[go: up one dir, main page]

JPS6048450B2 - Production method of zinc sulfide precipitate - Google Patents

Production method of zinc sulfide precipitate

Info

Publication number
JPS6048450B2
JPS6048450B2 JP5007778A JP5007778A JPS6048450B2 JP S6048450 B2 JPS6048450 B2 JP S6048450B2 JP 5007778 A JP5007778 A JP 5007778A JP 5007778 A JP5007778 A JP 5007778A JP S6048450 B2 JPS6048450 B2 JP S6048450B2
Authority
JP
Japan
Prior art keywords
zinc
precipitate
zinc sulfide
sulfide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5007778A
Other languages
Japanese (ja)
Other versions
JPS54142197A (en
Inventor
進 松浦
慶孝 高山
信雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5007778A priority Critical patent/JPS6048450B2/en
Publication of JPS54142197A publication Critical patent/JPS54142197A/en
Publication of JPS6048450B2 publication Critical patent/JPS6048450B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 本発明は硫化亜鉛沈澱の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing zinc sulfide precipitate.

硫化亜鉛沈澱は螢光物質の原料として重要であり、純度
と粒子状態はそのまま螢光物質の中心的な性能である発
光性能及び粒度分布を左右する。
Zinc sulfide precipitate is important as a raw material for fluorescent substances, and its purity and particle state directly influence the luminescent performance and particle size distribution, which are the central properties of fluorescent substances.

通常、硫化亜鉛沈澱の製造方法は硫酸亜鉛、塩化亜鉛、
硝酸亜鉛などの亜鉛イオンを含む水溶液に硫化水素ガス
を通じて反応を完結させ水で十分洗滌した後乾燥する事
によつて得られる。沈澱粒子状態をいろいろ変化改善さ
せるための反応時のpHや温度を変化させたり異種の水
溶性物質を添加してみたりいろいろな試みがなされて来
ているが(例えばR、A、Brown、Electro
chem、Technol、6246(1968))改
善の余地は依然残されている現状てある。ここで粒子状
態の改善とはどういう事かというと例えば上記に述べた
通常の方法で得られる硫化亜鉛沈澱は第1図の写真に示
す様に微粒子沈澱の凝集状態が不規則であり、凝集粒子
群の粒度分布はブロードの状態となる。
Usually, the manufacturing method of zinc sulfide precipitate is zinc sulfate, zinc chloride,
It is obtained by passing hydrogen sulfide gas into an aqueous solution containing zinc ions such as zinc nitrate to complete the reaction, thoroughly washing with water, and then drying. Various attempts have been made to change and improve the state of precipitated particles, such as changing the pH and temperature during the reaction and adding different types of water-soluble substances (for example, R, A, Brown, Electro
chem, Technol, 6246 (1968)) There is still room for improvement. What is meant by improvement of the particle state? For example, in the zinc sulfide precipitate obtained by the normal method described above, the agglomeration state of the fine particle precipitate is irregular, as shown in the photograph in Figure 1, and the agglomerated particles The particle size distribution of the group becomes broad.

