JPS6044255B2 - How to recover nickel components - Google Patents
How to recover nickel componentsInfo
- Publication number
- JPS6044255B2 JPS6044255B2 JP2718677A JP2718677A JPS6044255B2 JP S6044255 B2 JPS6044255 B2 JP S6044255B2 JP 2718677 A JP2718677 A JP 2718677A JP 2718677 A JP2718677 A JP 2718677A JP S6044255 B2 JPS6044255 B2 JP S6044255B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- aqueous solution
- chelate resin
- component
- chelate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明はニッケル成分を含有する水溶液からニッケル成
分を効率的、かつ高濃度で回収する方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently recovering a nickel component at a high concentration from an aqueous solution containing the nickel component.
ニッケル成分を含有する水溶液は、たとえばニッケルの
湿式精練工程、特に溶媒抽出工程、浄液工程および湿式
あるいは半湿式脱硫工程、さらには金属の表面処理工程
、特にアルミニウムの電解着色工程などから発生し、通
常これらの水溶液はカルシウム成分、マグネシウム成分
、その他の重金属成分アルカリ金属成分等を共存してい
ることが多い。Aqueous solutions containing nickel components are generated, for example, from nickel wet scouring processes, especially solvent extraction processes, liquid purification processes, and wet or semi-wet desulfurization processes, and metal surface treatment processes, especially aluminum electrolytic coloring processes. Usually, these aqueous solutions often contain calcium components, magnesium components, other heavy metal components, alkali metal components, etc.
従来、ニッケル成分を含有する水溶液からニッケル成分
を除去する方法としては、凝集沈殿法およびニッケル成
分をイオン化したのちキレート樹脂で処理する方法があ
つたが、前者の方法は硫安等が共存するとニッケル成分
は複雑なニツケルーアンミン錯体を形成するため完全な
処理ができなかつた。Conventionally, methods for removing nickel components from aqueous solutions containing nickel components include the coagulation precipitation method and the method of ionizing the nickel component and then treating it with a chelate resin. cannot be completely processed because it forms a complex nickel-ammine complex.
そのため一部では硫化法により硫化ニッケルを形成させ
て沈殿分離する方法もとられているが、かかる方法は回
収した硫化ニッケルを再利゜用することが技術面および
コスト面で困難であるばかりか、硫化水素を用いるため
作業性(悪臭)が悪いことは避けられない。一方、キレ
ート樹脂を利用する方法は設備面、作業性にいてすぐれ
ており、特にニッケル成分を完全に除去、回収し得る点
では従来の他の方法と比べものにならないものである。For this reason, some methods have been used to form nickel sulfide using a sulfurization method and separate it by precipitation, but this method not only makes it difficult to reuse the recovered nickel sulfide from both a technical and cost perspective. Since hydrogen sulfide is used, it is inevitable that the workability (bad odor) is poor. On the other hand, the method using chelate resin is superior in terms of equipment and workability, and is incomparable to other conventional methods, especially in that it can completely remove and recover the nickel component.
本発明者らは、キレート樹脂を用いたニッケル成分の回
収方法について種々研究し、すでに効果的な回収方法を
特許出願したが、さらに研究を続けた結果、ニッケル成
分を特定のニツケルーアンミン錯体としてキレート樹脂
処理すればキレート樹脂とニッケルとの吸着速度が著し
く改良され、その結果、実質的な吸着容量が著しく向上
することを見いた七本発明を完成した。The present inventors have conducted various research on recovery methods for nickel components using chelate resins, and have already filed a patent application for an effective recovery method.As a result of further research, they discovered that nickel components can be recovered as a specific nickel-ammine complex. The inventors of the present invention found that treatment with a chelate resin significantly improves the rate of adsorption between the chelate resin and nickel, resulting in a significant improvement in the actual adsorption capacity.
