JPS6046183B2 - Method and apparatus for epitaxial deposition of silicon on a substrate - Google Patents
Method and apparatus for epitaxial deposition of silicon on a substrateInfo
- Publication number
- JPS6046183B2 JPS6046183B2 JP7882676A JP7882676A JPS6046183B2 JP S6046183 B2 JPS6046183 B2 JP S6046183B2 JP 7882676 A JP7882676 A JP 7882676A JP 7882676 A JP7882676 A JP 7882676A JP S6046183 B2 JPS6046183 B2 JP S6046183B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- temperature
- silicon
- reactor
- temperature zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
本発明は、反応装置の使用下に珪素一沃素輸送反応によ
り基板上に珪素をエピタキシャル析出する方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for epitaxially depositing silicon on a substrate by a silicon-iodine transport reaction using a reactor.
珪素一沃素一輸送反応により基板上で珪素をエピタキシ
ャル析出する場合、従来公知の方法では成長源及び基板
を互いに一定の間隔を置いて配置する。When silicon is epitaxially deposited on a substrate by a silicon-iodine-transport reaction, the conventional method is to arrange the growth source and the substrate at a certain distance from each other.
この場合該間隔は最大数ミリメートルである。この場合
特殊な装置を配置してこの僅少な間隔に相応する温度経
過を保証する必要がある。本発明は、半導体技術で常用
の装置を使用することができ、従つて例えば析出に必要
な温度帯域を生ぜしめるため拡散技術で公知の拡散炉を
も使用することのできる珪素析出法を得ることを根本課
題とする。更に本発明による方法は、析出を基板のマス
ク処理されていない部分に限定する選択的珪素析出をも
可能にするものでなければならない。この課題を解決す
るため、最初に記載した形式の方法で、基板を反応装置
内における高さとの関連において、所望の析出が得られ
るように配置することを提案する。本明細書で高さにつ
いて言及する場合、基準点を越える高さを意味する。In this case, the distance is at most a few millimeters. In this case, it is necessary to arrange special equipment to ensure a temperature profile corresponding to this small distance. The invention provides a silicon deposition method which makes it possible to use equipment customary in semiconductor technology and thus also to use, for example, diffusion furnaces known in diffusion technology to create the temperature range required for the deposition. is the fundamental issue. Furthermore, the method according to the invention should also allow selective silicon deposition, limiting the deposition to unmasked areas of the substrate. To solve this problem, it is proposed, in a method of the type described at the outset, to position the substrate in relation to its height in the reactor in such a way that the desired deposition is obtained. When we refer to height herein, we mean the height above the reference point.
示された高さ関係は水平又は垂直に配置された反応装置
において該当する。本発明によれば基板は成長源よりも
高い位置で反応装置内に配置される。The height relationships shown apply in horizontally or vertically arranged reactors. According to the invention, the substrate is placed in the reactor at a higher level than the growth source.
析出度は反応装置内における基板の高さ位置によつて調
整される。反応装置内に配置される基板の位置が高けれ
ば高いほど、一般に析出度も大きい。反応装置は析出に
必要な温度範囲にもたらされるが、この場合有利には基
板を含む反応装置部分が最初にその温度範囲に達するよ
うにする。沃素源は、基板から分離して配置された珪素
源と同じ側に配置するのが有利である。析出工程は時間
と関連する温度経過によつて有利に制御される。The degree of precipitation is adjusted by the height position of the substrate within the reactor. The higher the substrate is placed in the reactor, the higher the degree of precipitation will generally be. The reactor is brought to the temperature range required for the deposition, preferably in such a way that the part of the reactor containing the substrate reaches that temperature range first. Advantageously, the iodine source is placed on the same side as the silicon source, which is placed separately from the substrate. The precipitation process is advantageously controlled by the time-related temperature profile.
この場合温度は出発温度から作業温度に調整される。最
後に温度は作業温度から最終温度に調整される。本発明
の1実施例によれば、反応装置の長手軸・方向で温度の
異なる少なくとも2つの温度帯域が反応装置内に存在し
、その際一方の温度帯域は反応装置の長手方向で他方の
温度帯域よりも実際に長くされている。In this case the temperature is adjusted from the starting temperature to the working temperature. Finally, the temperature is adjusted from the working temperature to the final temperature. According to one embodiment of the invention, at least two temperature zones with different temperatures in the longitudinal direction of the reactor are present in the reactor, one temperature zone being at a temperature of the other in the longitudinal direction of the reactor. The band is actually longer than that.