コールターカウンター法によるこの沈澱の粒度分布は第
5図aの状態である。この沈澱粒子を出来るだけ揃えた
シャープな粒度分布にする事を粒子状態の改善目標とす
る本発明は沈澱粒子の粒度分布をシャープにし且つその
平均粒度を任意に調整が可能な硫化亜鉛沈澱の製造方法
を提供するものである。本発明者は亜鉛イオン溶液に硫
化水素ガスを通じて硫化水素ガスを通じて硫化亜鉛を作
る湿式法に於て、沈澱反応を開始する前にコロイド状の
均一な結晶粒子径の硫化亜鉛を亜鉛イオン溶液中に分散
させておくとこれが、沈澱反応の核的機能をなし、これ
を中ゝ心に反応が均一に進行する性質を発見した。本発
明の製造法に於ける第1の特徴点である所の粒子径が均
一なコロイド状結晶粒子の沈澱核を製造する方法は、亜
鉛イオンを含む水溶液にアルカリ性水溶液(例えばアン
モニア水)を加えて一度水酸ク化亜鉛のコロイド状沈澱
を作りこれに硫化水素ガスを通じてコロイド状の硫化亜
鉛に変換する事である。第3図はこのような硫化亜鉛沈
澱核を電子顕微鏡で20五倍の倍率て観察した写真を示
し、100〜300Λ粒径の範囲内で粒子制御された単
結晶’5粒子として観察される。しカルて本発明はこの
沈澱核が沈澱反応の核的機能に優れている結論に至つた
。かかる沈澱核の存在する亜鉛イオン溶液に硫化水素ガ
スを通じると、反応は速やかに進行し粒子の成長が始ま
る。溶液中の亜鉛イオンの硫化反応が終了した場合は、
沈澱物を静置沈降させ上澄液を除去して再度亜鉛イオン
溶液を加えて硫化水素ガスを通じると硫化反応は継続進
行し、粒子の成長も継続進行する。本発明の第2の特徴
点はこの様に均一粒子沈澱核である最初の沈澱状態に対
しこれに亜鉛イオン溶液を繰返し注入し、硫化反応を継
続進行させて沈澱粒子の成長を任意に調整する事が可能
な事になる。ここで述べた沈澱粒子の成長とは必すしも
単一結晶として成長するのではなく、微小な結晶粒子の
凝集による粒子成長をも意味し多分、沈澱粒径の増大は
、単一結晶としてではなく、微小粒子の凝集に伴う粒径
成長現象と考えられる。ここで硫酸亜鉛を亜鉛イオン源
として用いた場合、注入亜鉛イオン量と共に沈澱粒子径
がどの様に成長して行くかを第6図に示す。この場合用
いた沈澱核の量は0.7m01相当の硫化亜鉛てあり詳
細は実施例に述べる。平均粒度の測定はプレイン法(通
気法)を用いた。亜鉛イオ.ン注入の各段階で得られた
沈澱粒子の光学顕微鏡写真を第4図に示す。粒径は極め
て均一に揃つており且つ粒子成長も均一に進行している
様子がわかる。このようによく整粒された硫化亜鉛粒子
は活性剤を加えて焼成しても崩壊することはなく、2膜
の均一性、緻密化等優れた螢光面を提供できる利点があ
る。実施例 10eフラスコに1.10m01濃度の硫酸亜鉛640
mιと純水3000m1を入れ攪拌しながら濃アンモニ
ア水923m1を少しづつ加える。
The particle size distribution of this precipitate determined by the Coulter Counter method is as shown in Figure 5a. The purpose of the present invention is to improve the particle condition by making the precipitated particles as uniform as possible and having a sharp particle size distribution. The present invention provides a method. In a wet method for producing zinc sulfide by passing hydrogen sulfide gas into a zinc ion solution, the present inventors introduced colloidal zinc sulfide with a uniform crystal particle size into a zinc ion solution before starting the precipitation reaction. They discovered that when dispersed, this serves as the core function of the precipitation reaction, and that the reaction proceeds uniformly around this. The first feature of the production method of the present invention is to produce precipitation nuclei of colloidal crystal particles with uniform particle diameters by adding an alkaline aqueous solution (for example, aqueous ammonia) to an aqueous solution containing zinc ions. The method is to first form a colloidal precipitate of zinc chloride hydroxide and then convert it into colloidal zinc sulfide by passing hydrogen sulfide gas through it. FIG. 3 shows a photograph of such a zinc sulfide precipitate nucleus observed with an electron microscope at a magnification of 205 times, and it is observed as a single crystal '5 particle whose particle size is controlled within the range of 100 to 300 Λ particle size. Therefore, the present invention has come to the conclusion that this precipitation nucleus is excellent in the nuclear function of the precipitation reaction. When hydrogen sulfide gas is passed through a zinc ion solution containing such precipitated nuclei, the reaction proceeds rapidly and particle growth begins. When the sulfidation reaction of zinc ions in the solution is completed,
When the precipitate is left to settle, the supernatant liquid is removed, a zinc ion solution is added again, and hydrogen sulfide gas is passed through the solution, the sulfurization reaction continues and the growth of particles continues. The second feature of the present invention is to repeatedly inject zinc ion solution into the initial precipitated state, which is a uniform particle precipitate nucleus, to continue the sulfidation reaction and adjust the growth of precipitated particles as desired. things become possible. The growth of precipitated particles mentioned here does not necessarily mean growth as a single crystal, but also refers to particle growth due to the aggregation of minute crystal particles. This is considered to be a particle size growth phenomenon associated with agglomeration of microparticles. When zinc sulfate is used as the zinc ion source, FIG. 6 shows how the precipitate particle size grows with the amount of zinc ions injected. The amount of precipitate nuclei used in this case was equivalent to 0.7 m01 of zinc sulfide, and the details will be described in the Examples. The plain method (aeration method) was used to measure the average particle size. Zinc io. Optical micrographs of precipitated particles obtained at each stage of injection are shown in FIG. It can be seen that the particle size is extremely uniform and that the particle growth is progressing uniformly. Such well-sized zinc sulfide particles do not disintegrate even when an activator is added and fired, and have the advantage of providing an excellent fluorescent surface such as uniformity and densification of the two films. Example 10e flask with 1.10 mO1 concentration of zinc sulfate 640
Add mι and 3000 ml of pure water and gradually add 923 ml of concentrated ammonia water while stirring.

