JPS6047881B2 - Induction hardening method - Google Patents
Induction hardening methodInfo
- Publication number
- JPS6047881B2 JPS6047881B2 JP57051808A JP5180882A JPS6047881B2 JP S6047881 B2 JPS6047881 B2 JP S6047881B2 JP 57051808 A JP57051808 A JP 57051808A JP 5180882 A JP5180882 A JP 5180882A JP S6047881 B2 JPS6047881 B2 JP S6047881B2
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- heating
- induction hardening
- temperature
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006698 induction Effects 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 50
- 238000001816 cooling Methods 0.000 claims description 20
- 239000003507 refrigerant Substances 0.000 claims description 15
- 230000008602 contraction Effects 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 101100215778 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ptr-1 gene Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- AHADSRNLHOHMQK-UHFFFAOYSA-N methylidenecopper Chemical compound [Cu].[C] AHADSRNLHOHMQK-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】
本発明は、高周波電流を加熱コイルに通電することによ
つて行うワーク外周面の誘導加熱の停止と、加熱された
該外周面の冷媒噴射ジャケットからの冷媒の供給による
急速冷却の停止を、夫々精密測長装置による所定伸び、
収縮の検知により制御する高周波焼入法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized by stopping the induction heating of the outer peripheral surface of a workpiece by applying a high-frequency current to a heating coil, and by supplying refrigerant from a refrigerant injection jacket to the heated outer peripheral surface. The rapid cooling is stopped by a predetermined elongation using a precision length measuring device, respectively.
This paper relates to an induction hardening method controlled by detection of shrinkage.
これまで、ワークを囲繞する加熱コイルに高層波電流を
通電しワークを誘導加熱した後、被加熱外周面に冷媒を
供給し急冷して高周波焼入を行う作業に於いては、加熱
条件は高周波電圧量(KW)と加熱時間(秒)によつて
、冷却条件は所定温度の冷媒の噴射量(llmln)と
噴射冷却時間(秒)によつて管理を行つて来た。Up until now, the heating conditions have been high-frequency induction hardening by supplying a refrigerant to the outer circumferential surface of the heated object to rapidly cool it after induction heating the work by passing a high-frequency current through a heating coil that surrounds the work. The cooling conditions have been controlled by the amount of voltage (KW) and heating time (seconds), and the injection amount (llmln) of refrigerant at a predetermined temperature and the injection cooling time (seconds).
即ち加熱及び冷却の停止は設定タイマーによつて規制し
、電源電圧変動に対しては自動電圧調整装置により又冷
媒の温度設定に対しては一定温度保持装置等により、加
熱条件及び冷却条件を均一に保持し繰返し精度をあげ熱
処理品質のバラツキを最小限に抑える努力がなされて来
た。しかし、この従来の方式は精度の高い自動電圧調整
装置のためにコスト高になり、更に被焼入部材のワーク
の状態より直接加熱・冷却の状態の情報を把握しない間
接焼入管理であつたため構成機器の精度のバラツキやコ
イルの設置精度のバラツキ等の外乱要因の影響を受け高
価な機器を使用している割に品質管理には多大な努力と
工数を必要としている現況であ’る。本発明は上記の諸
点に鑑みて、従来の加熱電力と加熱時間による作業管理
とは別個の立場から高周波焼入作業を管理せんと企図開
発したもので、高周波誘導加熱を利用した表面硬度、硬
化層深さ・等の焼人品質に最も密接に関連付けが可能な
鋼材の被焼入れ部材の伸びを精密測長装置により捕捉し
て加熱中、冷却中に於いて鋼の最終焼人品質をより直接
的に把握せんとする構成の比較的簡便な装置によるより
高精度の高周波焼入法を提供することを目的とする。In other words, the stopping of heating and cooling is regulated by a set timer, and the heating and cooling conditions are kept uniform by using an automatic voltage regulator to deal with fluctuations in power supply voltage, and by using a constant temperature maintaining device to set the refrigerant temperature. Efforts have been made to maintain high repeatability and minimize variations in heat treatment quality. However, this conventional method was expensive due to the highly accurate automatic voltage regulator, and was indirect quenching management that did not directly grasp information on the heating and cooling conditions from the state of the workpiece to be quenched. The current situation is that quality control requires a great deal of effort and man-hours, even though expensive equipment is used and is affected by disturbance factors such as variations in the precision of component equipment and variations in the installation precision of coils. In view of the above points, the present invention was developed with the intention of managing induction hardening work from a standpoint different from the conventional work management using heating power and heating time. The elongation of the steel material to be hardened, which can be most closely related to the hardening quality such as layer depth, can be captured using a precision length measuring device, and the final hardening quality of the steel can be determined more directly during heating and cooling. The purpose of the present invention is to provide a high-precision induction hardening method using a relatively simple device with a configuration that allows for accurate understanding.