基板は長い方の温度帯域にまた沃素源及び珪素源は他の
温度帯域に配置する。各温度帯域の温度は例えば500
〜1300℃の範囲内にあり、各温度帯域間の温度差は
例えば10〜500℃である。選択的析出は反応装置内
における圧力を適当に選択することによつて得られる。The substrate is located in the longer temperature zone and the iodine source and silicon source are located in the other temperature zone. For example, the temperature of each temperature range is 500
-1300°C, and the temperature difference between each temperature zone is, for example, 10-500°C. Selective precipitation is obtained by appropriate selection of the pressure within the reactor.
複数の温度帯域を得るには、拡散技術で常用されている
標準的な拡散炉を使用することができる。この種の拡散
炉の場合、異なる加熱帯域間の温度移行領域は周知・の
ように5C77!よりも大きい。本発明方法では密閉さ
れた反応装置を使用することが有利である。反応装置は
長手伸張方向て水平又は垂直に配置することができる。
次に本発明を実施例に基づき詳述する。To obtain multiple temperature bands, standard diffusion furnaces commonly used in diffusion technology can be used. For this kind of diffusion furnace, the temperature transition area between different heating zones is well known as 5C77! larger than It is advantageous in the process of the invention to use a closed reactor. The reactor can be arranged horizontally or vertically in the longitudinal direction.
Next, the present invention will be explained in detail based on examples.
成長源(支持体1)から気相により基板(支持体■)に
珪素を輸送するための珪素一沃素輸送系を使用して工業
的に使用可能の析出度を得るためには、公知方法の場合
異なる温度下にある両支持体間の空間は数10p7n,
〜数?でなければならない。In order to obtain an industrially usable precipitation degree using a silicon monoiodide transport system for transporting silicon from the growth source (support 1) to the substrate (support ■) in the gas phase, known methods are used. In this case, the space between both supports under different temperatures is several 10p7n,
~number? Must.
この条件は特殊な技術的構成を必要とする。本発明方法
は、工業的に利用するという原則から半導体分野での多
数の使用例から公知である常用の拡散炉を使用すること
が要求される。この種の拡散炉は長く延伸して配置する
ことによつて特長づけられまた炉の長手方向で互いに分
離された温度の異なる帯域を僅少な費用て得ることを可
能にする。炉を長く延伸しで配置しまた長手方向に伸び
る各帯域の温度を一定に保つことによつて一層長い反応
装置を使用した場合、一層多量の基板を仕上げ条件下に
処理することが可能となる。第1図は本発明による珪素
のエピタキシャル析出装置を示すものである。この装置
は実際!こ別個に調整可能の少なくとも2つの加熱帯域
を有すろ密閉された例えば長さ1TL及び直径80〜1
凹喘の反応装置1と加熱コ・イル2とから成ろ。反応装
置1内には珪素源4が載る珪素源用の支持体3並びに珪
素基板6が載る珪素基板用の支持体5が存在し、沃素蒸
気が導入される。第2図は反応装置内の温度経過、すな
わち温度Tと反応装置の長手方向への伸長位置Xとの関
連を示す。This condition requires special technical configuration. The process according to the invention requires, on principle of industrial application, the use of conventional diffusion furnaces, which are known from numerous applications in the semiconductor field. Diffusion furnaces of this type are characterized by a long, elongated arrangement and make it possible to obtain zones of different temperatures, separated from each other in the longitudinal direction of the furnace, at a low cost. If a longer reactor is used, by arranging the furnace in a long extension and maintaining a constant temperature in each longitudinal zone, a larger quantity of substrates can be processed under finishing conditions. . FIG. 1 shows an apparatus for epitaxially depositing silicon according to the present invention. This device is real! A sealed filter with at least two separately adjustable heating zones, e.g. length 1 TL and diameter 80-1
It consists of a concave reactor 1 and a heating coil 2. Inside the reactor 1 there is a support 3 for a silicon source on which a silicon source 4 is placed, as well as a support 5 for a silicon substrate on which a silicon substrate 6 is placed, and iodine vapor is introduced. FIG. 2 shows the temperature profile in the reactor, ie the relationship between the temperature T and the longitudinal extension position X of the reactor.
