JPS6048992B2 - Manufacturing method of electromagnetic induction coupling device - Google Patents
Manufacturing method of electromagnetic induction coupling deviceInfo
- Publication number
- JPS6048992B2 JPS6048992B2 JP2628977A JP2628977A JPS6048992B2 JP S6048992 B2 JPS6048992 B2 JP S6048992B2 JP 2628977 A JP2628977 A JP 2628977A JP 2628977 A JP2628977 A JP 2628977A JP S6048992 B2 JPS6048992 B2 JP S6048992B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic induction
- coupling device
- induction coupling
- magnetic
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture Of Motors, Generators (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Description
【発明の詳細な説明】
本発明は電磁誘導連結装置の製造方法に関するものて
、特に第2の回転主体を構成する導電体と磁性体との固
定手段の改良に関するものてある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electromagnetic induction coupling device, and more particularly to an improvement in a means for fixing a conductive material and a magnetic material constituting a second rotating main body.
以下、従来装置を第1図乃至第8図に示し説明する。
図に於て、1は複数の溝部が内周部に所定の間隔をも
つて配設され、環状の磁気抵抗の小さな鉄部分1aとこ
れら溝部に設けられた導電体としてのアルミニウム部分
2と、これらアルミニウム部分2をかご形に短絡するア
ルミニウム部分2aからなる第2の連結主体てある駆動
体、2bはこの駆動体1の外周面にアルミニウム部2、
2aと一体的に設けられた熱放散を良くするためのヒー
トシンクで、溶解されたアルミニウムを鋳込み固化させ
て作られる。Hereinafter, a conventional device will be explained with reference to FIGS. 1 to 8.
In the figure, 1 has a plurality of grooves arranged at predetermined intervals on the inner circumference, an annular iron part 1a with low magnetic resistance, and an aluminum part 2 as a conductor provided in these grooves. A second connecting body consisting of an aluminum portion 2a that short-circuits these aluminum portions 2 in a cage shape, 2b has an aluminum portion 2 on the outer peripheral surface of the driver 1;
A heat sink is provided integrally with 2a to improve heat dissipation, and is made by casting and solidifying molten aluminum.
3は上記駆動体1にボルト (図示せず)により固定さ
れたプーリ、4は円周方向交互に異極を構成するように
多数の磁極て構成された第1の連結主体である被動体、
5はこの被動体4内に配設された励磁コイル、6は上記
被動体4に固着された中空の負荷軸で、ベアリング7を
介してプーリ3を回転自在に支承している。3 is a pulley fixed to the drive body 1 with a bolt (not shown); 4 is a driven body which is a first connecting body and is composed of a large number of magnetic poles so as to alternately form different poles in the circumferential direction;
Reference numeral 5 denotes an excitation coil disposed within the driven body 4, and 6 a hollow load shaft fixed to the driven body 4, which rotatably supports the pulley 3 via a bearing 7.
8はブラシ9の保持装置で、ベアリング10を介して、
負荷軸6に回転自在に支承されている。8 is a holding device for the brush 9, which holds the brush 9 through a bearing 10;
It is rotatably supported on the load shaft 6.
11はスリップリングで励磁コイル5と電気的に接続さ
れている。11 is a slip ring electrically connected to the excitation coil 5.
次に、この従来装置の動作を説明する。 Next, the operation of this conventional device will be explained.