以下本発明の一実施例を図面に基づき説明する。An embodiment of the present invention will be described below based on the drawings.
第1図は本発明の一実施例を示す説明図、第2図は中炭
素銅材(例えばS4OC)の温度変化と伸びの関係を示
した図表である。本発明方法の原理を第1図及び第2図
の実施例により説明すると、被焼入部材のS4OC(焼
なまし状態)の丸鋼のワークWに於いては、加熱温度の
上昇と共に伸びの変化は第2図に示す如くほぼ直線の形
をとる。FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG. 2 is a chart showing the relationship between temperature change and elongation of medium carbon copper material (for example, S4OC). The principle of the method of the present invention will be explained with reference to the embodiments shown in Figs. 1 and 2. In the workpiece W of S4OC (annealed state) round steel as the member to be quenched, the elongation decreases as the heating temperature increases. The change takes the form of a nearly straight line as shown in FIG.
位置Bに於いて、ACl変態による収縮を生じ、更にそ
の後ある一定の温度範囲内でAC3変態がすすむと共に
若干収縮し、C点に於いてこのA.3変態が完了する。
AO3変態完了後の高温域口とACl変態までの低温域
イに於いてはワークWは単純熱膨脹を示している。焼入
れのための加熱温度は、一般の熱処理ではAC3変態完
了の位置Cより更に30〜50理高い温度点Dが標準と
されているが、高周波加熱は急速加熱であることから更
に高温度側にシフトすることが予想される。高周波焼入
の加熱温度は実際には鋼種、前熱処理状態、加熱速度、
焼人品の品質仕様等の各種の因子によつて決定されるこ
とは公知であるが、実際の作業では、この加熱温度は一
般的には温測計によらないで加熱電力と加熱時間の種々
な組合せによつて、焼入加工品の最終品質と関連決定さ
れている。本発明はこの最終品質特に表面硬度、硬化層
深さ等により直接的に関連性をもつ加熱状態における被
焼人品の伸びを市販の精密測長器10bによつてチェッ
クし、予め設定された値に達した.ときに加熱を停止し
て該加熱された表面W1を急冷し、丁度第2図の破線で
示す冷却を行い最大収縮点Gを通過し、マルテンサイト
の生成する完全冷却域迄の冷却ハか、該最大収縮点Gを
通過後徐冷しマルテンサイト化を純化し寸法変化を可及
的!に最小に抑える冷却二を行うものである。本実施例
のS4OCを含め高周波焼入に使用する鋼材については
0℃〜加熱温度700℃間の平均線*但しK=0.8〜
0.9−ーー直径が上記の実験式を求めたときより更に
大きくなり、加熱層の厚さ/直径の比が更に小さくなれ
ばKの値は前記より小さくなることが予想されr+[;
1,1二Eテ110/.:FOZミ2膨脹係数は大略1
3〜15×10−6/℃であり、鋼種による差は極めて
狭く、又変態時の収縮を除外するC点以上の高温に於け
る領域口の線膨脹係数〉領域イの線膨脹係数となつてい
る。At point B, contraction occurs due to ACl transformation, and then AC3 transformation progresses within a certain temperature range, causing some contraction, and at point C, this A. 3 Metamorphosis is completed.
