JPS6054408A - Toroidal magnet - Google Patents
Toroidal magnetInfo
- Publication number
- JPS6054408A JPS6054408A JP16255983A JP16255983A JPS6054408A JP S6054408 A JPS6054408 A JP S6054408A JP 16255983 A JP16255983 A JP 16255983A JP 16255983 A JP16255983 A JP 16255983A JP S6054408 A JPS6054408 A JP S6054408A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- toroidal
- magnets
- cylindrical
- magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は永久磁石に関し、特に円筒状のいわゆるトロイ
ダル磁石に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to permanent magnets, and particularly to cylindrical so-called toroidal magnets.
永久磁石は通常、鋳造磁石、粉末焼結磁石、圧粉成形磁
石、ゴム磁石などに分類することが出来る。これらの磁
石から円筒状磁石を作る場合、鋳造磁石、焼結磁石、圧
粉成形磁石においてはそれぞれブロック材料から所望の
形状に機械加工するかあるいは所望の形状の鋳型を用い
て成形後加工あるいは成形、焼結後加工などの方法が取
られており、ゴム磁石においてはシート状磁石をトロイ
ダル状に巻いている。Permanent magnets can generally be classified into cast magnets, powder sintered magnets, compacted powder magnets, rubber magnets, and the like. When making cylindrical magnets from these magnets, cast magnets, sintered magnets, and compacted magnets are machined into the desired shape from block materials, or processed or formed after forming using a mold of the desired shape. , post-sintering processing, etc. are used, and in the case of rubber magnets, sheet magnets are wound in a toroidal shape.
しか17、前者の磁石においては、一般に磁石合金がも
ろく加工が困難である。また、動径方向の着磁が困難で
あるという欠点もある。後者の磁石の場合には、エネル
ギー積が小さく実用的でないという欠点があった。However, in the former type of magnet, the magnet alloy is generally brittle and difficult to process. Another drawback is that magnetization in the radial direction is difficult. In the case of the latter magnet, the energy product is small and it is not practical.
本発明は一]二記欠点を解消するためになされたもので
あり、大きなエネルギー積を有し、かつ任意形状の円筒
状のトロイダル磁石が容易に製造できさらに動径方向の
着磁の容易々トロイダル磁石を提供することを目的とす
るものである。The present invention has been made in order to eliminate the drawbacks mentioned in (1) and (2) above, and it is possible to easily manufacture a cylindrical toroidal magnet having a large energy product and an arbitrary shape, and furthermore, it is easy to magnetize in the radial direction. The purpose is to provide a toroidal magnet.
本発明者らは金属磁石薄体をトロイダル状に巻廻すこと
により目的が達成されることを見出した。The inventors have discovered that the object can be achieved by winding a thin metal magnet in a toroidal manner.
動径方向に着磁された円筒状磁石を作る場合には第1図
に斜視的に示す如き金属磁石薄体(1)に対して入方向
に磁界を印加し矢印(2)の幅方向に着磁した。これを
円筒状に巻き第3図の如き所望の円筒状ノドロイダル磁
石(3)が得られる。この時、金属磁石薄体(1)の板
厚をシートの幅に比べて充分小さくしておけば幅方向着
磁に対して減磁することがない。従って、円筒状磁石の
高さhの充分小さいものも作ることが出来、種々の円筒
状のトロイダル磁石を作ることが出来る。通常、金属磁
石薄体は、磁石合金を薄板状に加工するかあるいは溶融
合金を直接薄板状に成形するなどして作製することが出
来る。When making a cylindrical magnet magnetized in the radial direction, a magnetic field is applied in the entrance direction to the thin metal magnet (1) as shown perspectively in Figure 1, and the magnetic field is applied in the width direction of the arrow (2). It was magnetized. This is rolled into a cylindrical shape to obtain a desired cylindrical nodroidal magnet (3) as shown in FIG. At this time, if the thickness of the thin metal magnet (1) is made sufficiently smaller than the width of the sheet, demagnetization will not occur with respect to magnetization in the width direction. Therefore, a cylindrical magnet with a sufficiently small height h can be manufactured, and various cylindrical toroidal magnets can be manufactured. Usually, a thin metal magnet can be produced by processing a magnet alloy into a thin plate shape or directly forming a molten alloy into a thin plate shape.
