[go: up one dir, main page]

JPS6055036B2 - Composite cladding for nuclear fuel and its manufacturing method - Google Patents

Composite cladding for nuclear fuel and its manufacturing method

Info

Publication number
JPS6055036B2
JPS6055036B2 JP55011571A JP1157180A JPS6055036B2 JP S6055036 B2 JPS6055036 B2 JP S6055036B2 JP 55011571 A JP55011571 A JP 55011571A JP 1157180 A JP1157180 A JP 1157180A JP S6055036 B2 JPS6055036 B2 JP S6055036B2
Authority
JP
Japan
Prior art keywords
zirconium
tube
ppm
cladding
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55011571A
Other languages
Japanese (ja)
Other versions
JPS55164396A (en
Inventor
ハ−マン・ソロモン・ロ−ゼンバオム
ジヨン・ハリス・デ−ビス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS55164396A publication Critical patent/JPS55164396A/en
Publication of JPS6055036B2 publication Critical patent/JPS6055036B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Extrusion Of Metal (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 本発明は燃料要素用複合被覆管の熱的および機械的処理
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thermal and mechanical treatment of composite cladding for fuel elements.

水を冷却材および減速材として使用する原子炉は公知で
あつて、それらはたとえばエム・エム・エルワキル(M
.M.E■−Wakiりの「ニュークリア●パワー●エ
ンジニアリング(NuclearPcwerEngir
)Eering)」(マグローヒル社、1962年)中
において論じられている。
Nuclear reactors using water as a coolant and moderator are known, for example from M.M. Elwakil (M.
.. M. E■-Waki Rin's "Nuclear Power Engineering"
Eering) (McGraw-Hill, 1962).

かかる原子炉用の燃料要素は、一般にはジルコニウム合
金(たとえばジルカロイー2)のごとき適当な金属で製
造された細長い保護者覆管の中に酸化ウランおよび(ま
たは)酸化プルトニウムペレットを収容したものから成
るのが通例である。
The fuel element for such reactors typically consists of uranium oxide and/or plutonium oxide pellets contained within an elongated guardian casing made of a suitable metal such as a zirconium alloy (e.g. Zircaloy 2). It is customary.

このような燃料要素はたとえば米国特許第336537
1号明細書中に示されている。
Such fuel elements are described, for example, in U.S. Pat. No. 3,365,37.
It is shown in the specification of No. 1.

燃料要素被覆管の早期破損を防止しかつそれの機械的有
効寿命を延長するため、柱状に配列された燃料ペレット
と被覆管の内面との間に各種の保護隔壁を設けることが
提晶されている。それらの隔壁の中には、ジルコニウム
合金製被覆管の内面に金属ジルコニウムの層を接合した
ものがある。ベルギー特許第835481号明細書中に
は、被覆管の内面に接合された隔壁がほぼ純粋な金属ジ
ルコニウムの層から成る場合が記載されている。またベ
ルギー特許第87034汚明細書中には、かかる隔壁が
海綿ジルコニウムのごとき純度の低い金属ジルコニウム
の層から成る場合が記載されている。内面に接合された
隔壁を有する被覆管の従来の製造方法によれば、ジルコ
ニウム合金製の中空ビレツトに隔壁用の金属ジルコニウ
ム製スリーブにはめ込んだ後、この複合材の同時押出し
が行われる。
In order to prevent premature failure of the fuel element cladding tube and extend its mechanical useful life, it has been proposed to provide various protective partitions between the columnarly arranged fuel pellets and the inner surface of the cladding tube. There is. Some of these partition walls have a layer of metallic zirconium bonded to the inner surface of a zirconium alloy cladding tube. Belgian Patent No. 835,481 describes the case where the partition, which is joined to the inner surface of the cladding tube, consists of a layer of almost pure metallic zirconium. Belgian Patent No. 87034 also describes the case where such a partition consists of a layer of metallic zirconium of low purity, such as sponge zirconium. According to a conventional method of manufacturing a cladding tube having a septum bonded to its inner surface, a hollow billet of zirconium alloy is fitted into a metallic zirconium sleeve for the septum, and then the composite is coextruded.

次いで、ピルガー管絞り機のごとき装置において複数回
のバスを施す冷間加工により、複合材の直径が所望の最
終値にまで縮小される。各回のバス後には、ジルコニウ
ム合金をほぼ完全に再結晶させるのに十分な温度および
時間を用いた熱処理によつて複合材の焼なましを行うの
が通例である。しかるに、ジルコニウム合金の完全な再
結晶のために必要な焼なまし温度および時間を用いると
、金属ジルコニウムの隔壁中において結晶粒の成長が起
こるので望ましくないことが判明した。
The diameter of the composite is then reduced to the desired final value by cold working in a device such as a Pilger tube squeezer in multiple passes. After each bath, the composite is typically annealed by heat treatment using a temperature and time sufficient to substantially completely recrystallize the zirconium alloy. However, the annealing temperatures and times required for complete recrystallization of the zirconium alloy have been found to be undesirable due to grain growth in the metallic zirconium partition walls.