すなわち、本発明はニッケル成分を含有する水溶液をキ
レート樹脂で処理してニッケル成分を回収するに際し、
該水溶液をアンモニア含有アルカリ剤て処理してアルカ
リ性水溶液とし、しかる後キレート配位子にチッ素を有
するキレート樹脂で処理してニッケル成分を吸着せしめ
、さらに鉱酸水溶液で溶離処理して高濃度のニッケル塩
水溶液として回収することを特徴とするニッケル成分の
回収方法である。That is, in the present invention, when an aqueous solution containing a nickel component is treated with a chelate resin to recover the nickel component,
The aqueous solution is treated with an ammonia-containing alkaline agent to make an alkaline aqueous solution, then treated with a chelate resin having nitrogen as a chelate ligand to adsorb the nickel component, and further eluted with a mineral acid aqueous solution to obtain a highly concentrated aqueous solution. This is a method for recovering a nickel component, which is characterized in that it is recovered as an aqueous nickel salt solution.
本発明の方法においてはニッケル成分を含有する水溶液
をアンモニア含有アルカリ剤で処理してアルカリ性水溶
液とし、このアルカリ性水溶液をキレート樹脂で処理す
る。In the method of the present invention, an aqueous solution containing a nickel component is treated with an ammonia-containing alkaline agent to form an alkaline aqueous solution, and this alkaline aqueous solution is treated with a chelate resin.
この前処理は含有ニッケル成分をニツケルーアンミン錯
イオンとするものであるが、通常かかる処理ではNi(
NH3)N2+(ただしn=1〜6)の錯イオンの混合
体が形成され、それぞれのニツケルーアンミン錯イオン
の量はPHによつて変化する。すなわち、PH7以下の
酸性側ではn=1,2のニツケルーアンミン錯イオンが
多く、PH7以上のアルカリ側ではn=3〜6のニツケ
ルーアンミン錯イオンが多くなり、特にPH7.5以上
ではほとんどn=2以下のものは含有されなくなる。本
発明の方法は含有ニッケル成分をニツケルーアンミン錯
イオン、特にn=3以上のニツケルートリアンミン錯イ
オン以上の錯イオンとしてこれをキレート配位子にチッ
素を有するキレート樹脂で選択的に吸着処理するもので
あるが、このようlにn=3以上のニツケルーアンミン
錯イオンが特にキレート樹脂に吸着されやすい理由は明
らかでない。This pretreatment is to convert the nickel component into a nickel-ammine complex ion, but normally in such treatment, Ni (
A mixture of complex ions of NH3)N2+ (where n=1 to 6) is formed, and the amount of each nickel-ammine complex ion varies depending on the pH. That is, on the acidic side of pH 7 or lower, there are many nickel-ammine complex ions with n = 1, 2, on the alkaline side with pH 7 or higher, there are many nickel-ammine complex ions with n = 3 to 6, and especially on the pH 7.5 or higher, there are almost no nickel-ammine complex ions. Those with n=2 or less are not contained. The method of the present invention selectively adsorbs the nickel component as a nickel-ammine complex ion, especially a nickel-triamine complex ion with n=3 or more, using a chelate resin having nitrogen as a chelate ligand. However, it is not clear why such nickel-ammine complex ions with n=3 or more are particularly likely to be adsorbed by chelate resins.
しかし、たとえばキレート基にイミノジ酢酸基を有する
ユニセレツク泳−30(ユニチカ製)でn=3以上のニ
ツケルーアンミン錯イオンが特に交換吸着しやすい理由
としては、錯イオンが次式に示す形で吸着され、ニッケ
ルが6座配位子を示すためNH3配位子が3つ結合して
、残りのNH3は,アンモニウムイオンとなつてこれが
バッファー効果を示し交換吸着速度を向上するものと考
えられる。However, for example, the reason why nickel-ammine complex ions with n=3 or more are particularly easy to exchange adsorption with Uniselect Electrolyte-30 (manufactured by Unitika), which has an iminodiacetic acid group in the chelate group, is that the complex ions are adsorbed in the form shown in the following formula. Since nickel exhibits a hexadentate ligand, three NH3 ligands are bound together, and the remaining NH3 becomes ammonium ions, which exhibit a buffer effect and improve the exchange adsorption rate.
このようにしてニッケル成分を吸着したキレート樹脂は
硫酸,塩酸等の鉱酸水溶液で溶離処理す!ると、ニッケ
ル成分は容易にキレート樹脂から脱離し硫酸ニッケル,
塩化ニッケル等のニッケル塩水溶液として回収できる。The chelate resin that has adsorbed nickel components in this way is eluted with an aqueous mineral acid solution such as sulfuric acid or hydrochloric acid! , the nickel component is easily desorbed from the chelate resin and becomes nickel sulfate,
It can be recovered as an aqueous solution of nickel salts such as nickel chloride.
