JPS6044864A - Damage position detector for coating film of buried piping - Google Patents
Damage position detector for coating film of buried pipingInfo
- Publication number
- JPS6044864A JPS6044864A JP15263183A JP15263183A JPS6044864A JP S6044864 A JPS6044864 A JP S6044864A JP 15263183 A JP15263183 A JP 15263183A JP 15263183 A JP15263183 A JP 15263183A JP S6044864 A JPS6044864 A JP S6044864A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- pipe
- detecting
- buried
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、地中に埋設された配管の防食被覆の損傷位置
を探査する埋設配管塗膜損傷位置探査装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried pipe coating damage location detection device for detecting damage locations in the anticorrosive coating of pipes buried underground.
近年、パイプラインのメインテナンスが重要視されてお
り、特に防食の見地から、地中埋設A?イブラインの外
面防食被覆に損傷が生じているか否かの調査と損傷部の
補修が要求される傾向にある。In recent years, pipeline maintenance has become more important, especially from the viewpoint of corrosion prevention, underground burial A? There is a trend to investigate whether damage has occurred to the external anticorrosive coating of Eveline and to repair the damaged area.
このような要求に応じるには、被覆損傷位置を正確に探
知する技術が必要であるが、(1)管対地電位分布法、
(2)針電極法、(3)管内電流法、(4)ピアソン法
、などの従来の探査方法には一長一短がある。In order to meet such demands, technology to accurately detect the location of damage to the coating is required.
Conventional exploration methods such as (2) needle electrode method, (3) tube current method, and (4) Pearson method have advantages and disadvantages.
以下、これらについて概説する。These will be outlined below.
(1)管対地電位分布法
第1図に示すように地中に埋設された配管1と、地中に
打込んだ通電電極2の間に直流電源3及びスイッチ4の
直列回路を接続してスイッチ4をオン、オフし、埋設配
管1と大地の間の電位を電圧計5によって検知電極6を
配管1に沿って移動させながら順次測定して電位分布を
める方法であり、欠陥部a付近の電位勾配が管′対地電
位として計測される。欠陥部a付近では、スイッチ4の
オン時の管対地電位に第2図に示すような減衰が見られ
るので、この分布図から欠陥(防食被膜損傷)位置が検
知される。(1) Pipe-to-ground potential distribution method As shown in Figure 1, a series circuit of a DC power supply 3 and a switch 4 is connected between a pipe 1 buried underground and a current-carrying electrode 2 driven into the ground. This is a method in which the switch 4 is turned on and off, and the potential between the buried pipe 1 and the ground is sequentially measured using a voltmeter 5 while moving the detection electrode 6 along the pipe 1 to determine the potential distribution. The potential gradient in the vicinity is measured as the tube's ground potential. In the vicinity of the defective portion a, attenuation as shown in FIG. 2 is observed in the tube-to-ground potential when the switch 4 is turned on, so the position of the defect (damage to the anti-corrosion coating) can be detected from this distribution map.
但し、横軸Xは配管位置、縦軸Vは電圧を示す。However, the horizontal axis X shows the piping position, and the vertical axis V shows the voltage.
この方法には次のような問題点がある。This method has the following problems.
(+) 舗装道路上での測定では正確な電位測定が不可
能である。(+) Accurate potential measurement is not possible when measuring on a paved road.
(11)迷走電流の多い地域では的確な計測が困難であ
り、精度が悪い。(11) Accurate measurement is difficult in areas with a lot of stray current, and accuracy is poor.
(iiD 作業が交通の障害となるおそれがあり、実施
時間帯に制約がある。(iiD) There is a risk that the work will obstruct traffic, and there are restrictions on the implementation time.