さて本発明の1つの特徴に従えば、最終の絞り工程後に
おける複合材の熱処理に当つては、金属ジルコニウム層
の実質的に完全な再結晶をもたらしてその内部に微細な
顕微鏡組織を与えると同時にジルコニウム合金の応力除
去を可能にするがそれの完全な再結晶はもたらさないよ
うな温度および時間が使用される。本発明の別の特徴に
従えば、たとえばショットピーニング技術を用いて複合
材のジルコニウム層の表面に圧縮変形を加えることによ
り、複合管のジルコニウム合金を変形せずに、金属ジル
コニウム層の結晶組織を随意“に改善することもできる
According to one feature of the present invention, the heat treatment of the composite material after the final drawing step results in substantially complete recrystallization of the metallic zirconium layer and imparts a fine microscopic structure therein. At the same time, temperatures and times are used that allow stress relief of the zirconium alloy but do not result in its complete recrystallization. According to another feature of the invention, the crystal structure of the metallic zirconium layer is changed without deforming the zirconium alloy of the composite tube by applying compressive deformation to the surface of the zirconium layer of the composite material, for example using shot peening techniques. It can also be improved at will.

本発明は添付の図面を参照しながら以下に一層詳しく説
明される。第1および2図に示されるよな原子炉用の燃
料要素11は柱状に配列された燃料ペレット13および
それを収容する細長い複合被覆管12から成つていて、
その両端は下部端栓14および上部端栓16によつて密
封されている。
The invention will be explained in more detail below with reference to the accompanying drawings. A fuel element 11 for a nuclear reactor such as that shown in FIGS. 1 and 2 consists of a columnar arrangement of fuel pellets 13 and an elongated composite cladding tube 12 for housing them.
Its ends are sealed by a lower end plug 14 and an upper end plug 16.

燃料の縦方向の膨張を可能にしかつ原子炉内での運転に
際して燃料から放出されるガスを収容する余地を与える
ためプレナム空間17が設けられている。
A plenum space 17 is provided to allow longitudinal expansion of the fuel and to provide room for gases released from the fuel during operation within the reactor.

最上部の燃料ペレットと上部端栓16との間にはスプリ
ング18が配置され、それによつて燃料ペレットが所定
の位置に保持されている。第2図において最も良くわか
る通り、燃料ペレットの直径に対する複合被覆管12の
寸法は、燃料ペレットと被覆管の内面との間に環状の間
隙19が得られるように決定されている。本発明の好適
な一実施態様に従えば、複合被覆管12はジルコニウム
合金製の被覆管21およびその内面に対して冶金的に接
合された金属ジルコニウムの隔壁22を含んである。
A spring 18 is disposed between the top fuel pellet and the upper end plug 16 to hold the fuel pellet in place. As best seen in FIG. 2, the dimensions of the composite cladding tube 12 relative to the diameter of the fuel pellets are determined to provide an annular gap 19 between the fuel pellets and the inner surface of the cladding tube. According to one preferred embodiment of the present invention, composite cladding 12 includes a zirconium alloy cladding 21 and a metallic zirconium partition 22 metallurgically bonded to its inner surface.

被覆管21用として適するジルコニウム合金にはジルカ
ロイー2およびジルカロイー4がある。
Zirconium alloys suitable for the cladding tube 21 include Zircaloy 2 and Zircaloy 4.

ジルカロイー2は約1.5(重量)%のスズ、0.12
(重量)%の鉄、0.09(重量)%のクロム、0.0
05(重量)%のニッケルおよび残部のジルコニウムか
ら成るものである。ジルカロイー4はジルカロイー2に
比べてニッケル含量が少ないが、鉄含量はやや多い。い
ずれの場合にみ、かかる合金はジルコニウム以外の成分
を5000ppmより多量に含有している。複合被覆管
12の厚さの約1〜約30%を占める隔壁22は限られ
た不純物含量を有する金属ジルコニウムから成つている
Zircaloy 2 is approximately 1.5% (by weight) tin, 0.12
(wt)% iron, 0.09 (wt)% chromium, 0.0
0.5% (by weight) nickel and the balance zirconium. Zircaloy 4 has a lower nickel content than Zircaloy 2, but a slightly higher iron content. In each case, such alloys contain more than 5000 ppm of components other than zirconium. The septum 22, which constitutes about 1 to about 30% of the thickness of the composite cladding 12, is comprised of metallic zirconium with a limited impurity content.

すなわち、かかる材料は500ppm未満の不純物含量
を有する実質的に純粋な(つまり高純度の)金属ジルコ
ニウムから最高5000ppmまで好ましくは約420
0ppm未満の不純物含量を有する金属ジルコニウムに
までわたり得る。不純物のうち、酸素はできるだけ少な
くすべきであつて、その含量は200ppm以下から最
高約1200ppmまでの範囲内に保たなければならな
い。
That is, such materials can range from substantially pure (i.e., high purity) metallic zirconium having an impurity content of less than 500 ppm up to 5000 ppm, preferably about 420 ppm.
It can even extend to metallic zirconium with an impurity content of less than 0 ppm. Among the impurities, oxygen should be as low as possible and its content should be kept within the range from less than 200 ppm up to about 1200 ppm.