The workpiece W exhibits simple thermal expansion in the high temperature region A after completion of the AO3 transformation and in the low temperature region A up to the ACl transformation. In general heat treatment, the heating temperature for quenching is set at point D, which is 30 to 50 degrees higher than point C, where AC3 transformation is completed, but because high-frequency heating is rapid heating, it is set to an even higher temperature. expected to shift. The heating temperature for induction hardening actually depends on the steel type, preheat treatment condition, heating rate,
It is well known that the heating temperature is determined by various factors such as the quality specifications of the baked product, but in actual work, the heating temperature is generally determined by the heating power and heating time, not by a thermometer. Various combinations are used to determine the final quality of the hardened product. The present invention uses a commercially available precision length measuring device 10b to check the final quality, particularly the elongation of the product under heating, which is directly related to surface hardness, hardened layer depth, etc. The value has been reached. When the heating is stopped and the heated surface W1 is rapidly cooled, the surface W1 is cooled exactly as indicated by the broken line in FIG. 2, passing through the maximum contraction point G, and cooling to the complete cooling region where martensite is generated. After passing the maximum contraction point G, it is slowly cooled to purify martensitic formation and reduce dimensional changes as much as possible! This is to minimize cooling. Regarding steel materials used for induction hardening, including S4OC in this example, the average line between 0℃ and heating temperature 700℃ *However, K = 0.8 ~
0.9--If the diameter becomes even larger than when the above empirical formula was obtained, and the ratio of the thickness/diameter of the heating layer becomes smaller, it is expected that the value of K will become smaller than the above value r+[;
1,12 Ete 110/. :FOZ Mi2 expansion coefficient is approximately 1
3 to 15 x 10-6/°C, and the difference depending on the steel type is extremely narrow.Also, at high temperatures above point C, excluding shrinkage during transformation, the coefficient of linear expansion at the entrance of the region is the coefficient of linear expansion of the region A. ing.
従つてC点以上の線膨脹係数は15×10−6/℃以上
と推定できる。現在市販の精密測長器10bの読みとり
精度(1pTr1.)に於いて本発明方法が実施可能か
どうかについての検討結果について説明すると、C点以
上の温度上昇x℃に対する被加熱領域の長さl)瓢の伸
びΔl瓢は次式であられされる。測長器の読みとり精度
・・・・・・・・・1μ几であるから・即ち1x″=6
6.5を最小単位とする温度と長さの相乗変化に対応す
る長さの変化が測定可能である。Therefore, the linear expansion coefficient above point C can be estimated to be 15 x 10-6/°C or more. To explain the results of an investigation as to whether the method of the present invention is practicable with respect to the reading accuracy (1 pTr1.) of the precision length measuring device 10b currently on the market, the length of the heated area l for a temperature rise x°C above point C ) The elongation of the gourd Δl is given by the following formula. The reading accuracy of the length measuring device is 1μ, i.e. 1x″=6
The change in length corresponding to the synergistic change in temperature and length with a minimum unit of 6.5 can be measured.
熱処理に於ける加熱温度の制御範囲は特に厳密なときで
も±5℃、特に急速加熱を必要とする高周波焼入の場合
では±15℃位が適当な範囲であ゛る。従つてx=30
℃とするとl″.2.2w0nとなる。これは本実施例
のS4OC丸鋼Wの高周波表面焼入を行う場合、焼入部
長さが約2.2T!Rlnあれば充分であることを示す
。なお現在行われている最小の焼入幅は5.5wr!n
程度である。高周波焼入は表面焼入であるから芯部まで
同一温度に加熱されていないから表面の温度上昇が示す
線膨脹と芯部の比較的低温部の線膨脹とは理想的になり
、これを数学的に解析することは困軟である゛が、ワー
クの丸鋼Wの芯部の各部位はその温度に応じた伸びを示
そうとしている状態にある。即ち前記の第2図に示如き
温度一伸び曲線に示す変化の状態が最終加熱段階に近づ
けば、外周面W1の領域口から芯部の領域イに至る各部
位の伸びが互いに影響し合つて全体として伸びとして現
われる。本実施例を含む20〜30φ順で長さ200〜
80D1wtの全長に亘るワークの外周面W1を高周波
による急速加熱を行つたときの実験結果では、表面加熱
温度と軸線方向の伸びとの関係式は次式が成立した。
――轟k^1丁覧1レニ −1 −4■Q〜IP
プ′暴〜Vl)カレ〜1)Alるが、Kの適正値を選択
することによりその加熱温度に於ける伸びは推定できる
ことになる。The appropriate control range for the heating temperature in heat treatment is ±5°C even when it is particularly strict, and about ±15°C especially in the case of induction hardening which requires rapid heating. Therefore x=30
℃, it becomes l″.2.2w0n. This shows that when performing induction hardening of the S4OC round steel W of this example, it is sufficient if the hardened length is about 2.2T!Rln. .The minimum quenching width currently being performed is 5.5wr!n
That's about it. Since induction hardening is surface hardening, the core is not heated to the same temperature, so the linear expansion indicated by the temperature rise on the surface and the linear expansion in the relatively low temperature part of the core are ideal, and this can be calculated mathematically. Although it is difficult to analyze it visually, each part of the core of the round steel W of the workpiece is in a state of elongation corresponding to its temperature. That is, as the state of change shown in the temperature-elongation curve shown in FIG. It appears as a stretch as a whole. Length 200~ in order of 20~30φ including this example
According to the experimental results when the outer circumferential surface W1 of the workpiece over the entire length of 80D1wt was rapidly heated by high frequency, the following equation was established as the relation between the surface heating temperature and the elongation in the axial direction.