この回収に際し特にアンモニア分の混入を避けたい場合
は、薄い酸で処理して最初にアンモニアを溶離した後、
通常の鉱3酸水溶液で処理すればよい。本発明に用いら
れるキレート配位子にチッ素を有するキレート樹脂とし
ては、例えばポリスチレン、フエノールホルマリン樹脂
、ポリアクリル樹脂などの母体樹脂にモノアミン、ジア
ミン、ポリ4アミンの化合物の官能基、イミノジ酢酸、
またその誘導体、グリシンなどのアミノ酸、またはその
誘導体等の官能基を有するものがあげられる。If you want to avoid contamination with ammonia during this recovery, first elute the ammonia by treating with dilute acid, then
It can be treated with a normal mineral triacid aqueous solution. The chelate resin having nitrogen as a chelate ligand used in the present invention includes, for example, a base resin such as polystyrene, phenol-formalin resin, or polyacrylic resin, a functional group of a monoamine, diamine, or polytetraamine compound, iminodiacetic acid,
Also included are derivatives thereof, amino acids such as glycine, and those having functional groups such as derivatives thereof.
アンモニア含有アルカリ剤による処理とはアンモニア水
、アンモニアガス等の添加をいい、実質的にには含有ニ
ッケル成分をニツケルートリアンミン錯イオン以上(n
=3〜6)の錯イオンとすること(PH7以上)をいう
。特にアンモニア含有アルカリ剤による処理は水溶液の
PHを7.5〜11とするものが望ましい。本発明の方
法においてニッケル成分をキレート樹脂に交換吸着させ
る際の通液温度条件は常温でもよいが、ニッケル成分の
溶解度を保つため40〜60℃程度まで、昇温させる方
が望ましい場合もある。Treatment with an ammonia-containing alkaline agent refers to the addition of ammonia water, ammonia gas, etc., and substantially removes the contained nickel component from the nickel triamine complex ion (n
=3 to 6) complex ions (PH7 or higher). In particular, it is desirable that the treatment with an ammonia-containing alkaline agent adjusts the pH of the aqueous solution to 7.5-11. In the method of the present invention, the temperature at which the nickel component is exchanged and adsorbed by the chelate resin may be at room temperature, but in some cases it may be desirable to raise the temperature to about 40 to 60°C in order to maintain the solubility of the nickel component.
ニッケル成分の交換吸着方式は通常円筒状のカラム(内
面をゴムライニングしたものなどの例が多い)にキレー
ト樹脂を充填し、このカラムの上方から前処理したニッ
ケル含有水溶液を通水し交換吸着させる。The exchange adsorption method for nickel components usually involves filling a cylindrical column (often with rubber lining on the inside) filled with chelate resin, and passing water through a pretreated nickel-containing aqueous solution from above the column to perform exchange adsorption. .
このときの通水流速は空間速度(SV)で1〜20〔1
/HO程度が実用上好ましい。この通水速度はニッケル
成分の濃度にも依存し、ニッケル濃度が数100mg/
e以下の場合はS■=5〜20〔1/Hr〕,数100
m9/′以上10g/f位まではSVl〜8〔1/HO
程度が好ましい。The water flow rate at this time is 1 to 20 [1] in space velocity (SV).
/HO is practically preferable. This water flow rate also depends on the concentration of nickel component, and the nickel concentration is several hundred mg/
If less than e, S■ = 5 to 20 [1/Hr], several 100
From m9/' to around 10g/f, SVl~8[1/HO
degree is preferred.