(2)針電極法
第3図に示すように埋設配管1と通電電極2の間に直流
電源3を接続した状態で一対の検知電極6iA、6Bを
配管方向に1〜2mの間隔をおいて地表面に接地し、−
極61.6’B間の電位差を電圧計5によって測定する
ものであシ、検知電極6iA、6Bの位置を順次移動さ
せると、配管1の被覆に欠陥があり、その部分の配管金
属が露出して周囲の土壌や地下水などと接している場合
には、印加電圧に応じて欠陥部より電流が流入して付近
の土壌中に電位勾配を作るので、第4図のように電位の
極性が反転する位置として欠陥部aを知ることができる
。(2) Needle electrode method As shown in Figure 3, with the DC power supply 3 connected between the buried pipe 1 and the current-carrying electrode 2, a pair of detection electrodes 6iA and 6B are placed at a distance of 1 to 2 m in the direction of the pipe. Grounded to the ground surface, −
The potential difference between the electrodes 61.6'B is measured by the voltmeter 5. When the positions of the detection electrodes 6iA and 6B are sequentially moved, it is possible to detect that there is a defect in the coating of the pipe 1, and the pipe metal in that part is exposed. When a defective part is in contact with surrounding soil or groundwater, current flows from the defective part according to the applied voltage and creates a potential gradient in the nearby soil, so the polarity of the potential changes as shown in Figure 4. The defective part a can be known as the position to be reversed.
この方法は、現在量も多く適用されているが、次のよう
な問題点がある。Although this method is currently widely used, it has the following problems.
(1)舗装道路では、電極の接地がとれないため、測定
が困難である。(1) Measurement is difficult on paved roads because the electrodes cannot be grounded.
(11)迷走電流、他の埋設配管などの影響を受け、精
度が悪い(±0.5m程度)。(11) Accuracy is poor (approximately ±0.5 m) due to the influence of stray currents and other buried piping.
611)作業が交通の障害となるおそれがある。611) There is a risk that the work will obstruct traffic.
(3)管内電流法
第5図に示すように埋設配管1と通′亀電極2の間に直
流電源3及びスイッチ4の直、列回路を接続し、スイッ
チ4をオン、オフする。直流電流は被覆欠陥部aから埋
設配管1に流入し、管体を流れて電源3に戻るので、こ
の電流によシ生じる管体の電圧降下を電圧計5で測定し
て欠陥位置を探知する。(3) In-pipe current method As shown in FIG. 5, a DC power supply 3 and a series and column circuit of a switch 4 are connected between the buried pipe 1 and the through-hole electrode 2, and the switch 4 is turned on and off. The direct current flows into the buried pipe 1 from the coating defect part a, flows through the pipe body, and returns to the power supply 3, so the voltage drop in the pipe body caused by this current is measured with a voltmeter 5 to detect the defect position. .
この方法には次のような問題点がある。This method has the following problems.
(1)電圧測定のため配管に端子を受付ける必要があシ
、その取付けに手間がかかる。(1) In order to measure voltage, it is necessary to accept terminals on the piping, and installation is time-consuming.
61)端子間隔が長くなシ、精度が悪い(±10m程度
)。61) The terminal spacing is long and the accuracy is poor (approximately ±10m).
(iii) 作業が交通の障害となるおそれがある。(iii) There is a risk that the work will obstruct traffic.
(4)ピアソン法
第6図に示すように埋設配管1と通電電極2の間に発信
器7を接続して750 Hz % I A程度の電流を
流し、地表面電位勾配をとるため金属製のスフ4イクを
履いた二人の測定者gA、8Bが受信器9及び接続線1
0を持って約10mの間隔で配管1に沿って歩くと、両
者間の電位は受信器9により音に変換される。探知者8
Aが欠陥部に近付くと、徐々に電位差が大きくなって発
信音も高くなる。探知者8Aが欠陥部aの真上に来たと
き発信音は最高となり、更に進んで両者8A、8Bの中
央に欠陥部aが位置したとき、発信音は最低となp1助
手8Bが欠陥部aの真上に来たとき、再び発信音は最高
となる。(4) Pearson method As shown in Figure 6, a transmitter 7 is connected between the buried pipe 1 and the current-carrying electrode 2, and a current of about 750 Hz % IA is passed through a metal wire to measure the ground potential gradient. Two testers gA and 8B wearing Sufu 4 Iku are the receiver 9 and the connection line 1.
0 and walk along the pipe 1 at intervals of about 10 m, the potential between the two is converted into sound by the receiver 9. Detector 8
As A approaches the defective part, the potential difference gradually increases and the tone becomes louder. When the detector 8A comes directly above the defective part a, the beep becomes the highest, and when the detector 8A goes further and the defective part a is located in the center of both 8A and 8B, the beep becomes the lowest, and the p1 assistant 8B detects the defective part. When it comes directly above point a, the tone becomes the highest again.