--Todoroki k^1 Choran 1 Reni -1 -4■Q~IP
However, by selecting an appropriate value for K, the elongation at that heating temperature can be estimated.
通常鋼の焼入加熱温度に於いて表面を急速加熱してもそ
の比較的大きい熱伝導率によりKの値は0.5以 r
+口し1二E1)0/.;トqζ下になることは無いと
考えられる。Even if the surface is rapidly heated at the quenching heating temperature of normal steel, the value of K is 0.5 or more due to its relatively high thermal conductivity.
+ mouth 12E1) 0/. ;It is thought that it will not be below qζ.
今仮にK=0.5とすれば、前述の測定可能な温度と長
さの相乗値の最小単位は;1.51x(0.5)/10
0=より1X=133となり、x=30℃に於いて1=
4.47mとなる。Now, if K=0.5, the minimum unit of the measurable synergistic value of temperature and length is; 1.51x(0.5)/10
From 0=, 1X=133, and at x=30℃, 1=
It will be 4.47m.
か!らに狭い外周面でも現在の1μm単位の測長器を使
用できることになる。以上の如く、本発明の基本的実験
結果より判断して、極く幅の狭い部分の加熱でも、長い
丸鋼の全長に亘つて加熱するものであつても本発明の方
法が適用できるものであ1る。本実施例による高周波焼
入法は、モータ等の駆動源による回転駆動により回動す
るS4OC丸鋼等軸線対称の回転体であるワークwの外
周面W1を囲繞するセミループ型加熱コイル20に入力
端子,22から高周波電流を通電し該外周面W1に誘導
電流を発生させC点終了以上の高い温度D迄誘導加熱し
た後、所定の伸び値に到達したとき加熱を切り冷媒噴射
ジャケット30より冷媒を噴射供給し少なくとも収縮が
最大となる温度Gを通過する;迄急冷を行うもので、上
記高周波電流の通電によるワーク外周面W1の誘導加熱
を、精密測長装置10により該ワークWの固定支軸43
による軸線方向の移動を拘束した回転駆動側W,より他
方の自由端側W2へ熱膨脹して来るワークWの予め設定
された軸線方向の回転軸の伸びをばねによりワークWの
方へ付勢された摺動支軸44を介して検知することによ
り制御器10cを介して高周波電流の供給を遮断し終了
させ、次いで加熱された該外周面W1の冷却を開始し、
この冷却のための上記冷媒の供給を該測長器10bによ
る予め設定された前記回転軸に於ける長さ迄の収縮を検
知することにより停止させることにより高周波焼入を行
うものである。mosquito! Furthermore, the current length measuring device measuring in units of 1 μm can be used even on a narrow outer peripheral surface. As described above, judging from the basic experimental results of the present invention, the method of the present invention can be applied to both heating a very narrow part and heating the entire length of a long round steel. A1ru. In the induction hardening method according to this embodiment, an input terminal is connected to a semi-loop heating coil 20 that surrounds the outer circumferential surface W1 of a workpiece w, which is an axially symmetrical rotating body such as an S4OC round steel that rotates due to rotational drive by a drive source such as a motor. , 22 to generate an induced current on the outer circumferential surface W1, and heat it by induction to a high temperature D above the end of point C. When a predetermined elongation value is reached, the heating is stopped and the refrigerant is injected from the refrigerant injection jacket 30. In this method, the workpiece is supplied by injection and rapidly cooled until it passes through a temperature G at which the contraction is maximum. 43
The rotational drive side W is restrained from moving in the axial direction by the spring, and the rotation axis of the workpiece W is thermally expanded toward the other free end side W2. The high frequency current supply is cut off and terminated via the controller 10c by detection via the sliding support shaft 44, and then cooling of the heated outer circumferential surface W1 is started,
Induction hardening is performed by stopping the supply of the refrigerant for cooling when the length measuring device 10b detects contraction up to a preset length of the rotating shaft.