この範囲をこえると吸着効率が実質的に悪くなり、また
おそすぎると装置のイニシャルコストが高くなり経済上
不利となる。カラムの配列は3塔メリーゴーランド、あ
るいは2塔メリーゴーランド方式が有利である。キレー
ト樹脂に吸着したニッケル成分の溶離・回収は、一般的
な鉱酸溶離法でよい。鉱酸としては、通常の2〜?の硫
酸、塩酸水溶液を用い、これをカラム上方から流速SV
=0.5〜2〔1/Hr〕程度の速度で通液する。この
処理に際し酸のみを通液すると溶離液中のフリーの酸が
過剰になり、溶離液の品質を悪くするので、通常吸着し
ているニッケル量と化学当量の1割増し程度の酸量を流
した後は、水を等流速で流し、いわゆる水おしをすれば
よい。このようにして得られる回収液の品質はニッケル
濃度として、45g/e以上、さらに分別して回収する
工夫をすれば60〜70g/l以上の高濃度ニッケル塩
溶液が回収できる。本発明の方法において高濃度ニッケ
ル塩水溶液一が回収できる事実は、キレート樹脂のニッ
ケルに対する交換吸着容量が大きいことを示すものであ
る。さらに本発明の方法で得られる効果は、たとえば1
00g/′程度の濃厚硫安中に5g/fのニッケルを含
有せしめそのPHを変化させてキレート樹脂層へ通水し
、ニッケル流出濃度が5mg/eとなる貫流点の交換容
量(BTC)を測定した結果(温度40′C,SV=2
〔1/Hr])、PH5〜7の酸性サイドではBTCが
約0.3m0I/EResinしかならないのにPH7
以上では急激に上昇し、PH7.5以上ではBTCが0
.6m01/e−Resin以上となることからも明ら
かである。また通常の方法、すなわちニッケル含有水溶
液を酸性水溶液としてキレート樹脂処理する場合におい
ても、ニッケル流出濃度5m9/fとなる交流点の交換
容量は同条件であれば約0.2〜0.4m01/ERe
si唯度てあるから、本発明の方法がニッケル成分の回
収方法として非常にすぐれたものであることが明らかで
ある。本発明の方法はキレート樹脂のニッケル成分に対
する交換吸着速度を向上せしめることにより交換吸着容
量の利用率を向上せしめるものであるから、実際の処理
に際し樹脂の交換再生処理回数の減少あるいは処理速度
の向上を可能とし処理コストの低下に大きく寄与するの
である。If it exceeds this range, the adsorption efficiency will substantially deteriorate, and if it is too slow, the initial cost of the device will increase, which is economically disadvantageous. A three-tower merry-go-round or a two-tower merry-go-round system is advantageous for the column arrangement. The nickel component adsorbed on the chelate resin may be eluted and recovered by a general mineral acid elution method. As a mineral acid, the usual 2~? Using sulfuric acid and hydrochloric acid aqueous solutions, this is applied from the top of the column at a flow rate of SV.
The liquid is passed at a rate of approximately 0.5 to 2 [1/Hr]. If only acid is passed during this treatment, the amount of free acid in the eluent will be excessive and the quality of the eluent will deteriorate. After that, all you have to do is to run water at a constant flow rate and do what is called "watering". The quality of the recovered liquid obtained in this manner is 45 g/e or more in terms of nickel concentration, and if the nickel is further separated and recovered, a high-concentration nickel salt solution with a nickel concentration of 60 to 70 g/l or more can be recovered. The fact that a highly concentrated nickel salt aqueous solution can be recovered in the method of the present invention indicates that the chelate resin has a large exchange adsorption capacity for nickel. Furthermore, the effects obtained by the method of the present invention are, for example, 1
5 g/f of nickel is contained in concentrated ammonium sulfate of about 0.00 g/', the pH is changed, water is passed through the chelate resin layer, and the exchange capacity (BTC) at the flow-through point where the nickel outflow concentration is 5 mg/e is measured. The result (temperature 40'C, SV=2
[1/Hr]), on the acidic side of PH5-7, BTC is only about 0.3 m0I/EResin, but at PH7
If the pH is above 7.5, it will rise rapidly, and if the pH is above 7.5, BTC will be 0.
.. This is clear from the fact that it is 6m01/e-Resin or more. Furthermore, even in the normal method, that is, when treating a nickel-containing aqueous solution with a chelate resin as an acidic aqueous solution, the exchange capacity at the AC point where the nickel outflow concentration is 5 m9/f is approximately 0.2 to 0.4 m01/ERe under the same conditions.
It is clear that the method of the present invention is an excellent method for recovering nickel components. The method of the present invention improves the exchange adsorption rate of the chelate resin for the nickel component, thereby improving the utilization rate of the exchange adsorption capacity. Therefore, in actual processing, the number of resin exchange and regeneration treatments can be reduced or the processing speed can be improved. This makes it possible to significantly reduce processing costs.