本発明に係る薄いシート状から作製されるトロイダル状
の金属磁石材料としては、Pt−Co−磁石、Fe−0
r−Co 磁石、希土類磁石、Au −Co系磁石など
を用いることが出来る。Toroidal metal magnet materials made from thin sheets according to the present invention include Pt-Co-magnet, Fe-0
An r-Co magnet, a rare earth magnet, an Au-Co magnet, etc. can be used.
実施例1
金属磁石材料としての原子俤でNd!I6 Pe7o
合金薄体を第3図に示す沖ロール法を用いて作製した。Example 1 Nd in the atomic range as a metal magnet material! I6 Pe7o
A thin alloy body was produced using the Oki roll method shown in FIG.
なお図中Oυは容器を、0功は誘導加熱コイルを、o3
はノズルを、(鴫はロールをそれぞれ示す。このときの
ロール径は150φ、回転数ば500rpm を用いた
。得られた薄体(1)は板厚が約100μmのリボン状
であった。X線回折を行なったところ非晶質であった。In the figure, Oυ is the container, 0 is the induction heating coil, and o3 is the induction heating coil.
1 indicates the nozzle, and (the circle indicates the roll. At this time, the roll diameter was 150φ and the rotation speed was 500 rpm. The obtained thin body (1) was in the form of a ribbon with a thickness of about 100 μm. Line diffraction revealed that it was amorphous.
これを外径20φのリングに巻つけて第2図のようなト
ロイダルコアを作製17た。これを300℃で30分熱
処理した後、高さ方向に着磁して磁化測定を行なったと
ころ、残留磁束密度6.5kG%保磁力6.5000e
の値が得られ、永久磁石になっていることが確認された
。This was wound around a ring having an outer diameter of 20φ to produce a toroidal core as shown in FIG. 2 (17). After heat-treating this at 300°C for 30 minutes, we magnetized it in the height direction and measured the magnetization, and found that the residual magnetic flux density was 6.5 kG%, and the coercive force was 6.5000 e.
value was obtained, confirming that it was a permanent magnet.
実施例2
Fe−25Cr−10Co−0,58i合金を実施例1
と同様の方法を用いて作製した。得られた薄体の形状は
板厚が約100μm1幅約30111111のテープ状
であった。X線回折を行なったところ結晶質で、α相単
相であった。Example 2 Fe-25Cr-10Co-0,58i alloy in Example 1
It was produced using the same method as . The shape of the obtained thin body was a tape having a thickness of about 100 μm and a width of about 30111111 mm. X-ray diffraction revealed that it was crystalline and had a single alpha phase.
これを第1図のようにテープの幅方向に5kOeの磁場
を印加して640℃から室温まで20”07時の冷却速
度でゆっくり冷却した。その後、巾方向に着磁をして磁
化曲線を測定したところ、残留磁束密度が14kG、保
磁カフ000e、最大エネルギー積5.8MGOeが得
られた。これを外径2oφのリングに巻きつけることに
より第2図に示したよりな動径方向に磁化された、しか
も5.8 M GOeという高いエネルギー積を有する
磁石を得ることが出来た。As shown in Figure 1, a magnetic field of 5 kOe was applied in the width direction of the tape, and the tape was cooled slowly from 640°C to room temperature at a cooling rate of 20"07 hours. After that, it was magnetized in the width direction and the magnetization curve was As a result of the measurement, we obtained a residual magnetic flux density of 14 kG, a coercive cuff of 000e, and a maximum energy product of 5.8 MGOe.By winding this around a ring with an outer diameter of 2oφ, it was magnetized in a more radial direction as shown in Figure 2. Moreover, we were able to obtain a magnet with a high energy product of 5.8 M GOe.