この温度経過によれば珪素源4は例えば長さ10〜20
C7rL及び温度900゜Cの高温帯域7にありまた基
板6は例えば長さ60〜80cm及ひ温度800℃の低
温帯域8に存在する。温度帯域7と8との間には5〜3
0cmの長さの温度移行領域9が存在する。本発明は、
温度移行領域によつてもたらされる珪素源と基板との間
隔が極めて広い場合、反応装置内の基板の位置が珪素析
出にとつて決定的な意義を有するという認識に基づく。According to this temperature course, the silicon source 4 has a length of, for example, 10 to 20 mm.
C7rL and a high temperature zone 7 with a temperature of 900 DEG C., and the substrate 6 is in a low temperature zone 8 with a length of 60 to 80 cm and a temperature of 800 DEG C., for example. Between temperature zones 7 and 8 there are 5 to 3
There is a temperature transition region 9 with a length of 0 cm. The present invention
It is based on the recognition that the position of the substrate in the reactor is of decisive significance for silicon deposition, given the very wide spacing between the silicon source and the substrate provided by the temperature transition zone.
すなわち珪素析出は反応装置内の基板の高さ位置に極め
て本質的に依存し、この場合高さ位置は上方に伸びる。
第3図から第5図までには、3つの代表的な基板位置が
示されている。第3図では基板6は反応装置の下方に存
在する。この位置ては珪素の析出は起らず、基板表面は
逆に腐蝕される。第4図では基板6は中央の高さ位置に
ある。この位置で基板はすでに珪素析出を行なう。第5
図では基板6は最高の位置にあり、この基板位置で顕著
な珪素析出を生じる。珪素析出は従つて基板の位置が高
くなるにつれて増大する。第3〜5図は基板の高さが異
なる点で相違するのみてある。The silicon deposition thus depends very essentially on the height position of the substrate within the reactor, the height position extending upwards.
Three representative substrate locations are shown in FIGS. 3-5. In FIG. 3, the substrate 6 is below the reactor. No silicon precipitation occurs at this location, and the substrate surface is instead corroded. In FIG. 4, the substrate 6 is at a central height position. In this position the substrate has already undergone silicon deposition. Fifth
In the figure, the substrate 6 is in the highest position and significant silicon deposition occurs at this substrate position. Silicon deposition therefore increases with increasing substrate height. 3 to 5 differ only in that the height of the substrate is different.
基板と成長源との間隔並びに反応装置内の温度及び圧力
は上記3つの場合に異ならず、従つてそのまま維持され
る。本発明方法で選択的析出を得たい場合には、選択的
析出に応じて基板に部分的にマスクを施し、基板を反応
装置の相応する高さ位置にある析出帯域に装入する。The spacing between the substrate and the growth source as well as the temperature and pressure within the reactor do not differ in the three cases and therefore remain the same. If selective deposition is desired in the process of the invention, the substrate is partially masked in accordance with the selective deposition and is introduced into the deposition zone at the corresponding height of the reactor.
更に反応装置内の全圧力は、珪素がマスク処理されてい
ない珪素基板上で有利に析出されるように調節する必要
がある。第6図には基板6上に選択的に析出されたエピ
タキシャル層10を有する半導体が示されている。Furthermore, the total pressure in the reactor must be adjusted so that silicon is advantageously deposited on the unmasked silicon substrate. FIG. 6 shows a semiconductor with an epitaxial layer 10 selectively deposited on a substrate 6. In FIG.
マスク材11としては半導体工業で常用の材料例えばS
iO2又はSi3N4を使用することができる。The mask material 11 may be a material commonly used in the semiconductor industry, such as S.
iO2 or Si3N4 can be used.
【図面の簡単な説明】
第1図は本発明による珪素のエピタキシャル析出装置の
略示図、第2図は反応装置内の温度経過を示すグラフ、
第3図は基板位置を示す図、第4図は他の基板位置を示
す図、第5図はもう1つの基板位置を示す図、第6図は
エピタキシャル層を有する半導体の1部を示す断面図で
ある。
1・・・・・・反応装置、2・・・・・・加熱コイル、
3・・・・・・支持体、4・・・・・・珪素源、5・・
・・・・支持体、6・・・・・・基板、10・・・・エ
ピタキシャル層、11・・・・・・マスク材。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of an apparatus for epitaxially depositing silicon according to the present invention, and FIG. 2 is a graph showing the temperature course in the reaction apparatus.