この様子を図示すると第7図のようになる。This situation is illustrated in FIG. 7.
Bは発信音の大きさを示す。B indicates the volume of the outgoing tone.
この方法には次のような問題点がある。This method has the following problems.
(1)舗装道路上では検出電圧が低く、精度が悪い。(1) Detection voltage is low on paved roads and accuracy is low.
0i)高圧送電線などによシ誘導障害を受ける。0i) Subject to inductive disturbances from high-voltage power transmission lines, etc.
GiD 作業が交通の障害となるおそれがある。GiD work may cause traffic obstruction.
本発明の目的は、交通に支障を来すことなく、高精度で
防食被覆損傷位置を探査できる埋設配管塗膜損傷位置探
査装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a buried pipe coating damage location detection device that can detect corrosion-resistant coating damage locations with high accuracy without causing a hindrance to traffic.
本発明は、防食塗膜を有する埋設配管と通電電極の間に
電源を接続する一方、埋設配管内に磁界検出装置の検出
部を管軸方向に自在に移動できる如く挿入し、配管内部
での磁界検出によって塗膜損傷を探知するとともに、磁
界検出部を牽引するワイヤの長さからその位置を知るよ
うにしている。The present invention connects a power source between a buried pipe having an anticorrosive coating and a current-carrying electrode, and also inserts a detection part of a magnetic field detection device into the buried pipe so that it can move freely in the pipe axis direction. In addition to detecting paint film damage by detecting the magnetic field, its position can be determined from the length of the wire that pulls the magnetic field detection unit.
第8図及び第9図は本発明の動作原理を説明するための
もので、1は防食被覆としての塗膜番有する埋設配管、
2は通電電極、3は前記埋設配管1と通電電極2の間に
接続した直流電源である。FIGS. 8 and 9 are for explaining the operating principle of the present invention, and 1 shows a buried pipe having a coating film number as an anti-corrosion coating;
2 is a current-carrying electrode; 3 is a DC power supply connected between the buried pipe 1 and the current-carrying electrode 2;
このように配管1と通電電極2、つま〕大地との間に直
流電圧を印加すると、塗装損傷部alealから直流電
流5led1が流入する。この電流は、第9図のような
電流分布となって電源3の方向に流れる。この際、欠陥
部付近の流入電流の乱れによって管内に磁界Hが発生す
る。この磁界Hを管内に磁界検出装置の検出部11人を
走行させて検知すれば、塗膜損傷とその位置を探知でき
る。When a DC voltage is applied between the pipe 1, the current-carrying electrode 2, and the ground in this manner, a DC current 5led1 flows from the paint damaged area areal. This current flows in the direction of the power source 3 with a current distribution as shown in FIG. At this time, a magnetic field H is generated within the tube due to the disturbance of the inflow current near the defective portion. If this magnetic field H is detected by running 11 detectors of a magnetic field detection device inside the pipe, damage to the paint film and its location can be detected.
一般に、電流の流れている管の内側の磁界Hに対しては
、管内には電流が存在していないことから、アンペアの
周回積分の法則によシ、領域(管内)Cにおいては式(
1)が成立する。In general, for the magnetic field H inside the tube through which current flows, since there is no current inside the tube, according to Ampere's law of circuit integration, in the region (inside the tube) C, the formula (
1) holds true.
f<c>1・di!= O・・・(1)管体に均一に電
流が流れている場合には、この系は点対称となるため、
式(2)が成立する。f<c>1・di! = O...(1) If the current flows uniformly through the tube, this system will be point symmetric, so
Equation (2) holds true.
1(r、θ) = a(r) ・・・(2)(1)(2
)式から管と同心の任意の円周積分を行うと、2πra
(r)=O(Vr)
、’、a (r) = IH(r 、θ) = O−(
3)となり、管内部には磁界は発生していない。1(r, θ) = a(r) ...(2)(1)(2
), if we perform an arbitrary circumferential integral concentric with the pipe, we get 2πra
(r)=O(Vr),',a(r)=IH(r,θ)=O−(
3), and no magnetic field is generated inside the tube.
