[go: up one dir, main page]

JPS6057995B2 - Shape processing method - Google Patents

Shape processing method

Info

Publication number
JPS6057995B2
JPS6057995B2 JP55119862A JP11986280A JPS6057995B2 JP S6057995 B2 JPS6057995 B2 JP S6057995B2 JP 55119862 A JP55119862 A JP 55119862A JP 11986280 A JP11986280 A JP 11986280A JP S6057995 B2 JPS6057995 B2 JP S6057995B2
Authority
JP
Japan
Prior art keywords
workpiece
shape
processing method
feed rate
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55119862A
Other languages
Japanese (ja)
Other versions
JPS5748464A (en
Inventor
俊郎 唐木
純二 渡辺
廉士 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55119862A priority Critical patent/JPS6057995B2/en
Publication of JPS5748464A publication Critical patent/JPS5748464A/en
Publication of JPS6057995B2 publication Critical patent/JPS6057995B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 本発明は、主として半導体ならびに光学工業における
基板、レンズ等の被加工物の作成もしくは形状の修正に
応用できる形状加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape processing method that can be applied to the creation or modification of the shape of workpieces such as substrates and lenses mainly in the semiconductor and optical industries.

従来、この種の形状加工方法は、被加工物に対する工具
の切込み量を得ようとする形状に合わせて与えていた。
そして、それを装置化した例として倣研削盤があり、最
近ては光学的投影装置を用いて被加工物を直視しながら
切込み量をその都度変えて所定の形状のものに加工して
いた。そのため、装置が複雑化し、高価なものになり、
より単純化された形状加工法が望まれていた。本発明は
、かかる不都合を解決するとともに、被加工物の送り速
度もしくは工具の回転数を組合せ変化させ、これを制御
することにより所定の形状を再現性よく高精度に加工で
きる形状加工方法を提供せんとするものであつて、以下
、図面 に示した実施例にもどずいて本発明に係る形状
加工方法を説明する。デツドウエイト方式の研削加工に
おいて、研削による除去量Mについて工具の回転数N)
工具の軌跡密度に関係する被加工物送り速度V)および
デツドウエイトWの除去量Mに与える影響を調べるとほ
ぼMはNとWに比例しVに反比例するという関係が成立
する。この関係を適用することにより断面形状がテーパ
状、凸状、凹状等のものを作成することが可能となる。
本発・明に係る形状加工方法に使用する装置は、一般に
使用されている正面研削盤の運動機能をもつもので、デ
ツドウエイトをかけられるものであればよい。すなわち
第1図に示すように、デツドウエイトWを軸で受けてい
る工具1の回転、被加工物7を固定した回転テーブル2
の回転、および回転テーブル2を設置したベッド4上で
往復運動させる機構があればよい。回転テーブル2の回
転は、ベッド4の上に固定されたモータ3から回転をベ
ルト5を介して与えられる。回転テーブルには、例えば
スラストベアリング6が設けられ、モータ3からの回転
を受けるようになつている。このような装置で、 1)
ペット4の送り速度Vを一定にした場合 ・・・工具1
の回転数N)(2)工具1の回転数Nを一定にした場合
・・・ベッド4の送り速度■、 等を所望の形状にするに必要な組合せ変化を用いてこれ
を制御すれば、凸状、凹状、くさび状等の形状加工がで
きる。
Conventionally, in this type of shape machining method, the depth of cut of a tool into a workpiece is given in accordance with the shape to be obtained.
An example of a device that uses this is a copy grinder, and recently, an optical projection device has been used to directly view the workpiece and change the depth of cut each time to machine the workpiece into a predetermined shape. As a result, the equipment becomes complicated and expensive;
A more simplified shape processing method was desired. The present invention solves these inconveniences and provides a shape machining method that can process a predetermined shape with high precision and high reproducibility by changing the feed rate of the workpiece or the rotation speed of the tool in combination and controlling them. DESCRIPTION OF THE PREFERRED EMBODIMENTS The shape processing method according to the present invention will be explained below with reference to the embodiment shown in the drawings. In dead weight grinding, tool rotation speed N) for removal amount M by grinding
When examining the effects of the workpiece feed rate (V), which is related to the trajectory density of the tool, and the removal amount M of the dead weight W, it is found that M is approximately proportional to N and W, and inversely proportional to V. By applying this relationship, it is possible to create a cross-sectional shape that is tapered, convex, concave, etc.
The device used in the shape processing method according to the present invention may be any device that has the motion function of a commonly used face grinder and can apply a dead weight. In other words, as shown in FIG.
It is sufficient to have a mechanism for rotating the rotary table 2 and reciprocating it on the bed 4 on which the rotary table 2 is installed. The rotary table 2 is rotated by a motor 3 fixed on the bed 4 via a belt 5. The rotary table is provided with, for example, a thrust bearing 6 to receive rotation from the motor 3. With such a device, 1)
When the feed speed V of pet 4 is constant...Tool 1
(number of revolutions N) (2) When the number of revolutions N of the tool 1 is constant... If the feed rate of the bed 4 is controlled by changing the combination necessary to obtain the desired shape, etc., Can be processed into shapes such as convex, concave, and wedge shapes.