先ず、図示しない直流電源からブラシ9とスリップリン
グ11からなる集電装置を介して励磁コイル5を励磁す
れば、点線で示す如き磁束Φが発生する。ここで、図示
しないモートル等の駆動源によりベルト(図示せず)を
介してプーリ3を駆動すれは、プーリ3に固定された駆
動体1は所定の速度で回転を始める。駆動体1の内周部
の鉄部分1aは磁束Φの方向が時間的に変化する交番磁
界を受け、そのため被動体4の磁極面に対し所定の空隙
を介して内周面に配設された鉄部分1aには被動体4と
駆動体1との相対速度により、誘起電圧が発生する。こ
の誘起電圧により、導電体としてのアルミニウム部分2
,2aにその抵抗値に基づく2次電流が発生し、この2
次電流により発生する起磁力と、励磁コイル5により発
生する磁束Φに基つく起磁力による相互作用により駆動
体1と被動体4の間に吸引力が発生する。このため、電
磁気的に駆動体1から被動体4にトルクが伝達され、以
つて駆動源により負荷は駆動されるのである。さて、第
2の連結主体を構成する鉄部分1aとアルミニウム2,
2aとの固定は下記により行なわれる。First, when the excitation coil 5 is excited from a DC power source (not shown) via a current collector consisting of a brush 9 and a slip ring 11, a magnetic flux Φ as shown by the dotted line is generated. Here, when the pulley 3 is driven by a drive source such as a motor (not shown) via a belt (not shown), the driving body 1 fixed to the pulley 3 starts rotating at a predetermined speed. The iron portion 1a on the inner circumference of the driving body 1 receives an alternating magnetic field in which the direction of the magnetic flux Φ changes over time, and is therefore disposed on the inner circumference with a predetermined gap from the magnetic pole surface of the driven body 4. An induced voltage is generated in the iron portion 1a due to the relative speed between the driven body 4 and the driving body 1. This induced voltage causes the aluminum part 2 as a conductor to
, 2a generates a secondary current based on its resistance value, and this secondary current
An attractive force is generated between the driving body 1 and the driven body 4 due to the interaction between the magnetomotive force generated by the next current and the magnetomotive force based on the magnetic flux Φ generated by the excitation coil 5. Therefore, torque is electromagnetically transmitted from the driving body 1 to the driven body 4, and the load is driven by the driving source. Now, the iron part 1a and the aluminum part 2, which constitute the second connection main body,
Fixation with 2a is performed as follows.
先ず、環状の鉄部分1aに導電体としてのアルミニウム
部分2,2aを鋳造するため多軸ボール盤により第4図
に示すが如き円周方向に所定の間隔をもつて穴1cの加
工を行なう。First, in order to cast aluminum parts 2, 2a as conductors into an annular iron part 1a, holes 1c are formed at predetermined intervals in the circumferential direction as shown in FIG. 4 using a multi-spindle drilling machine.
この穴加工を行なう際には駆動体1の形成に実際に必要
な鉄部分1aより内側に余分な鉄部分1bを設ける必要
がある。何故なら、この余肉部分がないと、穴加工のた
めのドリルが内側に逃げて穴1cの加工できないからで
ある。しかも、溶解されたアルミニウムを鉄部分1aの
穴1cに導電体としてのアル.ミニウム部分2,2aを
鋳造するためにこの余分な鉄部分1bを予め切削して取
り除かなければならない。従つて、鉄原料の歩留りが悪
いうえ、鉄部分1bは断続切削となるので加工性が悪く
、以つて刃物の寿命が短かくなり、更に切削後のカエ5
リ取りが必要となり省資源、省エネルギーの観点から多
くの欠点がある。この発明は磁性体にドリル加工てない
切削加工により凹状の溝部を所定の間隔をもつて形成す
ることにより上記欠点を解消する優れた電磁誘導連る結
装置の製造方法を提供するものてある。When performing this hole machining, it is necessary to provide an extra iron portion 1b inside the iron portion 1a actually required for forming the driving body 1. This is because, without this extra thickness, the drill for drilling the hole would escape inward and the hole 1c could not be drilled. Moreover, the molten aluminum is inserted into the hole 1c of the iron part 1a as a conductor. In order to cast the miniumized parts 2, 2a, this extra iron part 1b must be removed by cutting beforehand. Therefore, the yield rate of the iron raw material is poor, and the iron part 1b is cut intermittently, resulting in poor workability, resulting in a shortened tool life, and furthermore, there is less burr after cutting.
There are many disadvantages from the viewpoint of resource and energy saving as it requires reclamation. The present invention provides an excellent method for manufacturing an electromagnetic induction coupling device which eliminates the above-mentioned drawbacks by forming concave grooves at predetermined intervals in a magnetic material by cutting without drilling.
以下、第5図に示す実施例について説明する。The embodiment shown in FIG. 5 will be described below.