ところが、配管IK塗膜損傷があシ、そこから電流が流
れ込むと、その近傍では第9図のように電流が偏シ、(
2)式や(3)式が成立せず、管内に磁界が生じる。こ
の磁界の方向は、管断面方向及び管軸方向である。However, when the piping IK paint film is damaged and current flows through it, the current becomes uneven in the vicinity as shown in Figure 9.
Equations 2) and (3) do not hold, and a magnetic field is generated inside the tube. The directions of this magnetic field are the tube cross-sectional direction and the tube axis direction.
第10図は本発明の一実施例を示すもので、1は埋設配
管、2は通電電極、3はこの電極2と配管1の防食用タ
ーミナル1aとの間にスイッチ4を介して接続した直流
電源、11は磁界検出装置で、前記配管1の内部にその
管軸方向に移動自在な如く挿入される検出部(センサ)
11人と、これに信号ケーブル12を介して接続される
測定・表示部JIBを有している。13は前記磁界検出
部11人を移動させるためのワイヤ、14はこのワイヤ
13を巻くドラム、15は前記ワイヤの長さを計測して
その先端、つまシ検出部11にの位置を表示する位置表
示器である・
前記磁界検出部JJAは、第11図に示すように走行台
20上にX方向、Y方向及び管軸方向の磁界を検出する
センサ21X、21Y。FIG. 10 shows an embodiment of the present invention, in which 1 is a buried pipe, 2 is a current-carrying electrode, and 3 is a direct current connected between this electrode 2 and a corrosion protection terminal 1a of the pipe 1 via a switch 4. A power source 11 is a magnetic field detection device, and a detection unit (sensor) is inserted into the pipe 1 so as to be movable in the axial direction of the pipe.
It has 11 people and a measurement/display unit JIB connected to them via a signal cable 12. 13 is a wire for moving the magnetic field detection unit 11; 14 is a drum around which the wire 13 is wound; 15 is a position where the length of the wire is measured and its tip is displayed on the tab detection unit 11; The magnetic field detection unit JJA, which is an indicator, includes sensors 21X and 21Y that detect magnetic fields in the X direction, Y direction, and tube axis direction on the traveling platform 20, as shown in FIG.
21Zを載置するとともに、走行台20の側面の4個所
にセンターライザ22を取付けた構成とし、これに信号
ケーブル12、ワイヤ13を接続する。センサとしては
ホール素子、半導体センサなどを用いる。21Z is placed thereon, and center risers 22 are attached to four locations on the side surface of the traveling base 20, to which the signal cable 12 and wire 13 are connected. A Hall element, a semiconductor sensor, or the like is used as the sensor.
次に、動作について述べる。磁界検出部JJAは、圧送
によシ配管1内に送り込まれる。その位置はワイヤ13
の長さの計測によって表示器15に表示される。Next, the operation will be described. The magnetic field detection unit JJA is fed into the piping 1 by pressure feeding. Its position is wire 13
The measured length is displayed on the display 15.
この状態からワイヤをドラム14に巻取シ始めると、検
出部11kが引戻される。同時に、スイッチ40オン、
オフを繰返して測定・表示部11Bの表示を読み、その
差をとる。これにより、地磁気、管溶接部の残留磁気の
影響が除去される。When the wire starts to be wound around the drum 14 from this state, the detection section 11k is pulled back. At the same time, switch 40 is turned on,
Repeat turning off and reading the display on the measurement/display section 11B, and calculate the difference. This eliminates the effects of earth's magnetism and residual magnetism at the pipe weld.
計測例を第12図(a) (b)に示す。第12図(、
)はX方向の磁界、第12図(b)は管軸方向の磁界で
ある。この例は、長さが約200m、2インチ径のガス
管に通電電極を介して5Aの電流を流した場合であり、
検出部11には10φ×40鴫程度の大きさとした。計
測の結果、10ctn2程度゛の塗膜損傷を適確に検出
できた。また、欠陥の検出位置精度は、専ら送シ込まれ
ているワイヤの長さの測定精度で決t、Q、10crn
以内に収まる。Measurement examples are shown in FIGS. 12(a) and 12(b). Figure 12 (,
) is the magnetic field in the X direction, and FIG. 12(b) is the magnetic field in the tube axis direction. In this example, a current of 5 A is passed through a 2-inch diameter gas pipe with a length of about 200 m through a current-carrying electrode.