(実施例1) 第2図に、くさび形状加工をした実施例を示す。(Example 1) FIG. 2 shows an example in which the wedge shape was processed.

被加工物の厚さは40w:1n(7)S,基板で、自転
は与えず、回転工具はカップ型砥石で約1000rpm
の回転を与え、被加工物の送り速度■と被加工物の位置
との関係は、同図aに図示したように、初期が1.2T
Ir!Nlminl終期が6.6m!′Minである。
加工除去量Mは送り速度■が大きくなるに従つて小さく
なり、同図bに図示した加工後の被加工物の断面図のよ
うに、断面くさび状の被加工物が得られた。(実施例2
) 被加工物に2″φのS,基板を用いて約1轍Rpmの自
転を与え、回転工具にはカップ型砥石を用いるとともに
約2000r′Pmの回転を与え、被加工物の送り速度
■と被加工物の位置との関係は、被加工物の周辺部でV
を大きくし、中央部でVを小さくさせた。
The thickness of the workpiece is 40w:1n(7)S, the substrate is not rotated, and the rotating tool is a cup-shaped grindstone at approximately 1000 rpm.
The relationship between the feed speed of the workpiece and the position of the workpiece is 1.2T at the initial stage, as shown in Figure a.
Ir! Nlminl final stage is 6.6m! 'Min.
The machining removal amount M became smaller as the feed rate (2) increased, and a workpiece with a wedge-shaped cross section was obtained, as shown in the cross-sectional view of the workpiece after machining shown in FIG. (Example 2
) The workpiece is rotated at approximately 1 Rpm using a 2"φ S plate, a cup-shaped grindstone is used as the rotary tool, and rotation is approximately 2000r'Pm, and the feed rate of the workpiece is The relationship between and the position of the workpiece is V at the periphery of the workpiece.
was made larger, and V was made smaller in the center.

その結果、第3図に示すように、凹断面形状の基板が得
られた。(実施例3) 加工条件て実施例2と異なり、被加工物の送り速度■を
周辺部でVを小さくし、中央部で■を大きくした。
As a result, as shown in FIG. 3, a substrate with a concave cross-section was obtained. (Example 3) The machining conditions were different from Example 2, and the feed rate (V) of the workpiece was made smaller in the peripheral area and larger in the central area.

その結果、実施例2とは逆に、第4図に示すように凸断
面形状となつた。上記実施例におけるくさび状凹状およ
び凸状の.形状の大きさは、被加工物の送り速度■の変
化率を変える方法であつたが工具の回転数Nを変化させ
ても同様の効果が確認された。
As a result, contrary to Example 2, a convex cross-sectional shape was obtained as shown in FIG. The wedge-shaped concave and convex shapes in the above embodiments. The size of the shape was determined by changing the rate of change in the feed rate (2) of the workpiece, but the same effect was confirmed by changing the rotational speed (N) of the tool.

