[go: up one dir, main page]

JPS6044101A - Rolling method for U-shaped steel sheet piles - Google Patents

Rolling method for U-shaped steel sheet piles

Info

Publication number
JPS6044101A
JPS6044101A JP15248883A JP15248883A JPS6044101A JP S6044101 A JPS6044101 A JP S6044101A JP 15248883 A JP15248883 A JP 15248883A JP 15248883 A JP15248883 A JP 15248883A JP S6044101 A JPS6044101 A JP S6044101A
Authority
JP
Japan
Prior art keywords
rolling
roll
flange
web
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15248883A
Other languages
Japanese (ja)
Inventor
Taneharu Nishino
西野 胤治
Naoharu Kubota
久保田 直治
Kenji Totsugi
戸次 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15248883A priority Critical patent/JPS6044101A/en
Publication of JPS6044101A publication Critical patent/JPS6044101A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/082Piling sections having lateral edges specially adapted for interlocking with each other in order to build a wall

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明はU形−矢板の圧延方法に係り、詳しくは同一孔
型中を被淑回往俵さぜるに除しワエブとフランジの延伸
釣合を保つことを可能とする孔型の構成方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The invention relates to a method for rolling U-shaped sheet piles, and more specifically, a method for rolling a U-shaped sheet pile, and more specifically, a method for rolling a wafer and a flange by rolling the bales back and forth in the same hole. This invention relates to a method of configuring a hole shape that makes it possible to maintain balance.

(従来技術) 旧来、U型ttil矢板は、一般にロールカ+)/ニー
を有する上・下水乎口〜ルからなる二重式あるいは三重
式圧延機を数基用いて製造されてきたが、生産性、歩留
りおよびロール原単位なとに問題が多いという欠点があ
った。
(Prior art) U-type ttil sheet piles have traditionally been manufactured using several double or triple rolling mills consisting of top and bottom rolls with roll rolls/knees. However, there were many problems with yield and roll consumption.

その後、特公昭47−47784公報に詳述されている
鋼矢板の圧延方法、即ち品質のすぐれた鋼矢板の経済的
な圧延法として、コーニノζ−サルミルあるいはユニバ
ーザルミルとエソンイングミルの対を用いたいわゆるユ
ニ/ミーサル圧延法を鋼矢板の圧延に適用し、mJ述の
欠点を大幅に改善する製造法も採用されている。
After that, the method of rolling steel sheet piles detailed in Japanese Patent Publication No. 47-47784, that is, a pair of Cornino ζ-Sal mill or universal mill and Eson Ing mill, was developed as an economical method of rolling steel sheet piles with excellent quality. A manufacturing method has also been adopted in which the so-called uni/mealsal rolling method used in the above-mentioned method is applied to rolling steel sheet piles, thereby significantly improving the drawbacks mentioned in mJ.

このユニバーザル圧処法を、U形押う矢板の製造に適用
した具体例を第1図、メも2図および第3図に示す。第
1図は、具体実施1t71i+/) I6図であり、形
−〇中の主力品裡であるH形鋼を圧夕庄づ−るためのユ
ニバーサルミル(H形粛11す以夕1の形鋼製造時には
2蔦式圧タル係として1父用呵1jヒ)を備えた形鋼製
造設備としての一般的な工程への適用例を示す、第2図
および第3図の粗圧延工程に、また第2図の中間工程の
ユニバーサルミルUとエツジヤ−ミルEの対において、
同一カリバー内を数置(り返して圧延造形が行われる。
A specific example in which this universal pressure treatment method is applied to the production of U-shaped pressing sheet piles is shown in FIG. 1, as well as in FIGS. 2 and 3. Figure 1 is a concrete implementation 1t71i+/)I6 diagram, and shows a universal mill (H-shaped 11-1) for pressing H-shaped steel, which is the main product in the In the rough rolling process shown in Figs. 2 and 3, which shows an example of application to a general process as a section steel manufacturing equipment equipped with two rivet-type rolling barrels (one holder) during steel manufacturing, In addition, in the pair of universal mill U and edger mill E in the intermediate process in Fig. 2,
Rolling and shaping is performed several times within the same caliber.