これら最適の伸び及び収縮の値は計算上推定され且つ経
験則的に試行の段階で確認されるものである。実験例・
・・・・・伸びと焼人品質との間に一定の関係が確認さ
れた。These optimum elongation and shrinkage values are calculated and verified empirically. Experimental example/
...A certain relationship was confirmed between elongation and firing quality.
S4OC焼ならし材(直径25φ×長さ3001)の全
長を10KHZ1250KWの高周波発振機で表面焼入
し、冷却は同一条件の完全冷却を実施。The entire length of the S4OC normalized material (diameter 25φ x length 3001 mm) was surface hardened using a 10 KHZ 1250 KW high frequency oscillator, and complete cooling was performed under the same conditions.
入力密度0.48KWIc1tのときの結果は次の表の
通りである。この方法に用いられる実施例の高周波焼入
装置は、その概要を第1図に示すように回転軸線対称の
回転体のワークWを回動自在且つ軸線方向に摺動自在に
且つ中央部に於いて一対のローラ41,42上に支持し
センターリングを行い、公知のチャッキング装置を介し
てモータ等の駆動源により回動する。The results when the input density is 0.48KWIc1t are shown in the following table. The induction hardening apparatus according to the embodiment used in this method, as shown in FIG. It is supported on a pair of rollers 41 and 42 for centering, and rotated by a drive source such as a motor via a known chucking device.
回転体のワークWにはセミ・ループ型の加熱コイル20
が量産上好適であり、適宜昇降装置によりワークwの全
長に亘りワークの上半分を囲繞すべく設定される。A semi-loop heating coil 20 is attached to the rotating workpiece W.
is suitable for mass production, and is set so as to surround the upper half of the workpiece w over the entire length thereof using an appropriate lifting device.
自動電圧調整装置を持たない高周波発電装置100より
加熱コイル20は入力端子22から高周波電流の供給を
受け回動するワークWの外周面W1を誘導加熱する。誘
導加熱による伸びは、自由端側W2の軸線上にスプリン
グによつてワーク側に付熱された右センター44の移動
をそれと接触保持されている超合金製の測定用センサー
10aを介して移設自在の測長器10b(例えばNjk
On製デジマイクロ■−501等の商品が有る)に伝え
られる。該精密測長器10bが所定のワークWの回転軸
の伸びを検知すると、この制御器10cに信号を送り、
この制御器10cの指令により高周波電流は遮断される
。同時に該制j御器10cよりの指令により冷媒噴射ジ
ャケット30より冷却液が加熱された外周面W1に向け
噴射供給される。冷却液の温度管理は本発明の場合は従
来の方法よりも大きく許容温度をとることができ大幅に
管理工数は少略される。この急速冷却7によるワークW
の収縮は同様に測定用センサー10aを介して測長器1
0bにより計測され、設定の軸の長さ迄の収縮を検知さ
れるとその検知信号を制御器10cが受けその指令によ
り冷媒液噴射ジャケット30に通する冷媒系統の電動弁
が閉鎖され冷却液の噴射は停止される。更に応用実施例
として、本発明の測長装置10にデジタルリードアウト
システムを結合すると、膨脹及び収縮の過程を目視でき
、急冷から徐冷に切換えるタイミングの選択等の熱処理
の応用が可能となる。The heating coil 20 of the high-frequency power generation device 100, which does not have an automatic voltage regulator, receives a high-frequency current from the input terminal 22 and heats the outer peripheral surface W1 of the rotating workpiece W by induction. The elongation due to induction heating can be achieved by freely moving the right center 44, which is heated on the workpiece side by a spring, on the axis of the free end side W2 via the superalloy measurement sensor 10a that is held in contact with the right center 44. length measuring device 10b (for example, Njk
There are products such as On's Digimicro ■-501). When the precision length measuring device 10b detects the elongation of the rotation axis of a predetermined workpiece W, it sends a signal to the controller 10c,
The high frequency current is cut off by this command from the controller 10c. At the same time, the coolant is injected and supplied from the coolant injection jacket 30 toward the heated outer circumferential surface W1 in response to a command from the controller 10c. In the case of the present invention, the temperature of the coolant can be controlled to a higher allowable temperature than in the conventional method, and the number of management steps can be greatly reduced. Work W due to this rapid cooling 7
Similarly, the contraction is measured by the length measuring device 1 via the measurement sensor 10a.