The detection unit 11 had a size of about 10φ×40mm. As a result of the measurement, it was possible to accurately detect paint film damage of approximately 10 ctn2. In addition, the accuracy of the defect detection position is determined solely by the measurement accuracy of the length of the wire being fed, t, Q, 10 crn.
It falls within the following range.
なお、実施例では、直流電源を用いたが、交流電源であ
ってもよい。Note that in the embodiment, a DC power source is used, but an AC power source may be used.
以上のように本発明によれば、埋設配管の内部に磁界検
出装置の検出部(センサ)を挿入して管軸方向に移動さ
せ、管内の磁界を検出して塗膜損傷を探知するとともに
、牽引用のワイヤの長さからその位置を知るようにした
ので、舗装など路面状態に全く影響されることがなくな
シ、迷走電流や送電線の誘導によるノイズが除去される
ことと相俟って探査精度が著しく向上する。また、路面
上の作業スペースは僅かであるので、交通に支障を来す
おそれもなくなる。As described above, according to the present invention, the detection part (sensor) of the magnetic field detection device is inserted inside the buried pipe and moved in the pipe axis direction to detect the magnetic field inside the pipe and detect paint film damage. Since the position of the traction wire is known from the length of the traction wire, it is completely unaffected by road surface conditions such as pavement, and this also eliminates stray currents and noise induced by power lines. Exploration accuracy is significantly improved. Furthermore, since the working space on the road surface is small, there is no risk of interfering with traffic.
第1図〜第7図は従来の各塗膜損傷探知法の説明図、第
8図及び第9図は本発明に係る埋設配管塗膜損傷位置探
査装置の動作原理説明図及び電流分布図、第10図は本
発明の一実施例を示す配置構成図、第11図は同実施例
にお゛ける磁界検出部の概略構成を示す平面図、第12
図は計測例を示すグラフである。
1・・・埋設配管、2・・・通電電極、3・・・電源、
4・・・スイッチ、11・・・磁界検出装置、11人・
・・磁界検出部、11B・・・測定・表示部、12・・
・信号ケーブル、13・・・ワイヤ、14・・・ドラム
、15・・・位置表示器。
出願人代理へ 弁理士 鈴 江 武 音電1図
第 2−
次陥位1
x=0
優4図
第5図
第6図
x=0FIGS. 1 to 7 are explanatory diagrams of each conventional coating film damage detection method, and FIGS. 8 and 9 are diagrams explanatory of the operating principle and current distribution diagram of the buried pipe coating damage location detection device according to the present invention, FIG. 10 is a layout configuration diagram showing an embodiment of the present invention, FIG. 11 is a plan view showing a schematic configuration of a magnetic field detection section in the same embodiment, and FIG.
The figure is a graph showing a measurement example. 1... Buried piping, 2... Current-carrying electrode, 3... Power supply,
4...Switch, 11...Magnetic field detection device, 11 people.
...Magnetic field detection section, 11B...Measurement/display section, 12...