その他の不純物は市販の原子炉用海綿ジルコニウムに関
する規準範囲内にあればよい。それらを列挙すれば、ア
ルミニウムは75ppm以下、ホウ素は0.4ppm以
下、カドミウムは0.5ppm以下、炭素は270pp
m以下、クロムは200ppm以下、コバルトは20p
pm以下、銅は50ppm以下、ハフニウムは100p
pm以下、水素は25ppm以下、鉄は1500ppm
以下、マグネシウムは20ppm以下、マンガンは50
ppm以下、モリブデンは50ppm以下、ニッケルは
70ppm以下、ニオブは100ppm以下、窒素は8
0ppm以下、ケイ素は120ppm以下、スズは50
ppm以下、そしてウランは3.5ppm以下である。
金属ジルコニウムの隔壁22はジルコニウム合金製の被
覆管22に対して冶金的に接合されている。
Other impurities may be within the standard range for commercially available nuclear reactor sponge zirconium. To list them, aluminum is 75 ppm or less, boron is 0.4 ppm or less, cadmium is 0.5 ppm or less, and carbon is 270 ppm.
m or less, chromium is less than 200ppm, cobalt is less than 20p
pm or less, copper is 50ppm or less, hafnium is 100p
pm or less, hydrogen is 25 ppm or less, iron is 1500 ppm or less
Below, magnesium is 20ppm or less, manganese is 50ppm or less
ppm or less, molybdenum is less than 50ppm, nickel is less than 70ppm, niobium is less than 100ppm, nitrogen is less than 8
0ppm or less, silicon 120ppm or less, tin 50ppm or less
ppm or less, and uranium is less than 3.5 ppm.
The metallic zirconium partition wall 22 is metallurgically joined to the zirconium alloy cladding tube 22.

詳しく言えば、両者間には強固な結合を生み出すのに十
分な相互拡散が存在するが、界面から約112〜1ミル
の範囲外にある隔壁22が拡散によつて汚染されること
はないものとする。複合被覆管12の厚さの5〜15%
程度(特に好ましくは10%)を占める隔壁22が存在
すれば、腐食性核分裂生成物に対するジルコニウム合金
製被覆管21の暴露は防止されることが判明している。
Specifically, there is sufficient interdiffusion between the two to create a strong bond, but the diffusion does not contaminate the septum 22 outside about 112 to 1 mil from the interface. shall be. 5 to 15% of the thickness of the composite cladding tube 12
It has been found that exposure of the zirconium alloy cladding 21 to corrosive fission products is prevented if the partition wall 22 is present to a certain extent (particularly preferably 10%).

隔壁22はまた、ジルユニウム合金製の被覆管21が燃
料ペレットと直接に機械的相互作用を行うことをも防止
し、従つてそれに由来して生じることのある応力を低減
させる。
The bulkhead 22 also prevents the Zirunium alloy cladding 21 from having direct mechanical interaction with the fuel pellets, thus reducing the stresses that may result therefrom.

隔壁22の望ましい構造特性(たとえば耐力強度や硬度
)は通常のジルコニウム合金の場合よりもかなり低いレ
ベルに維持されることが判明している。実際、照射に際
して金属ジルコニウムの隔壁22は通常のジルコニウム
合金ほど硬化しない。従つて、初期の耐力強度が小さい
ことを考え合わせると隔壁22は出力の過渡的変化に際
して塑性変形を示し、そのため燃料要素中におけるペレ
ット由来の応力を除去することが可能となる。燃料要素
中におけるペレット由来の応力とは、たとえば原子炉の
運転温度下で燃料ペレットが膨張して被覆管に接触する
ために生じるようなものである。本発明の複合被覆管は
下記方法のいずれかによつて製造することができる。
It has been found that the desired structural properties (eg, yield strength and hardness) of the septum 22 are maintained at significantly lower levels than with conventional zirconium alloys. In fact, upon irradiation, the metallic zirconium partition walls 22 do not harden as much as normal zirconium alloys. Therefore, in view of the low initial yield strength, the bulkhead 22 exhibits plastic deformation during power transients, thereby making it possible to remove pellet-induced stresses in the fuel element. Pellet-induced stresses in the fuel element include those caused by the expansion of the fuel pellets into contact with the cladding under the operating temperature of the nuclear reactor. The composite cladding tube of the present invention can be manufactured by any of the following methods.

第1の方法によれば、被覆管用として選ばれたジルコニ
ウム合金製の中空ビレツトの内部に、隔壁用として選ば
れた金属ジルコニウム製の中空管が挿入される。
According to the first method, a hollow billet made of metallic zirconium selected for the partition wall is inserted into a hollow billet made of zirconium alloy selected for the cladding tube.

かかる集合体に対して爆発接合工程を実施することによ
り、中空管が中空ビレツトに接合される。こうして得ら
れた複合材が通常の管押出し技術に従つて約1000〜
約1400のF(約?〜約760C)の高温下で押出さ
れる。次いで、押出し後の複合材に対して通常の管絞り
工程を含む加工操作を施すことにより、所望寸法の複合
被覆管が得られる。第2の方法によれば、被覆管用とし
て選ばれたジルコニウム合金製の中空ビレツトの内部に
、隔壁用として選ばれた金属ジルコニウム製の中空管が
挿入される。
The hollow tubes are joined to the hollow billet by subjecting the assembly to an explosive joining process. The composite material thus obtained is processed according to conventional tube extrusion techniques to
It is extruded at an elevated temperature of about 1400 F (about ? to about 760 C). Next, by subjecting the extruded composite material to processing operations including a normal tube drawing step, a composite cladding tube of desired dimensions is obtained. According to the second method, a hollow billet made of metallic zirconium selected for the partition wall is inserted into a hollow billet made of zirconium alloy selected for the cladding tube.