0b, and when the contraction to the set shaft length is detected, the controller 10c receives the detection signal, and in response to the command, the electric valve of the refrigerant system that passes through the refrigerant liquid injection jacket 30 is closed, and the refrigerant is discharged. Injection is stopped. Furthermore, as an applied example, if a digital readout system is coupled to the length measuring device 10 of the present invention, the expansion and contraction processes can be visually observed, and heat treatment applications such as selecting the timing to switch from rapid cooling to slow cooling become possible.
かくして被焼入部材であるワークWからの直接の伸び、
収縮の状態を精密測長装置10により捕捉する本発明の
方法によれは、電源電圧の変動、加熱タイマーの精度、
ワークとクイルとの相対位置のズレ、等の諸種の要因か
ら誘発される加熱の不均一、及び冷却液の温度流量等の
変動に起因する冷却の不均一が皆無となり、繰返し精度
の向上即ち焼人品質の一段の向上が実現され、更に測長
器10bにデジタルリード・アウトシステムを連結する
と加熱中又は冷却中の熱処理の進行状況を観察し得最適
の熱処理を施すことも可能となる等優れた効果を享受で
きるIn this way, the direct elongation from the workpiece W, which is the member to be hardened,
The method of the present invention that captures the state of contraction using the precision length measuring device 10 may be affected by fluctuations in power supply voltage, accuracy of heating timer,
Non-uniform heating caused by various factors such as misalignment of the relative position of the workpiece and quill, and non-uniform cooling caused by fluctuations in the temperature and flow rate of the coolant are completely eliminated, improving repeatability, i.e., sintering. A further improvement in human quality has been realized, and furthermore, by connecting a digital read-out system to the length measuring device 10b, it is possible to observe the progress of heat treatment during heating or cooling, and it is also possible to perform optimal heat treatment. You can enjoy the effects of
第1図は本発明の一実施例を示す説明図、第2図は炭素
鋼材の温度変化と伸びの関係を示した図表である。
(符号の説明)、10・・・・・・精密測長装置、20
・・・・・加熱コイル、30・・・・・・冷媒噴射ジャ
ケット、W・・・・・・ワーク、W1・・・・・・ワー
ク外周面、Wl,W2・・・・・・ワークの端部。FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG. 2 is a chart showing the relationship between temperature change and elongation of carbon steel materials. (Explanation of symbols), 10...Precision length measuring device, 20
... Heating coil, 30 ... Refrigerant injection jacket, W ... Work, W1 ... Workpiece outer circumferential surface, Wl, W2 ... Workpiece edge.
Claims (1)
に高周波電流を通電し該外周面W_1を誘導加熱した後
、冷媒噴射ジャケット30より冷媒を供給し急冷するこ
とにより焼入する高周波焼入法に於いて、上記高周波電
流の通電によるワーク外周面W_1の誘導加熱を、ワー
クWの軸線方向の端部に配設された精密測長装置10に
よりセンターリングされた該ワークWの予め設定された
軸線方向の自由端に於ける伸びを検知することにより終
了させ、次いで加熱された該外周面W_1の冷却を開始
し、この冷却のための上記冷媒の供給を該精密測長装置
10により予め設定されたワークWの長さ迄の収縮を検
知することにより停止させることを特徴とした高周波焼
入法。 2 上記ワークWの予め設定された軸線方向の伸びを、
該ワークWの一端部w_1を軸線方向に拘束し、他端部
w_2を自由端として該自由端w_2に精密測長装置1
0により検知する特許請求の範囲第1項記載の高周波焼
入法。[Claims] 1. A heating coil 20 surrounding the outer peripheral surface W_1 of the workpiece W.