即ち、環状の鉄部分1a(7)径方向厚みは、実際に必
要とする厚みに加工し、その鉄部分1aの内周側を歯切
り盤(図示せず)により任意の数だけ切削して第5図に
示す通り断面形状が歯形の溝部1dを軸方向の略全域に
形成する。このようにアルミニウムの鋳造前に於ける鉄
部分1a(7)溝部1dの加工を歯切り盤で行なえば従
来のように余分な鉄部分1bを設ける必要がなく、しか
もこの鉄部分1bの切削加工の必要もないので歯切り盤
のみにより溝部1dの加工をしたる後この溝部1dにア
ルミニウムの鋳造が可能となる。また、この溝冫部のア
ルミニウム鋳造時に従来と同様にかご形に短絡する部分
およびヒートシンクが一体的に鋳造される。したがつて
この発明によれば作業工程が短縮でき、以つて省資源省
エネルギーの観点から非常に大きな特長がある。また、
従来のものは多・軸ボール盤により磁性体である鉄部分
1aに穴1cを加工するものであるため、その多軸ホー
ル盤の機構上、上記穴1cの個数を通常偶数としなけれ
ばならず、その結果被動体4の異極数(極数は通常偶数
)との最小公倍数が小となり、この小な・る最小公倍数
により、駆動体1と被動体4とが数多く同期するため、
駆動体1と被動体4との相対回転数が小さい時に、スリ
ップ状態にあるにも抱らず上述した同期によりトルクの
変動が発生する欠点があつた。然るに、本実施例のよう
に溝部1dを歯切り盤により加工すれば、鉄部分1aの
溝部1dの個数はその歯切り盤のモジュールとピッチ径
等を任意に選定すれは容易に奇数にできるものでそうす
れば上述した最小公倍数が大となり同期が少なくなるた
め相対回転数の小さい時にも安定したトルクが得られる
。更に、第5図に於て、歯切り盤による溝部1dの切り
込み深さHを自由自在に変化させて任意の値に選定すれ
ば、第6図示す曲線A,Bの如きトルク特性が容易に得
られる。尚、以上に述べた溝部1dの形状は第5図の形
状に限らず、第7図に示すような形状でもよく、またこ
れを形成する工作機械は歯切り盤に限らず、プローチ盤
、フライス盤等、ドリル加工以外の穴加工であれば如何
なるものでもよい。以上のようにこの発明は、第2の連
結主体を構成する導電体と磁性体との固定を磁性体の内
周部にその全周に亘り所定の間隔をもつてドリル加工で
ない切削加工によりその軸方向の略全域まて延びる凹状
の溝加工を形成した後この凹状の溝部に埋設される導電
体とそれを短絡する短絡部とヒートシンクを一体的に鋳
造したので溝部の加工が容易に行なえ第2の連結主体の
製作が非常に簡単化し、省資源、省エネルギーの観点か
ら非常に優れた効果がある。That is, the radial thickness of the annular iron portion 1a (7) is processed to the actually required thickness, and the inner circumferential side of the iron portion 1a is cut by an arbitrary number using a gear cutter (not shown). As shown in FIG. 5, a groove portion 1d having a tooth-shaped cross section is formed over substantially the entire area in the axial direction. If the grooves 1d of the iron part 1a (7) are machined using a gear cutting machine before aluminum is cast, there is no need to provide an extra iron part 1b as in the conventional method, and the cutting process of this iron part 1b is not necessary. Since the groove 1d is machined using only a gear cutter, aluminum can be cast into the groove 1d. Further, when aluminum is cast for this groove part, the cage-shaped short-circuit part and the heat sink are integrally cast as in the conventional case. Therefore, according to the present invention, the working process can be shortened, and it has a very great advantage from the viewpoint of saving resources and saving energy. Also,
In the conventional drill, holes 1c are formed in the iron part 1a, which is a magnetic material, using a multi-axis drilling machine, so the number of holes 1c must be an even number due to the mechanism of the multi-axis drilling machine. As a result, the least common multiple of the different number of poles of the driven body 4 (the number of poles is usually an even number) becomes small, and due to this small least common multiple, the driving body 1 and the driven body 4 are synchronized in large numbers.