FIG. 3 is a diagram showing the substrate position, FIG. 4 is a diagram showing another substrate position, FIG. 5 is a diagram showing another substrate position, and FIG. 6 is a cross section showing a part of a semiconductor having an epitaxial layer. It is a diagram. 1... Reactor, 2... Heating coil,
3...Support, 4...Silicon source, 5...
... Support body, 6 ... Substrate, 10 ... Epitaxial layer, 11 ... Mask material.
Claims (1)
板上に珪素をエピタキシャル析出する方法において、基
板を反応装置内における高さとの関連において、所望の
析出が基板上に得られるように配置することを特徴とす
る基板上での珪素のエピタキシャル析出法。 2 基板を反応装置内で成長源よりも高い位置に配置す
る特許請求の範囲第1項記載の方法。 3 反応装置内における基板の高さ位置によつて析出度
を調整する特許請求の範囲第1項又は第2項記載の方法
。 4 反応装置を使用して珪素−沃素−輸送反応により基
板上に珪素をエピタキシャル析出する装置において、反
応装置の長手軸方向で温度の異なる少なくとも2つの温
度帯域が反応装置内に存在し、一方の温度帯域が反応装
置の長手方向で他方の温度帯域よりも実際に長いことを
特徴とする基板上での珪素のエピタキシャル析出装置。 5 基板を長い方の温度帯域にまた沃素源と珪素源とを
他方の温度帯域に配置する特許請求の範囲第4項記載の
装置。6 各温度帯域の温度が500〜1300℃の範
囲内にあり、各温度帯域間の温度差が10〜500℃で
ある特許請求の範囲第4項又は第5項記載の装置。 7 反応装置内の圧力を、選択的析出が達成されるよう
に選択する特許請求の範囲第4項から第6項までのいず
れか1項に記載の装置。 8 複数の温度帯域を得るため、拡散技術で常用の拡散
炉で設置し、これが各温度帯域間に5cmよりも長い移
行領域をもたらす特許請求の範囲第4項から第7項まで
のいずれか1項に記載の装置。 9 密閉された反応装置を設置する特許請求の範囲第4
項から第8項までのいずれか1項に記載の装置。 10 基板と成長源との間隔が温度の異なる各温度帯域
間の温度移行領域よりも大きい特許請求の範囲第4項か
ら第9項までのいずれか1項に記載の装置。 11 基板が前記の温度こう配を有する一方の温度帯域
内に存在する特許請求の範囲第4項から第10項までの
いずれか1項に記載の装置。[Scope of Claims] 1. A method for epitaxially depositing silicon on a substrate by a silicon-iodine-transport reaction using a reactor, in which the desired deposition is carried out on the substrate in relation to the height of the substrate in the reactor. 1. A method for epitaxially depositing silicon on a substrate, characterized in that the arrangement is such that it is obtained. 2. The method according to claim 1, wherein the substrate is placed at a higher position than the growth source in the reaction apparatus. 3. The method according to claim 1 or 2, wherein the degree of precipitation is adjusted by the height position of the substrate within the reaction apparatus. 4 In an apparatus for epitaxially depositing silicon on a substrate by a silicon-iodine transport reaction using a reaction apparatus, at least two temperature zones having different temperatures in the longitudinal axis direction of the reaction apparatus exist, and one Apparatus for the epitaxial deposition of silicon on a substrate, characterized in that one temperature zone is actually longer in the longitudinal direction of the reactor than the other temperature zone. 5. The apparatus of claim 4, wherein the substrate is placed in the longer temperature zone and the iodine source and silicon source are placed in the other temperature zone. 6. The apparatus according to claim 4 or 5, wherein the temperature of each temperature zone is within the range of 500 to 1300C, and the temperature difference between each temperature zone is 10 to 500C. 7. Apparatus according to any one of claims 4 to 6, wherein the pressure in the reactor is selected such that selective precipitation is achieved. 8. Any one of claims 4 to 7 installed in a conventional diffusion furnace with diffusion technology in order to obtain a plurality of temperature zones, which results in a transition area longer than 5 cm between each temperature zone. Equipment described in Section. 9 Claim No. 4 installing a closed reaction device
The device according to any one of paragraphs 8 to 8. 10. The apparatus according to any one of claims 4 to 9, wherein the distance between the substrate and the growth source is larger than the temperature transition region between each temperature zone. 11. The device according to any one of claims 4 to 10, wherein the substrate is within one temperature band having the temperature gradient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19752529484 DE2529484C3 (en) | 1975-07-02 | 1975-07-02 | Method and apparatus for epitaxially depositing silicon on a substrate |