かかる集合体に対してたとえば1400′F(760℃
)で約8時間の加熱工程を実施することにより、中空管
と中空ビレツトとの間の拡散接合が達成される。こうし
て得られた複合材が通常の管押出し技術に従つて押出さ
れる。次いで、押出し後の複合材に対して通常の管絞り
工程を含む加工操作を施すことにより、所望寸法の複合
被覆管が得られる。第3の方法によれば、被覆管用とし
て選ばれたジルコニウム合金製の中空ビレツトの内部に
、隔壁用として選ばれた金属ジルコニウム製の中空管が
挿入される。
For example, 1400'F (760°C
Diffusion bonding between the hollow tube and the hollow billet is achieved by carrying out a heating step of about 8 hours at ). The composite thus obtained is extruded according to conventional tube extrusion techniques. Next, by subjecting the extruded composite material to processing operations including a normal tube drawing step, a composite cladding tube of desired dimensions is obtained. According to the third method, a hollow billet made of metallic zirconium selected for the partition wall is inserted into a hollow billet made of zirconium alloy selected for the cladding tube.

かかる集合体が通常の管押出し技術に従つて押出される
。次いで、押出し後の複合材に対して通常の管絞り工程
を含む加工操作を施すことにより、所望寸法の複合被覆
管が得られる。出発材料の寸法は、所望の複合被覆管製
品における隔壁および被覆管本体の横断面積の比によつ
て決定される。
Such an assembly is extruded according to conventional tube extrusion techniques. Next, by subjecting the extruded composite material to processing operations including a normal tube drawing step, a composite cladding tube of desired dimensions is obtained. The dimensions of the starting material are determined by the ratio of the cross-sectional areas of the septum and cladding body in the desired composite cladding product.

たとえば、最終製品の全横断面積は次式によつて与えら
れる。A,p=!(0DTp2−1D,p2) TP4FF ただし、ATPは最終製品の全横断面積、0DTPは最
終製品の外径、そしてIDTpは最終製品の内径である
For example, the total cross-sectional area of the final product is given by: A,p=! (0DTp2-1D, p2) TP4FF where ATP is the total cross-sectional area of the final product, 0DTP is the outer diameter of the final product, and IDTp is the inner diameter of the final product.

所望の隔壁の横断面積は次式によつて与えられる。ただ
し、A8Fは隔壁の横断面積、0DBPは隔壁の外径、
そしてIDBpは隔壁の内径である。
The desired septum cross-sectional area is given by: However, A8F is the cross-sectional area of the partition wall, 0DBP is the outer diameter of the partition wall,
And IDBp is the inner diameter of the partition wall.

隔壁を含めた当初の中空ビレツトの全横断面積は次式に
よつて与えられる。ただし、A丁!は隔壁を含めた当初
の中空ビレツトの全横断面積、0DT,は当初の中空ビ
レツトの外径、そして■DT!は中空ビレツトの内径で
ある。
The total cross-sectional area of the original hollow billet including the bulkhead is given by: However, A-cho! is the total cross-sectional area of the original hollow billet including the bulkhead, 0DT is the outer diameter of the original hollow billet, and ■DT! is the inner diameter of the hollow billet.

その場合、当初の隔壁の所要横断面積AB!は次式によ
つて与えられる。実施例 本発明に基づく複合被覆管12の製造方法の実施例を以
下に示す。
In that case, the required cross-sectional area of the original bulkhead AB! is given by the following equation. EXAMPLE An example of a method for manufacturing a composite cladding tube 12 according to the present invention is shown below.

ジルコニウム合金製被覆管用のビレツトおよび金属ジル
コニウム隔壁用のインサートの機械加工、清浄操作およ
び組立てを常法に従つて実施する。
The billet for the zirconium alloy cladding and the insert for the metallic zirconium septum are machined, cleaned and assembled in a conventional manner.

なお、それらの寸法は熱間押出しブレスにおける集合体
の押出しに適合するように選定される。被覆管用のビル
ツトはASTMB353、グレードRA−1に合致する
通常のジルカロイー2から成るものであり、また隔壁用
のインサートは前述の範囲内の不純物含量を有する金属
ジルコニウムから成るものである。ビレツトおよびイン
サートの内腔は1インチ当り8ミル(203p)のテー
パを有するように形成されるから、それらを加圧下では
め込むことによつて対応表面同士の良好な接触が保証さ
れる。かかる機械加工部品の寸法の実例を挙げれば次の
通りである。
In addition, these dimensions are selected to be compatible with extrusion of the assembly in a hot extrusion press. The build for the cladding is of conventional Zircaloy 2 meeting ASTM B353, grade RA-1, and the insert for the septum is of metallic zirconium with an impurity content within the ranges mentioned above. The bores of the billet and insert are formed with a taper of 8 mils per inch (203p) so that their mating under pressure ensures good contact between the mating surfaces. Examples of dimensions of such machined parts are as follows.

すなわち、被覆管用のビレツトについては、長さが9.
0インチ(22.9cm)、外径が5.74インチ(1
4.6cm)、かつ内径が2.44インチ(6.20c
m)である。また隔壁用のインサートについては、外径
が2.44インチ、かつ内径が1.66インチ(4.2
2cm)である。組立てに先立ち、ビレツトおよびイン
サートの接触表面を軽く腐食することによつて痕跡量の
不純物を除去する。
That is, the billet for cladding tube has a length of 9.
0 inch (22.9 cm), outer diameter 5.74 inch (1
4.6 cm) and has an inner diameter of 2.44 inches (6.20 cm)
m). The bulkhead insert has an outer diameter of 2.44 inches and an inner diameter of 1.66 inches (4.2 inches).
2cm). Prior to assembly, trace impurities are removed by lightly etching the billet and insert contact surfaces.