When the relative rotational speed between the driving body 1 and the driven body 4 is small, there is a drawback that torque fluctuation occurs due to the above-mentioned synchronization even in the slip state. However, if the grooves 1d are machined using a gear cutting machine as in this embodiment, the number of grooves 1d in the iron part 1a can be easily made into an odd number by arbitrarily selecting the module of the gear cutting machine, the pitch diameter, etc. If this is done, the above-mentioned least common multiple will be large and synchronization will be reduced, so stable torque can be obtained even when the relative rotational speed is small. Furthermore, in FIG. 5, if the cutting depth H of the groove 1d by the gear cutting machine is freely changed and selected to an arbitrary value, the torque characteristics as shown in curves A and B shown in FIG. 6 can be easily obtained. can get. The shape of the groove 1d described above is not limited to the shape shown in FIG. 5, but may be the shape shown in FIG. Any hole processing method other than drilling may be used. As described above, the present invention fixes the conductive material and the magnetic material constituting the second connection main body by cutting, not drilling, the inner periphery of the magnetic material at a predetermined interval over the entire circumference. After forming a concave groove that extends over almost the entire axial direction, the conductor to be buried in the concave groove, the shorting part that shorts it, and the heat sink are integrally cast, making it easy to process the groove. The manufacturing of the second connecting body is extremely simple, and has excellent effects in terms of resource and energy conservation.
また溝部の加工を歯切り盤等により行なえば、導電体の
本数を奇数個にできるので第1の連結主体と第2の連結
主体間の相対回転数が小さい時にも安定したトルク特性
が得られる。更に歯切り時溝部の切り込み深さを、特別
の加工工具、治具を用いすに切削加工のみにより変化さ
せることが可能となり、色々のトルク特性が容易に得ら
れるようになるという効果がある。Furthermore, if the grooves are machined using a gear cutter or the like, the number of conductors can be an odd number, so stable torque characteristics can be obtained even when the relative rotational speed between the first and second connecting bodies is small. . Furthermore, it is possible to change the cutting depth of the groove portion during gear cutting only by cutting using special processing tools and jigs, and there is an effect that various torque characteristics can be easily obtained.
第1図は、従来装置を示す電磁誘導連結装置の断面図、
第2図はこの第1図の■−■線による部分断面図、第3
図はこの第2図の内面からの断面図、第4図は第1図に
於ける鉄部分1aの部分断面図、第5図はこの発明の一
実施例を示す鉄部分1aの部分断面図、第6図は第5図
に於ける鉄部分1aの歯切り切り込み深さHを変化させ
た時のトルク特性図、第7図はこの発明の他の実施例を
示す鉄部分1aの部分断面図てある。
図に於いて、1は駆動体、1a,1bは鉄部”分、1c
は穴、1dは溝部、2,2aはアルミニウム部分、2b
はヒートシンク、4は被動体、5は励磁コイル、6は負
荷軸、9はブラシ、11はスリップリングである。FIG. 1 is a sectional view of an electromagnetic induction coupling device showing a conventional device;
Figure 2 is a partial sectional view taken along the line ■-■ of Figure 1, and Figure 3
The figure is a sectional view from the inner surface of FIG. 2, FIG. 4 is a partial sectional view of the iron portion 1a in FIG. 1, and FIG. 5 is a partial sectional view of the iron portion 1a showing an embodiment of the present invention. , Fig. 6 is a torque characteristic diagram when the tooth cutting depth H of the iron part 1a in Fig. 5 is changed, and Fig. 7 is a partial cross section of the iron part 1a showing another embodiment of the present invention. There is a diagram. In the figure, 1 is the driving body, 1a and 1b are the iron parts, and 1c
is a hole, 1d is a groove, 2 and 2a are aluminum parts, 2b
4 is a heat sink, 4 is a driven body, 5 is an excitation coil, 6 is a load shaft, 9 is a brush, and 11 is a slip ring.