- Signal cable, 13... wire, 14... drum, 15... position indicator. To the applicant's representative Patent attorney Takeshi Suzue Onden Figure 1 Figure 2 - Subversion 1 x = 0 Figure 4 Figure 5 Figure 6 x = 0
Claims (1)
有する埋設配管と前記通電電極の間に接続される電源と
、前記埋設配管内にその軸方向に自在に移動できる如く
挿入される磁界検出部及びこの磁界検出部に信号ケーブ
ルを介して接続される測定・表示部を有する磁界検出装
置と、前記磁界検出部に結ばれたワイヤを巻取って磁界
検出部を移動させる磁界検出部移動手段と、前記ワイヤ
の長さを計測して前記磁界検出部の位置を表示する位置
表示器と、前記磁界検出部を埋設配管内に送シ込む圧送
手段とを備えてなる埋設配管塗膜損傷位置探査装置。A current-carrying electrode that is driven into the ground, a power source that is connected between a buried pipe having a coating film as an anticorrosion coating, and the current-carrying electrode, and a power source that is inserted into the buried pipe so that it can move freely in its axial direction. A magnetic field detection device having a magnetic field detection section and a measurement/display section connected to the magnetic field detection section via a signal cable, and a magnetic field detection section that moves the magnetic field detection section by winding a wire tied to the magnetic field detection section. A buried piping coating comprising a moving means, a position indicator for measuring the length of the wire and displaying the position of the magnetic field detecting section, and a pressure feeding means for feeding the magnetic field detecting section into the buried piping. Damage location detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15263183A JPS6044864A (en) | 1983-08-22 | 1983-08-22 | Damage position detector for coating film of buried piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15263183A JPS6044864A (en) | 1983-08-22 | 1983-08-22 | Damage position detector for coating film of buried piping |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6044864A true JPS6044864A (en) | 1985-03-11 |
JPH0378578B2 JPH0378578B2 (en) | 1991-12-16 |
Family
ID=15544604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15263183A Granted JPS6044864A (en) | 1983-08-22 | 1983-08-22 | Damage position detector for coating film of buried piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6044864A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243563A (en) * | 1985-08-20 | 1987-02-25 | Osaka Gas Co Ltd | Damage detection for underground buried metal pipe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5282126B2 (en) | 2011-07-11 | 2013-09-04 | 日信工業株式会社 | Motor pump equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168954A (en) * | 1982-03-17 | 1983-10-05 | ブリテイツシユ・ガス・コ−ポレ−シヨン | Device for measuring defect of insulating film |
-
1983
- 1983-08-22 JP JP15263183A patent/JPS6044864A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168954A (en) * | 1982-03-17 | 1983-10-05 | ブリテイツシユ・ガス・コ−ポレ−シヨン | Device for measuring defect of insulating film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243563A (en) * | 1985-08-20 | 1987-02-25 | Osaka Gas Co Ltd | Damage detection for underground buried metal pipe |
Also Published As
Publication number | Publication date |
---|---|
JPH0378578B2 (en) | 1991-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4390836A (en) | Method and apparatus for the detection of pipeline holidays | |
KR101306882B1 (en) | Information Acquisition Method And Device For Underground Utilities | |
US4430613A (en) | Pipeline inspection and maintenance method including moving a magnetic field responsive device along the route of the pipeline | |
JP5192706B2 (en) | Ground fault point search device and ground fault point search method using the same | |
KR20110058313A (en) | 3D Electromagnetic Induction Surveying Equipment for Underground Facility Surveying | |
JP2526578B2 (en) | Coating film damage detection method | |
JPH01481A (en) | Paint film damage detection method | |
EP0148267A1 (en) | Method and device for detecting damage to buried object | |
JPS6013205A (en) | Device for detecting position of corrosion of tubular body | |
JP2005091191A (en) | Method for detecting coating defects in buried metal pipes | |
JPS6044864A (en) | Damage position detector for coating film of buried piping | |
JP4044303B2 (en) | Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals | |
KR101564718B1 (en) | System for analyzing the depth and location of underground pipe by analysis of electromagnetic response | |
JP2002022695A (en) | Method for detecting coating film damage position of embedded coated piping | |
JPH0495867A (en) | Method and apparatus for measuring coat defect area of underground buried pipe | |
EP0052053A1 (en) | Process and apparatus for airborne surveys of cathodic protection of underground pipelines | |
JPS6044858A (en) | Damage position detector of coating film of buried piping | |
JPH0221289A (en) | How to detect buried pipes | |
JP2001255304A (en) | Method for detecting paint film damage position in buried coated pipe | |
JPH10197648A (en) | Position survey device for underground pipe | |
JPS59108954A (en) | Damage position detection for cover applied on buried piping | |
RU2290656C1 (en) | Control mode of locking availability of a pipeline, equipped with cathode protection, with a chuck of underground communications | |
JPH11281750A (en) | Detecting coil for electromagnetic induction pipe locator | |
JPH08233782A (en) | A means for grasping the traveling position of a pig for pipe inspection | |
JPH03152411A (en) | Detecting device for signal current of buried pipe and depth of burying |