かかる目的にとつて適当な腐食剤は70m1のH2O、
30m1のHNO3(70%水溶液)および5m1の8
(48%水溶液)から成る溶液である。押出しに際して
満足すべき結合が得られるようにするため、水銀柱20
μm以下の真空中においてビレツトのテーパ付き内腔に
テーパ付きインサートを圧入することにより集合体の予
備接合を行つてもよい。
A suitable caustic agent for such purpose is 70 ml of H2O,
30 ml of HNO3 (70% aqueous solution) and 5 ml of 8
(48% aqueous solution). 20 mercury to ensure a satisfactory bond during extrusion.
Pre-bonding of the assemblies may be accomplished by press-fitting a tapered insert into the tapered bore of the billet in a submicron vacuum.

その際には、30〜45000ボンド(13.7〜20
400k9)の初期圧力を加えながら約1400.F(
76(代))の温度を8時間にわたつて維持すればよい
。その結果、接触面積の20〜25%にわたる結合の得
られることが判明している。押出し時における端部の損
失を少なくするため、予備接合された集合体の各端に長
さ2インチのジルカロイー2製管片を溶接しかつ表面が
平坦となるように機械加工を施してもよい。
In that case, 30 to 45,000 bonds (13.7 to 20
While applying an initial pressure of 400k9), about 1400. F(
It is sufficient to maintain the temperature of 76(s) for 8 hours. It has been found that this results in a bond over 20-25% of the contact area. To reduce end loss during extrusion, a 2 inch long piece of Zircaloy 2 tubing may be welded to each end of the pre-bonded assembly and machined to a flat surface. .

このような予備接合済みの集合体を押出して複合材とす
る際には、次のようなパラメータを使用すればよい。
When extruding such a pre-bonded aggregate into a composite material, the following parameters may be used.

すなわち、押出し速度は6インチ/分、加工度は6:1
、温度は1100゜F、そして押出し荷重は3500ト
ンである。内腔および浮きマンドレルを除く全てのビレ
ツト表面は、1300′F(704℃)で1時間にわた
る熱処理を受けた水溶性の潤滑剤によつて潤滑すればよ
い。
That is, the extrusion speed is 6 inches/min and the processing ratio is 6:1.
, the temperature is 1100°F, and the extrusion load is 3500 tons. All billet surfaces except the bore and floating mandrels may be lubricated with a water-based lubricant that has been heat treated at 1300'F (704C) for 1 hour.

押出し後、複合材の両端から追加の管片を切除し、次い
て傷の除去および仕上状態の改善のため内面にホーニン
グ仕上を施す。かかる複合材の絞り作業により燃料要素
用として適した寸法の被覆管を得らためには、公知のピ
ルガー管絞り機において3回のバスを施す冷間加工並び
に相次ぐバス間における熱処理および清浄操作を行えば
よい。
After extrusion, additional tubing is cut from each end of the composite and the interior surface is honed to remove flaws and improve the finish. In order to obtain a cladding tube of suitable dimensions for a fuel element by drawing such a composite material, cold working with three baths in a known Pilger tube drawing machine and heat treatment and cleaning operations between successive baths are required. Just go.

典型的な操作手順の諸工程が第3図に示されている。か
かる操作手順は、本発明に基づく変更箇所を別にすれば
従来通りのものである。
The steps of a typical operating procedure are shown in FIG. The operating procedure is conventional except for the changes made in accordance with the present invention.

そのような変更の根拠およびそれによつて得られる有益
な結果を以下に述べよう。管絞り工程において行われる
激しい冷間加工は金属微結晶の形状のゆがみをもたらし
、そして微結晶の内部に多数の格子欠陥を生み出す。
The rationale for such changes and the beneficial results obtained therefrom will be discussed below. The intense cold working performed in the tube drawing process causes distortion of the shape of the metal microcrystals and creates a large number of lattice defects inside the microcrystals.

すなわち、冷間加工後の金属は比較的高いエネルギー状
態にあるのであつて、これは熱的に不安定ある。焼なま
し工程は、熱を用いて金属の原子に可動性を与え、それ
によつてかかる原子を低エネルギー状態に再配列させる
のに役立つ。このような焼なましに影響を及ぼすパラメ
ータは温度および時間であるが、温度の方が鋭敏である
。一般比、焼なまし温度および時間は実質的に完全な再
結晶をもたらすのに十分であるが過度の結晶粒成長を引
起こすには不十分であるように選定される。すなわち、
第3図の操作手順中の焼なまし工程(5)および(8)
に関しては、温度および時間は被覆管21のジルコニウ
ム合金の実質的に完全な再結晶をもたらすように選定さ
れる。
That is, the metal after cold working is in a relatively high energy state, which is thermally unstable. The annealing process uses heat to impart mobility to the atoms of the metal, thereby serving to rearrange such atoms into a lower energy state. The parameters that affect such annealing are temperature and time, with temperature being the more sensitive. The general ratios, annealing temperatures and times are selected to be sufficient to provide substantially complete recrystallization but insufficient to cause excessive grain growth. That is,
Annealing steps (5) and (8) during the operating procedure in Figure 3
As regards temperature and time, the temperature and time are selected to result in substantially complete recrystallization of the zirconium alloy of cladding tube 21.