Claims (1)
に異極を構成する第1の連結主体と、上記異極面に対し
径方向間隙を介して配置された環状の磁性体とこの磁性
体と一体的に固着された導電体からなり上記第1の連結
主体と電磁気的に連結される第2の連結主体とからなる
電磁誘導連結装置において、上記磁性体の内周部にその
全周に亘り所定の間隔をもつてドリル加工でない切削加
工によりその軸方向の略全域まで延びる凹状の溝加工を
形成した後、この凹状の溝部に埋設される導電部と、こ
れら導電部をかご形に短絡する短絡部と、上記磁性体の
外周部に設けられるヒートシンクとを溶解された導電体
を鋳込み固化させて一体的に構成したことを特徴とする
電磁誘導連結装置の製造方法。 2 特許請求の範囲第1項記載のものに於て、凹状の溝
部は歯切り盤により形成し、その断面形状を歯形とする
電磁誘導連結装置の製造方法。 3 特許請求の範囲第1項記載のものに於て、凹状の溝
部はブローチ盤により形成する電磁誘導連結装置の製造
方法。[Scope of Claims] 1. A first connecting body that alternately constitutes different poles in the circumferential direction in response to magnetic flux generated in an excitation coil, and an annular body disposed with a radial gap with respect to the different pole surface. In an electromagnetic induction coupling device comprising a magnetic body and a second coupling body which is made of a conductor integrally fixed to the magnetic body and is electromagnetically coupled to the first coupling body, the inside of the magnetic body is After forming concave grooves extending to almost the entire axial direction of the circumferential portion at predetermined intervals over the entire circumference by cutting, not drilling, a conductive portion to be buried in the concave groove and these grooves are formed. Manufacture of an electromagnetic induction coupling device characterized in that a shorting part that shorts a conductive part in a cage shape and a heat sink provided on the outer periphery of the magnetic material are integrally formed by casting and solidifying a melted conductive material. Method. 2. A method of manufacturing an electromagnetic induction coupling device according to claim 1, wherein the concave groove is formed by a gear cutter, and the cross-sectional shape thereof is tooth-shaped. 3. A method of manufacturing an electromagnetic induction coupling device according to claim 1, wherein the concave groove is formed by a broaching machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2628977A JPS6048992B2 (en) | 1977-03-09 | 1977-03-09 | Manufacturing method of electromagnetic induction coupling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2628977A JPS6048992B2 (en) | 1977-03-09 | 1977-03-09 | Manufacturing method of electromagnetic induction coupling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53110749A JPS53110749A (en) | 1978-09-27 |
JPS6048992B2 true JPS6048992B2 (en) | 1985-10-30 |
Family
ID=12189130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2628977A Expired JPS6048992B2 (en) | 1977-03-09 | 1977-03-09 | Manufacturing method of electromagnetic induction coupling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6048992B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294947B2 (en) * | 2004-03-01 | 2007-11-13 | Flux Drive, Inc. | Apparatus for transferring torque magnetically |
US8471422B2 (en) * | 2005-02-26 | 2013-06-25 | Flux Drive, Inc. | Apparatus for transferring torque magnetically |
JP5032777B2 (en) * | 2006-02-23 | 2012-09-26 | パナソニック株式会社 | Torque transmission device |
-
1977
- 1977-03-09 JP JP2628977A patent/JPS6048992B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53110749A (en) | 1978-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0341317A1 (en) | Structure of rotor for high speed induction motor | |
US4446392A (en) | Electromagnetic coupling device | |
JPH02179238A (en) | Bearing holder construction of motor | |
US7676902B2 (en) | Manufacturing method of rotor core | |
JPS6048992B2 (en) | Manufacturing method of electromagnetic induction coupling device | |
AU2014201466B2 (en) | Induction Motor and Manufacturing Method Thereof | |
KR101027839B1 (en) | Flat and Hollow Brushless Servo Motors with Tool Mounting Holes | |
US4751417A (en) | Method of increasing operating efficiency of electric machines | |
EP1014545B1 (en) | Electromagnetic retarder with a built-in exciter | |
CN114008894B (en) | Starter generator and method for manufacturing the same | |
EP0651494B1 (en) | Method of manufacturing an alternator rotor | |
JPH04364346A (en) | How to balance the rotor of a vehicle alternator | |
JPH11299144A (en) | Structure of rotor and working of groove in high-speed rotary machine | |
EP3635847B1 (en) | Machining spindles with ac induction motors and shafts for such spindles | |
JPS59106838A (en) | Motor | |
US3502924A (en) | High speed rotor for dynamoelectric machine having laminations welded to stepped shaft and method of making the same | |
US3349477A (en) | Process for manufacturing circumferentially segmented induction members | |
US2033059A (en) | Dynamo-electric machine rotor construction | |
SU515212A1 (en) | Method of making rotor of magnetoelectric machine | |
JPH0528939Y2 (en) | ||
JPH02276457A (en) | Manufacture of hysteresis clutch brake | |
SU1350759A1 (en) | Rotor of electric machine | |
JPS586058A (en) | Manufacturing method for rotor core of alternator | |
JPS60234445A (en) | Cooling structure for flat rotary electric machine | |
JPH09170530A (en) | Rotor imbalance correction method |