また本発明の方法で回収したニッケル塩水溶液は高濃度
であるから、回収ニッケル成分の再利用も好都合となる
のである。さらに本発明の方法は硫安等を高濃度で含有
するものであつてもその効果は損なわれないので、ニッ
ケルの湿式精練工程に利用されるニッケル成分を含有す
る硫安水溶液を本発明の方法に適用すると、ニッケル成
分を高濃度で回収できると同時に処理水はそのままニッ
ケルの湿式精練工程に循環して再利用に供することがで
きる。Furthermore, since the nickel salt aqueous solution recovered by the method of the present invention has a high concentration, it is convenient to recycle the recovered nickel component. Furthermore, since the method of the present invention does not lose its effectiveness even when it contains ammonium sulfate etc. at a high concentration, the method of the present invention is applied to an ammonium sulfate aqueous solution containing a nickel component used in the wet smelting process of nickel. Then, the nickel component can be recovered at a high concentration, and at the same time, the treated water can be recycled as it is to the nickel wet scouring process for reuse.
次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
第1図は本発明の方法を実施する吸着実験装置の1例で
ある。Example 1 FIG. 1 shows an example of an adsorption experimental apparatus for carrying out the method of the present invention.
第1図において内径1.2cm1長さ150(7ftの
ガラスカラム1にはキレート樹脂2を所定量充填し、ガ
ラスカラム1は温水ジャケット3でおおい、このジャケ
ット3は恒温水槽4からの温水により所定温度に制御す
る。In Fig. 1, a glass column 1 with an inner diameter of 1.2 cm and a length of 150 (7 ft) is filled with a predetermined amount of chelate resin 2, and the glass column 1 is covered with a hot water jacket 3. Control the temperature.
温度計5は操作時の温度をチェックする。このガラスカ
ラム1はモデル原水槽6、硫酸槽7、イオン水槽8の3
つの槽から所定の液体が送液できるように定量ポンプ9
を介して、これら3つの槽6,7,8と連結している。Thermometer 5 checks the temperature during operation. This glass column 1 consists of 3 model raw water tank 6, sulfuric acid tank 7, and ion water tank 8.
A metering pump 9 is used to pump a specified amount of liquid from two tanks.
It is connected to these three tanks 6, 7, and 8 via.
さらにキレート樹脂層に通液され処理された液はフラク
シヨンコレクター10に分別して受け、これを一定時間
ごとにサンプリングし、分析する。Furthermore, the liquid passed through the chelate resin layer and treated is separated and received by a fraction collector 10, and sampled and analyzed at regular intervals.
一方モデル原水として硫安100y/fにニッケル塩と
して硫酸ニッケルを溶かし、ニッケル換算で5g/′と
なるように調製し、アンモニア水で原水のPHを8.5
±0.1に調整した。On the other hand, as a model raw water, dissolve nickel sulfate as a nickel salt in 100 y/f of ammonium sulfate, adjust it to 5 g/' in terms of nickel, and adjust the pH of the raw water to 8.5 with ammonia water.
Adjusted to ±0.1.
ジャケット温度を40℃にし、イミノジ酢酸基を・有す
るキレート樹脂ユニセレツクUR−30(ユニチカ社製
)を高さ80cm(樹脂量90m1)まで充填し、原水
槽6よりポンプ9でモデル原水をS■=2〔1/Hr〕
の流速でガラスカラム1に通水した。The jacket temperature was set to 40°C, the chelate resin Uniselect UR-30 (manufactured by Unitika) containing iminodiacetic acid groups was filled to a height of 80 cm (resin amount 90 m1), and the model raw water was pumped from the raw water tank 6 using the pump 9. 2 [1/Hr]
Water was passed through the glass column 1 at a flow rate of .