なお、上記実施例では除去量Mが回転数N1送り速度■
の11Vに比例する領域で行つたものであるが、仮に比
例領.域ではなくても、本加工法は比較的再現性のよい
ものであるから制御要因を予め決めて基本的加工特性を
把握しておけば、それにもとづきその要因に変化量を与
え、所望の形状を得ることができる。さらに、すでに本
発明の詳細な説明したように、デツドウエイトWを制御
することによつても所定の形状加工ができることは言う
までもない。以上図面にもとずいて具体的に説明したよ
うに、工具の回転数Nもしくは被加工物の送り速度Vを
・組合せ変化させることによつて任意の形状に加工でき
るので、精度の高い基板の修正加工法として適用できる
。なお、本実施例はラッピング、ポリシングなどの遊離
砥粒加工法も同様な加工特性M=α・N・w−↓である
から研削加工のみならず、ラッピング、ポリシングなど
にも基板の修正加工法として適用できることはいうまで
もないし、上記実施例には代表例としてくさび状、凸状
、凹状について説明したが、回転数Nと送り速度Vの組
合せ変化により、あらゆる形状に加工できる。
In addition, in the above example, the removal amount M is the number of revolutions N1, and the feed speed ■
This was done in a region proportional to 11V, but if we assume that it is a proportional region. This processing method has relatively good reproducibility even if the control factor is not within the range, so if you decide the control factors in advance and understand the basic processing characteristics, you can change the amount of the factors based on that and obtain the desired shape. can be obtained. Furthermore, as already described in detail of the present invention, it goes without saying that processing into a predetermined shape can also be achieved by controlling the dead weight W. As explained above in detail based on the drawings, it is possible to machine any shape by changing the rotational speed N of the tool or the feed rate V of the workpiece in combination. It can be applied as a correction processing method. In this example, free abrasive processing methods such as lapping and polishing have the same processing characteristics M = α・N・w−↓, so the substrate correction processing method can be used not only for grinding processing but also for lapping, polishing, etc. Needless to say, it can be applied as a wedge shape, a convex shape, and a concave shape as typical examples in the above embodiments, but by changing the combination of the rotation speed N and the feed rate V, it can be processed into any shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施しうる装置の一実施例を示す断面
図、第2図は本発明の加工方法のうち被加工物の自転を
与えないで送り速度のみを変化させて加工した場合の被
加工物の位置における加工除去量ならびに送り速度の関
係と(同図a)、加工後の被加工物の断面図(同図b)
、第3図および第4図は本発明の加工方法のうち、被加
工物に自転を与えるとともに送り速度を基板の外周また
は内周で変化させた場合の加工後の被加工物の断面図で
ある。
Fig. 1 is a cross-sectional view showing an embodiment of a device capable of carrying out the present invention, and Fig. 2 shows a case in which the processing method of the present invention is performed by changing only the feed rate without giving rotation to the workpiece. The relationship between the machining removal amount and feed rate at the position of the workpiece (Figure a), and the cross-sectional view of the workpiece after machining (Figure b)
, 3 and 4 are cross-sectional views of the workpiece after processing in the processing method of the present invention, in which the workpiece is given autorotation and the feed rate is varied at the outer or inner circumference of the substrate. be.

Claims (1)

【特許請求の範囲】[Claims] 1 研削による除去量は工具の回転数とデツドウエイト
に比例し被加工物の送り速度に反比例するという関係を
利用し、該被加工物に対する工具の回転数もしくは被加
工物の送り速度を組合せ変化させることによつて任意の
断面形状に加工することを特徴とする形状加工方法。
1 Utilizing the relationship that the amount removed by grinding is proportional to the tool rotation speed and dead weight and inversely proportional to the feed speed of the workpiece, the combination of the tool rotation speed or the feed speed of the workpiece relative to the workpiece is changed. A shape processing method characterized by processing into an arbitrary cross-sectional shape.
JP55119862A 1980-09-01 1980-09-01 Shape processing method Expired JPS6057995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55119862A JPS6057995B2 (en) 1980-09-01 1980-09-01 Shape processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55119862A JPS6057995B2 (en) 1980-09-01 1980-09-01 Shape processing method

Publications (2)

Publication Number Publication Date
JPS5748464A JPS5748464A (en) 1982-03-19
JPS6057995B2 true JPS6057995B2 (en) 1985-12-18

Family

ID=14772102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55119862A Expired JPS6057995B2 (en) 1980-09-01 1980-09-01 Shape processing method

Country Status (1)

Country Link
JP (1) JPS6057995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410796Y2 (en) * 1986-01-24 1992-03-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102566A (en) * 1982-12-01 1984-06-13 Hitachi Ltd automatic polishing device
JP6423738B2 (en) * 2015-02-19 2018-11-14 株式会社ディスコ Grinding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410796Y2 (en) * 1986-01-24 1992-03-17

Also Published As

Publication number Publication date
JPS5748464A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
US6227952B1 (en) Apparatus for creating a concave surface from a spectacle blank
US6220928B1 (en) Surface grinding method and apparatus for thin plate work
JPH0512101B2 (en)
JPS6057995B2 (en) Shape processing method
JPH11254277A (en) Internal grinding machine
JP3630950B2 (en) Manufacturing method of spherical lens
JPH08336741A (en) Method of grinding surface
JP2001150356A (en) Mirror finish grinding wheel for grinder and mirror finish grinding method
JPS62264858A (en) Surface grinding method
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JPH0531669A (en) Grinding device
JPH08323618A (en) High accurate-high efficient truing and dressing methods for diamond grinding wheel by composite grinding wheel
JP2002144199A (en) Surface grinding method and surface grinding machine for sheet disc-like workpiece
JPS62152676A (en) Manufacture of diamond grindstone
JP3510648B2 (en) Grinding method
JPS63260754A (en) Chamfering equipment
JP3452619B2 (en) Spherical surface grinding method
JPH0569309A (en) Super finishing method
JPS61152356A (en) Grinding method for cylindrical or conical surface
JPH05318294A (en) Si wafer grinding method
JPH02185359A (en) Method and device for grinding
JPH0355168A (en) Cup-form grinding wheel for surface grinding machine
JP2721642B2 (en) Inclined lapping method
JPH07186018A (en) Grinding method for annular work
JPH11207612A (en) Grinding center and processing method using the same