In the induction hardening method, in which the outer circumferential surface W_1 of the workpiece is induction heated by passing a high-frequency current through it, the outer circumferential surface W_1 of the workpiece is hardened by supplying refrigerant from the refrigerant injection jacket 30 for rapid cooling. The induction heating is performed by detecting the elongation at a preset free end of the work W in the axial direction, which is centered by the precision length measuring device 10 disposed at the end of the work W in the axial direction. Then, cooling of the heated outer circumferential surface W_1 is started, and the supply of the refrigerant for this cooling is detected by the precision length measuring device 10 to detect the contraction to the length of the workpiece W set in advance. This is an induction hardening method that is characterized by stopping. 2 The preset elongation of the work W in the axial direction is
One end w_1 of the workpiece W is restrained in the axial direction, and the other end w_2 is set as a free end, and the precision length measuring device 1 is attached to the free end w_2.
The induction hardening method according to claim 1, wherein the induction hardening method is detected by 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57051808A JPS6047881B2 (en) | 1982-03-30 | 1982-03-30 | Induction hardening method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57051808A JPS6047881B2 (en) | 1982-03-30 | 1982-03-30 | Induction hardening method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58167719A JPS58167719A (en) | 1983-10-04 |
JPS6047881B2 true JPS6047881B2 (en) | 1985-10-24 |
Family
ID=12897213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57051808A Expired JPS6047881B2 (en) | 1982-03-30 | 1982-03-30 | Induction hardening method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6047881B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270665A (en) * | 1985-09-20 | 1987-04-01 | Yuu Shoji:Kk | Capacitor for secondary circuit in internal combustion engine equiped with electric ignition system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4034098A1 (en) * | 1990-10-26 | 1992-04-30 | Aeg Elotherm Gmbh | METHOD FOR CONTROLLING THE GOET OF HARDENED SHAFTS, ESPECIALLY CRANKSHAFT |
JP2528940Y2 (en) * | 1991-12-26 | 1997-03-12 | 富士電子工業株式会社 | Cooling device for induction hardening |
DE102007051108B4 (en) * | 2007-10-24 | 2010-07-15 | Zenergy Power Gmbh | Method for inductively heating a metallic workpiece |
-
1982
- 1982-03-30 JP JP57051808A patent/JPS6047881B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270665A (en) * | 1985-09-20 | 1987-04-01 | Yuu Shoji:Kk | Capacitor for secondary circuit in internal combustion engine equiped with electric ignition system |
Also Published As
Publication number | Publication date |
---|---|
JPS58167719A (en) | 1983-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8529711B2 (en) | Induction heat treatment method, induction heat treatment installation and induction-heat-treated product | |
JPS6047881B2 (en) | Induction hardening method | |
US10161015B2 (en) | Heat treatment method and method of manufacturing machine part | |
US4500366A (en) | Process for producing a grain-oriented electromagnetic steel strip or sheet | |
JPH066304B2 (en) | Injection molding equipment | |
WO2007102306A1 (en) | Method of high-frequency quenching, high-frequency quenching apparatus, and product of high-frequency quenching | |
JP2004162137A (en) | Induction hardening device for crankshaft | |
JPH01301821A (en) | Surface heat treatment method for long shaft material | |
JP2001020012A (en) | Heat treatment apparatus for long work and method for controlling heat treatment for long work used in this apparatus | |
JP2006291248A (en) | Method and equipment for high frequency induction heat treatment, thin member and thrust bearing | |
US4621794A (en) | Apparatus for producing a grain-oriented electromagnetic steel strip or sheet | |
US6419767B2 (en) | Distortion control method and cooling power measuring device | |
JP2007217759A (en) | Induction hardening method, induction hardening facility and induction-hardened product | |
JP2005307307A (en) | High frequency heat-treatment apparatus | |
SU1731830A1 (en) | Method and apparatus for heat treatment of strip from amorphous magnetically-soft alloys | |
JP4508956B2 (en) | Induction heat treatment method and induction heat treatment apparatus | |
JPH09302418A (en) | Hardening apparatus | |
US20240316644A1 (en) | Annealing apparatus and method using induced heating coil | |
JPH0243323A (en) | Electric heat treatment method for the bend part of a U-bend pipe | |
JPS63238212A (en) | Method for quenching and tempering partial surface of cylindrical member having different thickness | |
JPH04218621A (en) | Surface heat treatment method for long shaft material | |
JP2000160235A (en) | Method for straightening deformation of ring-like member | |
JPH04235214A (en) | High frequency heating and annealing method | |
JP2006083412A (en) | Induction heat treatment device, induction heat treatment method, and wrought product manufactured with the method | |
JPH0223827B2 (en) |