モデル原水の通水量がキレート樹脂の8倍量)(ゾーン
Aに対応)付近からニッケル成分が漏れだしたが、さら
に通液を続け1皓量でモデル原水の通水を停止(ゾーン
cに対応)した。次にイオン水槽8からイオン水をキレ
ート樹脂の2倍量通水し(ゾーンDに対応)水洗を行な
つた。さらに?−H2SO4水溶液槽7の硫酸をSV=
1の流速で36mL(キレート樹脂の0.4倍量)流し
(ゾーンBに対応)、その後同一速度でイオン水144
m1(キレート樹脂の1.酷量)を流していわゆる水お
し操作を行なつた。The nickel component leaked out from around the area (where the model raw water flow rate is 8 times that of the chelate resin) (corresponding to zone A), but the flow continued and the model raw water flow was stopped at 1 volume (corresponding to zone C). )did. Next, ionized water was passed through the ionized water tank 8 in an amount twice that of the chelate resin (corresponding to zone D) for washing. moreover? -Sulfuric acid in H2SO4 aqueous solution tank 7 is SV=
Flow 36 mL (0.4 times the amount of chelate resin) at a flow rate of 1 (corresponding to zone B), then add 144 mL of ionized water at the same rate.
A so-called watering operation was carried out by pouring ml of chelate resin (1.00 g of chelate resin).
この時の通水処理液の分析結果を第2図に示す。The analysis results of the water-treated liquid at this time are shown in Figure 2.
第2図にゾーンBに相当するフラクシヨン(キレート樹
脂の12.8倍量から13.8倍量の1倍量分、すなわ
ち90m1)を回収液とし、さらにゾーンAを処理水と
したそれぞれの溶液の品質は、次のとおりであつた。Figure 2 shows the respective solutions in which the fraction corresponding to zone B (one volume of 12.8 to 13.8 times the chelate resin, i.e. 90 ml) was used as the recovered liquid, and the treated water was used in zone A. The quality was as follows.
一方、硫酸ニッケルをニッケル換算で5g/′含有する
水溶液(A溶液)およびこれにさらに硫安100g/e
を溶解した水溶液(B溶液・・・アンモニア添加による
PH調整なし)を同一条件でキレート樹脂層に通水した
ところA溶液はただちに、B溶液は樹脂量の2倍量通水
した時点でニッケル成分が漏れだした。On the other hand, an aqueous solution (solution A) containing 5 g/e of nickel sulfate in terms of nickel, and an additional 100 g/e of ammonium sulfate.
When water was passed through the chelate resin layer under the same conditions, an aqueous solution in which nickel was dissolved (B solution...no pH adjustment by addition of ammonia) was passed through the chelate resin layer under the same conditions. started leaking.
そこでキレート樹脂を力性ソーダ水溶液で処理してキレ
ート配位子末端をNa型にして同様に通液した。しかし
この場合もA溶液は樹脂量の3倍量、B溶液は樹脂量の
2倍量通水した時点でニッケル成分が漏れだし、いずれ
も本発明の方法に比較してはるかに劣るものであつた。Therefore, the chelate resin was treated with an aqueous solution of sodium chloride to change the terminal end of the chelate ligand to Na type, and the solution was passed through the resin in the same manner. However, in this case as well, the nickel component leaked out when three times the amount of resin was passed through solution A and twice the amount of resin was passed through solution B, and both were far inferior to the method of the present invention. Ta.
第1図は、本発明の方法を実施する実験装置の1例を示
すものである。
1・・・・・・ガラスカラム、2・・・・・・キレート
樹脂、3・・・・ジャケット、4・・・・・・恒温槽、
5・・・・・温度計、6・・・・・・モデル原水槽、7
・・・・・・硫酸槽、8・・・・・・イオン水槽、9・
・・・・・定量ポンプ、10・・・・・・フラクシヨン
コレクター。
第2図は第1図の装置を用いて本発明の方法を実施した
際の処理液の分析結果を示すものであり、横軸はキレー
ト樹脂に通液した液体の量を樹脂体積の倍数で示し、た
て軸は処理液中のニッケルイオンの濃度を〔g/e〕示
す。FIG. 1 shows an example of an experimental apparatus for carrying out the method of the present invention. 1... Glass column, 2... Chelate resin, 3... Jacket, 4... Constant temperature chamber,
5...Thermometer, 6...Model raw water tank, 7
...Sulfuric acid tank, 8...Ion water tank, 9.