系内は白濁した水酸化亜鉛のコロイド状沈澱が発生し3
紛攪拌後硫化水素ガスを1.51/Minの流量で1時
間導入すると白濁沈澱はコロイド状硫化亜鉛に変換する
。その粒径は100〜300への範囲内に粒子制御され
たものであ3.る。反応を停止し撹拌を止めて静置し上
澄液が澄明になつたらサイフオンを用いて2000m1
相当を除去し1.10m01濃度の硫酸亜鉛を5000
m1添加し攪拌しながら硫化水素を1.51/Minの
流量で反応が完結するまで約5時間通じる。この時点で
硫化亜鉛粒径は0.5μ程度である。反応を停止し静置
後上澄液を5000mι除去し新たに硫酸亜鉛を500
0mι添・加し上記と同時に反応を進める。この操作を
繰返し進める事により硫化亜鉛沈澱は次第に粒子成長が
進行し第6図に示す通り平均粒径のコントロールは注入
する硫酸亜鉛の量によつて任意に可能である。最後の反
応が完結したら純水で傾斜洗滌をフ繰返し120℃で1
時間乾燥すると粒子の揃つた硫化亜鉛粉末が得られる。
硫酸亜鉛の注入量が35m01の場合に於ける沈澱の平
均粒径は2.2μでありその電子頭微鏡写真を第2図に
示す。またコールター法による粒度分布は第5図bの通
りである。なお本発明に適用する亜鉛イオンを含む水溶
性は硫酸亜鉛のほか、塩化亜鉛、硝酸亜鉛等も好適する
がこれに限らない。図面の簡単な説明第1図は1.10
m01濃度の硫酸亜鉛に硫化水素を通じて硫化反応を完
結させて得られた従来の硫化亜鉛沈澱を示す電子顕微鏡
写真(3000倍)、第2図は本発明の一実施例によつ
て製造した硫化亜鉛沈澱を示す電子頴微鏡写真(30晧
)、第3図は本発明の製造法に供する硫化亜鉛沈澱核を
示す電子顕微鏡写真(20000賠)、第4図は本発明
の一実施例に於ける製造過程で得られる硫化亜鉛沈澱を
示す光学顕微鏡写真(10凹倍)であり1〜4は硫酸亜
鉛のMOl濃度が1,11m01相当2,3帥ol相当
3,72m01相当4,102m01相当がそれぞれ反
応した楊合に得られた楊合を示し、第5図はコールター
カウンター法によつて測定した硫化亜鉛の粒度分布図で
ありaは従来の硫化亜鉛沈澱bは本発明の製造法の一実
施例に基いて得られた硫化亜鉛沈澱をそれぞれ示し、第
6図は本発明の製造法の一史施例に基いて得られる硫化
亜鉛沈澱に於て亜鉛イオン注入量と得られた硫化亜鉛沈
澱の平均粒度との関係を示す図である。
Inside the system, a cloudy colloidal precipitate of zinc hydroxide was generated.
After stirring the powder, hydrogen sulfide gas is introduced at a flow rate of 1.51/min for 1 hour, and the cloudy precipitate is converted into colloidal zinc sulfide. The particle size is controlled within the range of 100 to 300.3. Ru. Stop the reaction, stop stirring, let it stand, and when the supernatant becomes clear, add 2000ml using a siphon.
Remove the equivalent and add 1.10m01 concentration of zinc sulfate to 5000
ml was added, and hydrogen sulfide was passed at a flow rate of 1.51/min for about 5 hours while stirring until the reaction was completed. At this point, the zinc sulfide particle size is about 0.5μ. After the reaction was stopped and left to stand, 5000 mι of supernatant was removed and 500 mι of new zinc sulfate was added.
Add 0 mι and proceed with the reaction at the same time as above. By repeating this operation, particle growth of the zinc sulfide precipitate progresses gradually, and as shown in FIG. 6, the average particle size can be controlled arbitrarily by changing the amount of zinc sulfate injected. When the last reaction is completed, wash the gradient with pure water and repeat at 120℃ for 1 time.
After drying for a while, zinc sulfide powder with uniform particles can be obtained.
When the amount of zinc sulfate injected was 35 m01, the average particle size of the precipitate was 2.2 μm, and an electron microscope photograph thereof is shown in FIG. The particle size distribution determined by the Coulter method is shown in FIG. 5b. In addition to zinc sulfate, zinc chloride, zinc nitrate, and the like are also suitable as water-soluble materials containing zinc ions that are applicable to the present invention, but are not limited thereto. Brief explanation of the drawings Figure 1 is 1.10