しかるに、隔壁22を構成する相対的に純粋な金属はよ
り低い温度で再結晶するから、工程(5)および(8)
において使用されるようなジルコニウム合金に適した通
常の焼なまし温度および時間では完成製品にとつて望ま
しくない程度の結晶粒成長が隔壁22において見られる
ことになる。
However, since the relatively pure metal constituting the partition wall 22 recrystallizes at a lower temperature, steps (5) and (8)
Typical annealing temperatures and times suitable for zirconium alloys such as those used in the present invention result in an undesirable degree of grain growth in the partition wall 22 in the finished product.

それ故、本発明の1つの特徴に従えば、最終の管絞り工
程後に得られた被覆管材に対して工程(12)に示され
るごとく低い温度での熱処理が施される。
Therefore, according to one feature of the invention, the cladding obtained after the final tube drawing step is subjected to a heat treatment at a low temperature as shown in step (12).

その場合、工程(12)の熱処理の温度および時間は隔
壁22を構成する金属ジルコニウムが実質的に完全な再
結晶を示すが結晶粒の成長は起こさないように選定され
る。
In that case, the temperature and time of the heat treatment in step (12) are selected so that the metallic zirconium constituting the partition wall 22 undergoes substantially complete recrystallization but does not cause crystal grain growth.

こうして得られた隔壁は微細な等軸結晶組織を有し、従
つて強度および延性の向上、応力腐食割れに対する抵抗
性の増大、並びに高度の塑性安定化を示す。熱処理工程
(12)の温度および時間はまた、被覆管21のジルコ
ニウム合金の完全な応力除去を可能にするがそれの完全
な再結晶はもたらさないようにも選定される。
The partition walls thus obtained have a fine equiaxed crystal structure and therefore exhibit improved strength and ductility, increased resistance to stress corrosion cracking, and a high degree of plastic stabilization. The temperature and time of the heat treatment step (12) are also selected to allow complete stress relief of the zirconium alloy of the cladding tube 21, but not complete recrystallization thereof.

その結果、ジルコニウム合金は管絞り作業によつて生み
出された細長い結晶粒の組織を保持しかつ内部応力の除
去と並んで高いひずみ速度下における強度の増大を示す
という利点が得られることになる。焼なまし工程(2)
、(5)および(8)に適した条件としては、約100
0〜1300おF(538〜704℃)の温度で約1〜
1時間好ましくは約1〜4時間の条件が挙げられる。
As a result, zirconium alloys retain the elongated grain structure created by the tube drawing operation and have the advantage of exhibiting increased strength under high strain rates along with internal stress relief. Annealing process (2)
, (5) and (8) are conditions suitable for approximately 100
Approximately 1~ at a temperature of 0~1300F (538~704℃)
Conditions include 1 hour, preferably about 1 to 4 hours.

また熱処理工程(12)に適した条件としては、約82
5〜9501F(440〜510しC)で約1〜4時間
の条件が挙げられる。
In addition, conditions suitable for the heat treatment step (12) are approximately 82
Examples include conditions for about 1 to 4 hours at 5 to 9501 F (440 to 510 C).

本発明の別の特徴に従えば、金属ジルコニウムの隔壁の
表面に機械的な圧縮変形を加えることによつてそれの結
晶組織(すなち好適な結晶配向の度合)を随意に改善す
ることもできる。
According to another feature of the invention, the crystal structure (i.e. the degree of preferred crystal orientation) of the metallic zirconium partition wall may optionally be improved by applying mechanical compressive deformation to the surface thereof. can.

たとえば、熱処理工程(12)に先立つて複合材の内側
から隔壁にショットピーニングを施すことにより、ジル
コニウム合金製の被覆管にほとんど変形を加えることな
しに隔壁の圧縮変形を達成することができる。第3図中
に工程(10)として示されたかかる機械的処理を施せ
ば、底面極(0002)が複合被覆管の半径方向に沿つ
て高度に整列しているような改善された結晶組織が得ら
れることになる。
For example, by subjecting the partition wall to shot peening from the inside of the composite material prior to the heat treatment step (12), compressive deformation of the partition wall can be achieved without substantially deforming the zirconium alloy cladding tube. Such mechanical treatment, shown as step (10) in FIG. 3, results in an improved crystal structure in which the bottom poles (0002) are highly aligned along the radial direction of the composite cladding. You will get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料要素の一部断両立面図、第2図は第1図の
燃料要素の横断面図、そして第3図は本発明に基つく管
絞りおよび処理の典型的な操作手順を示す図表である。
FIG. 1 is a partially cut-away elevational view of the fuel element, FIG. 2 is a cross-sectional view of the fuel element of FIG. 1, and FIG. This is a chart showing.

Claims (1)

