化リパ−ゼを失
活させた重合体粒子を反応条件下においた場合のオレイ
ン酸の見掛けの消費率と、本発明の方法において用いる
固定化リパーゼを上記と同じ反応条件下においた場合の
上記見掛けの消費率を差し引いたオレイン酸の消費率と
を示すグラフである。 女給鴫閏(hr)
The drawing shows the apparent consumption rate of oleic acid when the polymer particles in which the immobilized lipase used in the method of the present invention has been deactivated are placed under reaction conditions, and the immobilized lipase used in the method of the present invention compared to the above. It is a graph showing the consumption rate of oleic acid obtained by subtracting the above-mentioned apparent consumption rate under the same reaction conditions. Female employee (hr)

Claims (1)

【特許請求の範囲】 (11可及的に少量の水と平均粒子径が0.03〜2μ
mである水分散型高分子重合体粒子にリパーゼを固定化
した固定化酵素との存在下に酸とアルコールとを反応さ
せて対応するエステルを生成させることを特徴とするエ
ステル類の製造方法。 (2)固定化酵素が水分散型高分子重合体粒子上にポリ
アミンとジアルデヒドとのシッフ塩基からなる重合体と
共にリパーゼが固定化されてなることを特徴とする特許
請求の範囲第1項記載のエステル類の製造方法。 (3) 水分散型高分子重合体粒子がアミノ基を有する
ことを特徴とする特許請求の範囲第2項記載のエステル
類の製造方法。 (4) 酸が脂肪酸であり、アルコールがグリセリンで
あることを特徴とする特許請求の範囲第1項記載のエス
テル類の製造方法。
[Claims]
A method for producing esters, which comprises reacting an acid and an alcohol to produce a corresponding ester in the presence of an immobilized enzyme in which lipase is immobilized on water-dispersed polymer particles. (2) Claim 1, wherein the immobilized enzyme is formed by immobilizing lipase together with a polymer consisting of a Schiff base of polyamine and dialdehyde on water-dispersed polymer particles. A method for producing esters. (3) The method for producing esters according to claim 2, wherein the water-dispersed polymer particles have an amino group. (4) The method for producing esters according to claim 1, wherein the acid is a fatty acid and the alcohol is glycerin.
JP16629583A 1983-09-09 1983-09-09 Production of ester Pending JPS6058086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16629583A JPS6058086A (en) 1983-09-09 1983-09-09 Production of ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16629583A JPS6058086A (en) 1983-09-09 1983-09-09 Production of ester

Publications (1)

Publication Number Publication Date
JPS6058086A true JPS6058086A (en) 1985-04-04

Family

ID=15828690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16629583A Pending JPS6058086A (en) 1983-09-09 1983-09-09 Production of ester

Country Status (1)

Country Link
JP (1) JPS6058086A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257191A (en) * 1985-05-09 1986-11-14 Meito Sangyo Kk Production of polyalcohol fatty acid ester
JPS6248391A (en) * 1985-08-29 1987-03-03 Yoshikawa Seiyu Kk Production of fatty acid ester
JPS62104589A (en) * 1985-10-25 1987-05-15 Meito Sangyo Kk Production of fatty acid ester
JPS62107791A (en) * 1985-11-07 1987-05-19 Meito Sangyo Kk Production of fatty acid ester
JPS62166895A (en) * 1986-01-16 1987-07-23 Yoshikawa Seiyu Kk Production method of fatty acid esters
EP0330217A2 (en) * 1988-02-25 1989-08-30 ENICHEM S.p.A. Process for the continuous biotechnological preparation of optical isomer S(+) of 2-(6-methoxy-2-naphthyl)propionic acid
JPH0269180A (en) * 1988-09-02 1990-03-08 Daicel Chem Ind Ltd Polymerized enzyme and production thereof
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257191A (en) * 1985-05-09 1986-11-14 Meito Sangyo Kk Production of polyalcohol fatty acid ester
JPH0552191B2 (en) * 1985-05-09 1993-08-04 Meito Sangyo Kk
JPS6248391A (en) * 1985-08-29 1987-03-03 Yoshikawa Seiyu Kk Production of fatty acid ester
JPS62104589A (en) * 1985-10-25 1987-05-15 Meito Sangyo Kk Production of fatty acid ester
JPS62107791A (en) * 1985-11-07 1987-05-19 Meito Sangyo Kk Production of fatty acid ester
JPS62166895A (en) * 1986-01-16 1987-07-23 Yoshikawa Seiyu Kk Production method of fatty acid esters
EP0330217A2 (en) * 1988-02-25 1989-08-30 ENICHEM S.p.A. Process for the continuous biotechnological preparation of optical isomer S(+) of 2-(6-methoxy-2-naphthyl)propionic acid
JPH0269180A (en) * 1988-09-02 1990-03-08 Daicel Chem Ind Ltd Polymerized enzyme and production thereof
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof

Similar Documents

Publication Publication Date Title
Sheldon et al. Enzyme immobilisation in biocatalysis: why, what and how
Nilsson et al. The use of bead polymerization of acrylic monomers for immobilization of enzymes
JP2008104359A (en) Enzyme immobilization carrier, immobilized enzyme, and method for producing enzyme immobilization carrier
CN1279174C (en) Fixed lipase catalyzed synthesis of fatty acid low carbon alcohol ester
WO2015081879A1 (en) Sn-1,3 selective immobilized lipase for catalytic esterification and ester interchange and method for preparing same
JPS6058086A (en) Production of ester
Chibata et al. [50] Production of l-aspartic acid by microbial cells entrapped in polyacrylamide gels
CN111285951A (en) Lipase/polyion liquid-styrene microsphere/hydrogel catalytic material and preparation method and application thereof
JPH0458311B2 (en)
EP2655611A1 (en) Method for covalent immobilization of enzymes on functionalized solid polymeric supports
CN115093017A (en) Preparation method and application of dual-enzyme-inorganic hybrid nanoflower microspheres
CN101006173B (en) Powdery lipase composition and method of producing esterified product by using the same
US4066505A (en) Process for extracting a polypeptide from an aqueous solution
Pedersen et al. Immobilized biocatalysts
CN112980826A (en) Lipase/polyacrylamide hydrogel microsphere catalytic material and preparation method and application thereof
Wang et al. Functionalized poly (ionic liquid) s bridging Pd NPs and lipase for highly efficient dynamic kinetic resolution of chiral amine
US4343899A (en) Process for producing stable aqueous solution of acrylamide or methacrylamide
Klein et al. New developments in the preparation and characterization of polymerbound biocatalysts
Otero et al. Study of the stabilization of pure lipases: comparison of two different lipase-microgel derivatives
JP3775706B2 (en) Method for producing granular molded product for enzyme or microbial cell immobilization
Wyss et al. A novel reactive perstraction system based on liquid‐core microcapsules applied to lipase‐catalyzed biotransformations
Sarnoab et al. Synthesis of ethyl levulinate by a new bio-nanocatalyst
JP2657886B2 (en) Immobilized enzyme and transesterification method using the same
Silva et al. Isopropyl myristate continuous synthesis in a packed-bed reactor using lipase immobilized on magnetic polymer matrix
Ceynowa et al. Enantioselective esterification of butanol‐2 in an enzyme membrane reactor