... Metering pump, 10 ... Fraction collector. Figure 2 shows the analysis results of the treated liquid when the method of the present invention was carried out using the apparatus shown in Figure 1, and the horizontal axis shows the amount of liquid passed through the chelate resin as a multiple of the resin volume. The vertical axis shows the concentration of nickel ions in the treatment solution [g/e].
Claims (1)
理してニッケル成分を回収するに際し、該水溶液をアン
モニア含有アルカリ剤で処理してアルカリ性水溶液とし
、しかる後キレート配位子にチッ素を有するキレート樹
脂で処理してニッケル成分を吸着せしめ、さらに鉱酸水
溶液で溶離処理して高濃度ニッケル塩水溶液として回収
することを特徴とするニッケル成分の回収方法。 2 アルカリ性水溶液のpHが7.5〜11である特許
請求の範囲第1項記載の回収方法。 3 高濃度ニッケル塩水溶液がニッケル成分として45
g/l以上のニッケルを含有するものである特許請求の
範囲第1項または第2項記載の回収方法。[Claims] 1. When recovering the nickel component by treating an aqueous solution containing a nickel component with a chelate resin, the aqueous solution is treated with an ammonia-containing alkaline agent to make an alkaline aqueous solution, and then the chelate ligand is 1. A method for recovering a nickel component, which comprises treating the nickel component with a chelate resin containing a nickel salt to adsorb the nickel component, and further eluting the nickel component with an aqueous mineral acid solution to recover it as a highly concentrated aqueous nickel salt solution. 2. The recovery method according to claim 1, wherein the alkaline aqueous solution has a pH of 7.5 to 11. 3 Highly concentrated nickel salt aqueous solution has 45% nickel content as a nickel component.
The recovery method according to claim 1 or 2, which contains nickel in an amount of g/l or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2718677A JPS6044255B2 (en) | 1977-03-08 | 1977-03-08 | How to recover nickel components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2718677A JPS6044255B2 (en) | 1977-03-08 | 1977-03-08 | How to recover nickel components |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53109894A JPS53109894A (en) | 1978-09-26 |
JPS6044255B2 true JPS6044255B2 (en) | 1985-10-02 |
Family
ID=12214036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2718677A Expired JPS6044255B2 (en) | 1977-03-08 | 1977-03-08 | How to recover nickel components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6044255B2 (en) |
-
1977
- 1977-03-08 JP JP2718677A patent/JPS6044255B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53109894A (en) | 1978-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04134054A (en) | Purification of amino acid using ion exchange resin | |
RU2015127494A (en) | METHOD AND INSTALLATION FOR RESTORING SCAND | |
Sussman et al. | Metal Recovery by Anion Exchange. | |
CN107324448A (en) | The selection separation of nickel and comprehensive recovering process in alkali electroless nickel waste water | |
US3663163A (en) | Regeneration of cation exchange resins and recovery of salts | |
BR112016027930B1 (en) | silver recovery through ion exchange | |
JPH03227963A (en) | Amino acid separation method | |
RU2125105C1 (en) | Method of nickel recovery from sheet solutions of electroplating | |
CN109097584A (en) | The technique of platinum rhenium aluminium is recycled in a kind of platinum rhenium dead catalyst from alumina supporter | |
JPS61274789A (en) | Method of removing metallic complex from waste liquor | |
US5096500A (en) | Process for decolorization and decalcification of sugar solutions | |
RU2062810C1 (en) | Method for selective extraction of scandium form hydrochloric solutions | |
JPS5842737A (en) | Recovering method for gallium | |
JPS6044255B2 (en) | How to recover nickel components | |
JPH07206804A (en) | Taurine purification method | |
JP2002205062A (en) | Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water | |
JP2000192162A (en) | Method for recovering palladium from liquid containing palladium | |
JP2001247305A (en) | Boron recovery method | |
US2884310A (en) | Production of alkali metal hydroxides by ion exchange | |
JPH0889949A (en) | Removing device for fluoride ion | |
JPH0354118A (en) | How to recover rhenium | |
SU973483A1 (en) | Method for recovering rhenium from rhenium-containing materials | |
JP3493462B2 (en) | Resin regeneration method | |
SU890738A1 (en) | Method of regenerating ion-exchange resins saturated with noble metals | |
JPH09206604A (en) | Regeneration method of weakly basic anion exchange resin |