【特許請求の範囲】 1 ジルコニウム以外の成分を約5000ppmより多
量に含有するジルコニウム合金管およびその内面に対し
て冶金的に接合されかつ不純物含量が500ppm未満
の金属ジルコニウム層から成る被覆管材で作られ、核燃
料を収容して原子炉用の燃料要素を構成するのに役立つ
細長い複合被覆管の製造方法において、(1)一連の管
絞り工程における冷間加工によつて、前記被覆管材の寸
法を所望の内径および肉厚にまで縮小し、(2)相次ぐ
前記管絞り工程の合間においては、前記ジルコニウム合
金の実質的に完全な再結晶をもたらすのに十分な温度お
よび時間を用いて前記被覆管材の熱処理を行い、また(
3)最終の前記管絞り工程後には、前記金属ジルコニウ
ム層の実質的に完全な再結晶をもたらしてその内部に微
細な顕微鏡組織を与えると同時に前記ジルコニウム合金
の応力除去を可能にするがそれの完全な再結晶はもたら
さないような低めの温度および時間を用いて前記被覆管
材の熱処理を行う緒工程から成る方法。 2 前記工程(2)の温度および時間がそれぞれ約53
8〜約704℃および約1〜約15時間であり、かつ前
記工程(3)の温度および時間がそれぞれ約440〜約
510℃および約1〜約4時間である、特許請求の範囲
第1項記載の方法。 3 前記工程(3)に先立つて実質的に一様な圧縮変形
を前記金属ジルコニウム層の表面に加える工程が追加包
含される、特許請求の範囲第1または2項記載の方法。 4 前記圧縮変形がショットピーニングによつて加えら
れる、特許請求の範囲第3項記載の方法。5 ジルコニ
ウム以外の成分を約5000ppmより多量に含有する
ジルコニウム合金管およびその内面に対して冶金的に接
合された不純物含量が500ppm未満の金属ジルコニ
ウム層から成り、核燃料を収容して原子炉用の燃料要素
を構成するのに役立つ細長い複合被覆管において、前記
金属ジルコニウム層は実質的に完全な再結晶を受けて微
細な顕微鏡組織を示しており、また前記ジルコニウム合
金管は実質的に完全な応力除去を示すが完全な再結晶は
受けていないようにした複合被覆管。 6 前記金属ジルコニウム層の表面に圧縮変形が加えら
れている。 特許請求の範囲第5項記載の複合被覆管。7 前記圧縮
変形がショットピーニングによつて加えられたものであ
る、特許請求の範囲第6項記載の複合被覆管。
[Scope of Claims] 1. A zirconium alloy tube containing more than about 5000 ppm of components other than zirconium, and a cladding material consisting of a metal zirconium layer metallurgically bonded to the inner surface and containing less than 500 ppm of impurities. , a method of manufacturing an elongated composite cladding tube useful for containing nuclear fuel and constructing a fuel element for a nuclear reactor, comprising: (1) forming the cladding material to desired dimensions by cold working in a series of tube drawing steps; (2) between successive tube drawing steps, using a temperature and time sufficient to effect substantially complete recrystallization of the zirconium alloy; Heat treatment is performed, and (
3) After the final tube drawing step, which results in substantially complete recrystallization of the metallic zirconium layer to provide a fine microscopic structure within it and at the same time allows for stress relief of the zirconium alloy; A method comprising the initial step of heat treating the cladding using low temperatures and times that do not result in complete recrystallization. 2 The temperature and time of the step (2) are each about 53
8 to about 704°C and about 1 to about 15 hours, and the temperature and time of step (3) are about 440 to about 510°C and about 1 to about 4 hours, respectively. Method described. 3. The method of claim 1 or 2, further comprising the step of applying a substantially uniform compressive deformation to the surface of the metallic zirconium layer prior to step (3). 4. The method of claim 3, wherein the compressive deformation is applied by shot peening. 5 Consisting of a zirconium alloy tube containing more than about 5000 ppm of components other than zirconium and a metal zirconium layer with an impurity content of less than 500 ppm metallurgically joined to the inner surface of the tube, it accommodates nuclear fuel and is used as fuel for a nuclear reactor. In the elongated composite cladding tube that serves to construct the element, the metallic zirconium layer undergoes substantially complete recrystallization and exhibits a fine microscopic structure, and the zirconium alloy tube undergoes substantially complete stress relief. A composite cladding tube that exhibits oxidation but has not undergone complete recrystallization. 6 Compressive deformation is applied to the surface of the metal zirconium layer. A composite cladding tube according to claim 5. 7. The composite cladding tube according to claim 6, wherein the compressive deformation is applied by shot peening.
JP55011571A 1979-06-04 1980-02-04 Composite cladding for nuclear fuel and its manufacturing method Expired JPS6055036B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4522579A 1979-06-04 1979-06-04
US45225 1979-06-04

Publications (2)

Publication Number Publication Date
JPS55164396A JPS55164396A (en) 1980-12-22
JPS6055036B2 true JPS6055036B2 (en) 1985-12-03

Family

ID=21936702

Family Applications (2)

Application Number Title Priority Date Filing Date
JP55011571A Expired JPS6055036B2 (en) 1979-06-04 1980-02-04 Composite cladding for nuclear fuel and its manufacturing method
JP62028406A Granted JPS62272188A (en) 1979-06-04 1987-02-12 Composite coated tube for nuclear fuel and manufacture thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP62028406A Granted JPS62272188A (en) 1979-06-04 1987-02-12 Composite coated tube for nuclear fuel and manufacture thereof

Country Status (11)