Electron micrograph (3000x) showing conventional zinc sulfide precipitation obtained by completing the sulfidation reaction by passing hydrogen sulfide into zinc sulfide at m01 concentration. Figure 2 shows zinc sulfide produced according to an embodiment of the present invention. Figure 3 is an electron micrograph showing precipitation (30 AM), Figure 3 is an electron micrograph (20,000 AM) showing zinc sulfide precipitate nuclei used in the production method of the present invention, and Figure 4 is an electron micrograph (20,000 AM) showing precipitation. These are optical micrographs (10x magnification) showing the zinc sulfide precipitate obtained in the manufacturing process. 1 to 4 indicate that the MOL concentration of zinc sulfate is 1.11 m01 equivalent, 2.3 m01 equivalent, 3.72 m01 equivalent, 4,102 m01 equivalent. Figure 5 shows the particle size distribution of zinc sulfide measured by the Coulter counter method; The zinc sulfide precipitates obtained according to the examples are shown, and FIG. It is a figure showing the relationship with the average particle size of a precipitate.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛イオンを含む水溶液にアルカリ性溶液を加えて
水酸化亜鉛を作り、これに硫化水素を通じて100〜3
00Åの硫化亜鉛結晶の沈澱核を作る段階と、これに亜
鉛イオン溶液を添加し硫化水素を通じて上記沈澱核を中
心に硫化亜鉛粒子を析出させる段階と、亜鉛イオンの反
応が終了した上澄液を除去して更に亜鉛イオン溶液を添
加し硫化水素を通じて硫化亜鉛粒子の析出を繰返す段階
とよりなることを特徴とする硫化亜鉛沈澱の製造方法。
1 Add an alkaline solution to an aqueous solution containing zinc ions to make zinc hydroxide, and add hydrogen sulfide to this to add 100 to 3
A step of forming precipitation nuclei of zinc sulfide crystals of 00 Å, a step of adding a zinc ion solution to this and precipitating zinc sulfide particles around the precipitation nuclei through hydrogen sulfide, and a step of discharging the supernatant liquid after the reaction of zinc ions has been completed. A method for producing zinc sulfide precipitate, comprising the steps of removing the zinc ion solution, adding a zinc ion solution, and repeating the precipitation of zinc sulfide particles through hydrogen sulfide.
JP5007778A 1978-04-28 1978-04-28 Production method of zinc sulfide precipitate Expired JPS6048450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5007778A JPS6048450B2 (en) 1978-04-28 1978-04-28 Production method of zinc sulfide precipitate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007778A JPS6048450B2 (en) 1978-04-28 1978-04-28 Production method of zinc sulfide precipitate