その他、Pt−Co磁石、Au−Co磁石合金について
も同様の実験を行い、高性能なトロイダル磁石を得るこ
とが出来た。Similar experiments were also conducted on Pt--Co magnets and Au--Co magnet alloys, and high-performance toroidal magnets were successfully obtained.
第1図は本発明のトロイダル磁石に用いる金属磁石薄体
の斜視図、第2図は本発明のトロイダル磁石の斜視図、
第3図は本発明に用いる金属磁石薄体の製造装置例を示
す斜視図である。FIG. 1 is a perspective view of a thin metal magnet used in the toroidal magnet of the present invention, FIG. 2 is a perspective view of the toroidal magnet of the present invention,
FIG. 3 is a perspective view showing an example of a manufacturing apparatus for a thin metal magnet used in the present invention.
Claims (4)
とするトロイダル磁石。(1) A toroidal magnet characterized by a thin metal magnet wound in a toroidal shape.
を特徴とする特許請求の範囲第1項記載のトロイダル磁
石。(2) The toroidal magnet according to claim 1, wherein the thickness of the thin metal magnet is 200 μm or less.
されたことを特徴とする特許請求の範囲第2項記載のト
ロイダル磁石。(3) The toroidal magnet according to claim 2, wherein the thin metal magnet is produced by ultra-quenching the thin metal magnet from a molten state.
請求の範囲第1項、第2項または第3項記載のトロイダ
ル磁石。(4) The toroidal magnet according to claim 1, 2, or 3, wherein the toroidal magnet is magnetized in the radial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16255983A JPS6054408A (en) | 1983-09-06 | 1983-09-06 | Toroidal magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16255983A JPS6054408A (en) | 1983-09-06 | 1983-09-06 | Toroidal magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6054408A true JPS6054408A (en) | 1985-03-28 |
Family
ID=15756885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16255983A Pending JPS6054408A (en) | 1983-09-06 | 1983-09-06 | Toroidal magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6054408A (en) |
-
1983
- 1983-09-06 JP JP16255983A patent/JPS6054408A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5929644B2 (en) | Method for modifying magnetic properties of high magnetic permeability amorphous alloy | |
US4369075A (en) | Method of manufacturing permanent magnet alloys | |
JPS6054408A (en) | Toroidal magnet | |
JPH07120576B2 (en) | Cast rare earth-method for manufacturing iron-based permanent magnets | |
JPH01261803A (en) | Manufacture of rare-earth permanent magnet | |
JPS59159929A (en) | Production of magnet material | |
JPH07111924B2 (en) | Magnetic roll and method for manufacturing cylindrical magnet for magnetic roll | |
JPH08111337A (en) | Magnetic field forming method and magnetic field forming apparatus for permanent magnet | |
JP2579787B2 (en) | Manufacturing method of permanent magnet | |
JPH04293206A (en) | Pare earth elements-fe-b based anisotropic permanent magnet | |
JPH04143221A (en) | Permanent magnet manufacturing method | |
JPS61119005A (en) | Manufacture of iron-rareearth-boron permanent magnet | |
JP2561706B2 (en) | Method for manufacturing rare earth-Fe-B magnet | |
JPH02297910A (en) | Method for manufacturing radially oriented magnets | |
JPH04134806A (en) | Permanent magnet manufacturing method | |
JPS6151028B2 (en) | ||
JPH04187722A (en) | Production of permanent magnet | |
JPH0422104A (en) | Permanent magnet manufacturing method | |
JPH10317109A (en) | Production of thin permanent magnet | |
JPS63287005A (en) | Permanent magnet and its manufacturing method | |
JPS61270316A (en) | Production of raw material powder for resin bonded permanent alloy | |
JPS61166949A (en) | Alloy for permanent magnet | |
JPS58210101A (en) | Radiate arrangement rare earth element-cobalt magnet ring | |
JPH1140448A (en) | Manufacture of annular permanent magnet | |
JPS59136910A (en) | Manufacturing method of radial anisotropic magnet |