Country Link
JP (2) JPS6055036B2 (en)
BE (1) BE881341A (en)
CA (1) CA1139023A (en)
CH (1) CH644709A5 (en)
DE (1) DE3003610C2 (en)
ES (2) ES487846A0 (en)
FR (1) FR2458876A1 (en)
GB (1) GB2050206B (en)
IT (1) IT1129692B (en)
MX (1) MX6773E (en)
SE (2) SE436047B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE426891B (en) * 1981-07-07 1983-02-14 Asea Atom Ab SET TO MANUFACTURE Capsules of Zirconium-Based Alloy COMBUSTION RODS FOR NUCLEAR REACTORS
SE426890B (en) * 1981-07-07 1983-02-14 Asea Atom Ab SET TO MANUFACTURE Capsules of Zirconium-Based Alloy for Fuel Rods for Nuclear Reactors
DE3278571D1 (en) * 1981-07-29 1988-07-07 Hitachi Ltd Process for producing zirconium-based alloy
GB2104711B (en) * 1981-08-24 1985-05-09 Gen Electric Nuclear fuel element and method of producing same
IT1153911B (en) * 1982-05-03 1987-01-21 Gen Electric ZIRCONIUM ALLOY BARRIER HAVING IMPROVED CORROSION RESISTANCE
US4770847A (en) * 1982-06-01 1988-09-13 General Electric Company Control of differential growth in nuclear reactor components by control of metallurgical conditions
DE3248686A1 (en) * 1982-12-30 1984-07-12 Kraftwerk Union AG, 4330 Mülheim METHOD FOR PRODUCING A SUCTION TUBE FROM A ZIRCONIUM ALLOY FOR CORE REACTOR FUEL OF A CORE REACTOR FUEL ELEMENT
JPS60165580A (en) * 1984-02-08 1985-08-28 株式会社日立製作所 Coated tube for reactor fuel and manufacture thereof
FR2579122B1 (en) * 1985-03-19 1989-06-30 Cezus Co Europ Zirconium PROCESS FOR PRODUCING COMPOSITE SHEATH TUBES FOR NUCLEAR FUEL AND PRODUCTS OBTAINED
DE3522646A1 (en) * 1985-06-25 1987-01-08 Wiederaufarbeitung Von Kernbre MOLDED BODY FROM BAD WELDABLE MATERIAL
US5341407A (en) * 1993-07-14 1994-08-23 General Electric Company Inner liners for fuel cladding having zirconium barriers layers
US5383228A (en) * 1993-07-14 1995-01-17 General Electric Company Method for making fuel cladding having zirconium barrier layers and inner liners

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169795A (en) * 1974-11-11 1976-06-16 Gen Electric
JPS5332298A (en) * 1976-09-06 1978-03-27 Toshiba Corp Fuel element
JPS5459600A (en) * 1977-09-30 1979-05-14 Gen Electric Nuclear fuel element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287111A (en) * 1965-10-14 1966-11-22 Harold H Klepfer Zirconium base nuclear reactor alloy
CA1025335A (en) * 1972-09-05 1978-01-31 Ake S.B. Hofvenstam Method of making tubes and similar products of a zirconium alloy
GB1528142A (en) * 1974-11-11 1978-10-11 Gen Electric Nuclear fuel elements
FR2404898B2 (en) * 1974-11-11 1986-05-02 Gen Electric COMPOSITE SHEATH FOR A NUCLEAR FUEL ELEMENT
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169795A (en) * 1974-11-11 1976-06-16 Gen Electric
JPS5332298A (en) * 1976-09-06 1978-03-27 Toshiba Corp Fuel element
JPS5459600A (en) * 1977-09-30 1979-05-14 Gen Electric Nuclear fuel element

Also Published As

Publication number Publication date
GB2050206A (en) 1981-01-07
GB2050206B (en) 1982-11-10
JPS62272188A (en) 1987-11-26
JPS6313160B2 (en) 1988-03-24
BE881341A (en) 1980-05-16
JPS55164396A (en) 1980-12-22
CA1139023A (en) 1983-01-04
DE3003610A1 (en) 1980-12-11
SE9402593D0 (en) 1994-07-28
IT1129692B (en) 1986-06-11
ES8207643A1 (en) 1982-09-16
IT8019592A0 (en) 1980-01-31
FR2458876A1 (en) 1981-01-02
ES494204A0 (en) 1982-11-01
ES487846A0 (en) 1982-09-16
SE436047B (en) 1984-11-05
CH644709A5 (en) 1984-08-15
FR2458876B1 (en) 1983-12-16
SE8000838L (en) 1980-12-05
MX6773E (en) 1986-07-08
ES8301046A1 (en) 1982-11-01
DE3003610C2 (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4390497A (en) Thermal-mechanical treatment of composite nuclear fuel element cladding
US5383228A (en) Method for making fuel cladding having zirconium barrier layers and inner liners
US4372817A (en) Nuclear fuel element
US5517540A (en) Two-step process for bonding the elements of a three-layer cladding tube
US4690716A (en) Process for forming seamless tubing of zirconium or titanium alloys from welded precursors
EP0674800B1 (en) Manufacture of zirconium cladding tube with internal liner
US4675153A (en) Zirconium alloy fuel cladding resistant to PCI crack propagation
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPS6055036B2 (en) Composite cladding for nuclear fuel and its manufacturing method
JPH0151948B2 (en)
JP2815551B2 (en) Method of manufacturing cladding
US4573629A (en) Method of production of cladding tube for nuclear fuel element
US5618356A (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
KR910007917B1 (en) Manufacturing Process and Synthesis of Composite Cladding Tube for Reactor Fuel
JPH0529080B2 (en)
JPH03163396A (en) Nearly pure zirconium, covering member for nuclear fuel element produced together with said zirconium by extrusion molding and manufacture of said covering member
JPH04136788A (en) Preparation of nuclear fuel cladding tube
JPH0519670B2 (en)
JPS6031088A (en) Nuclear fuel composite coated pipe and manufacture thereof
Maldonado et al. PWC‐11 Fabrication Methods for Optimum Strength for SP‐100 Applications
Rosenbaum et al. Nuclear fuel element cladding
JPH0528356B2 (en)
JP2006100063A (en) MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL
JPH02270948A (en) Production of zirconium alloy tube
JPS58204144A (en) Zirconium alloy and manufacture