DE2529484.2 | 1975-07-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS527829A JPS527829A (en) | 1977-01-21 |
JPS6046183B2 true JPS6046183B2 (en) | 1985-10-15 |
Family
ID=5950483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7882676A Expired JPS6046183B2 (en) | 1975-07-02 | 1976-07-02 | Method and apparatus for epitaxial deposition of silicon on a substrate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6046183B2 (en) |
DE (1) | DE2529484C3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2738111C2 (en) * | 1977-08-24 | 1983-01-13 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Process for the epitaxial deposition of silicon on multiple substrates |
DE2829830C2 (en) * | 1978-07-07 | 1986-06-05 | Telefunken electronic GmbH, 7100 Heilbronn | Epitaxial deposition method |
DE102010016477A1 (en) * | 2010-04-16 | 2011-10-20 | Aixtron Ag | A thermal treatment method comprising a heating step, a treatment step and a cooling step |
DE102010016471A1 (en) * | 2010-04-16 | 2011-10-20 | Aixtron Ag | Apparatus and method for simultaneously depositing multiple semiconductor layers in multiple process chambers |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563816A (en) * | 1965-04-02 | 1971-02-16 | Hitachi Ltd | Method for the vapor growth of semiconductors |
-
1975
- 1975-07-02 DE DE19752529484 patent/DE2529484C3/en not_active Expired
-
1976
- 1976-07-02 JP JP7882676A patent/JPS6046183B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS527829A (en) | 1977-01-21 |
DE2529484B2 (en) | 1981-04-02 |
DE2529484A1 (en) | 1977-01-20 |
DE2529484C3 (en) | 1982-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3151118B2 (en) | Heat treatment equipment | |
JPH05166741A (en) | Substrate supporting tool for heat treating apparatus | |
US6240875B1 (en) | Vertical oven with a boat for the uniform treatment of wafers | |
US5938850A (en) | Single wafer heat treatment apparatus | |
KR920700468A (en) | Layer deposition method on substrate and processing system thereof | |
JP2004511907A (en) | A device that heats substrates quickly and uniformly with infrared light | |
JPH0897159A (en) | Method and system for epitaxial growth | |
WO1998001890A1 (en) | Method and apparatus for contactless treatment of a semiconductor substrate in wafer form | |
US6031205A (en) | Thermal treatment apparatus with thermal protection members intercepting thermal radiation at or above a predetermined angle | |
WO1990010092A1 (en) | A modified stagnation flow apparatus for chemical vapor deposition providing excellent control of the deposition | |
JP2024501860A (en) | System and method for preheating ring in semiconductor wafer reactor | |
US5679168A (en) | Thermal processing apparatus and process | |
JP3004846B2 (en) | Susceptor for vapor phase growth equipment | |
JP3058901B2 (en) | Heat treatment equipment | |
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
US5626680A (en) | Thermal processing apparatus and process | |
JPS6046183B2 (en) | Method and apparatus for epitaxial deposition of silicon on a substrate | |
JP7400461B2 (en) | susceptor | |
US4179326A (en) | Process for the vapor growth of a thin film | |
JPH11243139A (en) | Semiconductor wafer supporter and its processing method using the supporter | |
JPS6216516A (en) | Semiconductor manufacturing equipment | |
JPH046826A (en) | Heat treatment apparatus | |
JPS6228569B2 (en) | ||
JPS6058608A (en) | heat treatment furnace | |
JPS6010108B2 (en) | Method for pyrolytically depositing silicon nitride onto a substrate |