Publications (2)

Publication Number Publication Date
JPS54142197A JPS54142197A (en) 1979-11-06
JPS6048450B2 true JPS6048450B2 (en) 1985-10-28

Family

ID=12848934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007778A Expired JPS6048450B2 (en) 1978-04-28 1978-04-28 Production method of zinc sulfide precipitate

Country Status (1)

Country Link
JP (1) JPS6048450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324594A1 (en) * 1993-07-22 1995-01-26 Philips Patentverwaltung Process for the production of ZnS particles

Also Published As

Publication number Publication date
JPS54142197A (en) 1979-11-06

Similar Documents

Publication Publication Date Title
CN104646683B (en) Controllable ball shape silver powder of a kind of granularity and preparation method thereof
Niederberger et al. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly
Lee et al. Preparation and growth mechanism of uniform colloidal copper oxide by the controlled double-jet precipitation
WO2017190712A9 (en) Preparation method using micro-nano bubbles as crystal seeds to induce silver powder production
CN110092421B (en) A kind of production method of spherical basic cobalt carbonate with controllable particle size
CN114015102B (en) Method for modifying membrane surface by inverse miniemulsion
CN113600825A (en) Micron-sized spherical silver powder and preparation method thereof
CN107963672A (en) The preparation method of particle diameter nickel cobalt manganese hydroxide in a kind of coarse-grain palpus
CN103265278B (en) A kind of preparation method of non-agglomerated MgAl2O4 nano particle powder
JPH0920903A (en) Production of monodisperse gold grain powder
Wang et al. Precipitation of silver particles with controlled morphologies from aqueous solutions
JPS6048450B2 (en) Production method of zinc sulfide precipitate
US5413617A (en) Process for the preparation of silver powder with a controlled surface area by reduction reaction
KR101578454B1 (en) Manufacturing method of sphere Au-nanoparticle
Liz-Marzán Increasing complexity while maintaining a high degree of symmetry in nanocrystal growth
Preda et al. Morphology-controlled synthesis of ZnO structures by a simple wet chemical method
JPS6163526A (en) Method for producing spherical basic magnesium carbonate
JPH02294416A (en) Production of platinum powder
JPH03252318A (en) Production of nickel hydroxide
CN100400693C (en) Process for producing diamond using catalytic methods and method for treating mixtures of graphite and catalyst used in the synthesis
US20050229747A1 (en) Silver Crystals Through Tollen's Reaction
CN115958201A (en) Preparation method of micron-sized spherical nickel powder
CN116216788B (en) A method for preparing cobalt tetroxide
CN110639441A (en) Preparation method of vesicle, hollow nano structure and preparation method of hollow nano structure
TWI842351B (en) Method for producing silver nanoparticles