第2図、第3図に示すごと(、U形鋼矢板の最終製品を
うるために、各圧延機B、D(粗圧延工程)、Mlおよ
びU−E (中間圧延工程ン、の谷ロール胴長内に、必
要なロール孔型が配置され、谷圧延板毎にパス回数(通
過回数)が分配される。各圧延機のロールに対づ−る孔
型数はロール胴長の制約内で配置され、かつ1孔型の1
パス当たりの延伸(又は−断面縮少率)は、形状造形性
、圧延h゛要動力及び圧延付属、ロール強度等を考照し
た値に設定され、使用素祠の断面を所要の製品断面迄縮
少するに必俊な全延伸(又は全断面縮少率)によって、
全パス回数が決定される。
As shown in Figures 2 and 3, in order to obtain the final product of U-shaped steel sheet piles, the valley rolls of each rolling mill B, D (rough rolling process), Ml and U-E (intermediate rolling process) are Necessary roll holes are arranged within the body length, and the number of passes is distributed for each valley rolled plate.The number of holes for each roll of each rolling mill is within the constraints of the roll body length. and one-hole type 1
The stretching (or - cross-sectional reduction rate) per pass is set at a value that takes into consideration shape formability, rolling power requirements, rolling accessories, roll strength, etc., and the cross-section of the mill used is adjusted to the required product cross-section. By total stretching (or total cross-sectional reduction rate), which is necessary for reduction,
The total number of passes is determined.

U形鋼矢板の場合、その製品i゛e1間は第4図(イ)
、(ロ)に示1−ごとく、軸心Y−Yに対し左右におい
て対称形であるが、軸心X−Xに対し」=下非対称で、
かつフランジfに複雑な+1.ui手部Gを有している
。さらに周知のごとく、製品の断面効率(断面係数/断
ハJ)積/単位幅当たり)を高めるより経済的な形状が
要求されるため、ウェブWの厚みtwに対し、フランジ
fの厚みtfは−jく、かつ製品幅Wは通常400 r
mπ以上の広い幅を刹する。
In the case of U-shaped steel sheet piles, the distance between i and e1 of the product is shown in Figure 4 (a).
, As shown in (b) 1-, it is symmetrical on the left and right with respect to the axis Y-Y, but with respect to the axis X-X, it is downwardly asymmetrical,
And the flange f has complicated +1. It has a ui hand part G. Furthermore, as is well known, a more economical shape is required to increase the cross-sectional efficiency (section modulus/sectional area J) product/unit width), so the thickness tf of the flange f is −j, and the product width W is usually 400 r.
Cut a wide width of mπ or more.

このためU形鋼矢板を圧延によって製造づ−るに隙して
は、ロール設計技術や圧延検尿技術■で、細心の留意を
必要と1−る。しがるにU聖地矢板をより経済的に効率
良く製造するためには、■使用する累羽に製造コスト上
耳之も有利な連続鋳造銅片を使用し、かつ少量ψ品種の
ブ1りti41]に1更用1−る鋳片(づ1、そのぎシ
J片ザイズ即ち製沖・」工4′1′のモールドサイズの
集約乞考1.ばしたhJi面寸/1:、を]j?用する
For this reason, when manufacturing U-shaped steel sheet piles by rolling, careful attention must be paid to roll design technology and rolling urinalysis technology. However, in order to manufacture U sacred ground sheet piles more economically and efficiently, it is necessary to use continuous casting copper pieces, which are advantageous in terms of manufacturing cost, for the piles, and to use small quantities of ψ type blanks. ti41] was added to the cast slab (1). ]j? Use.

■良好な歩留を得るために、設術呆1N二のなかで最大
限の埋び、長さを確保しかつ良品質の製品を得る。
■In order to obtain a good yield, ensure maximum filling and length within the 1N2 construction process and obtain a product of good quality.

■能率を最大限に発揮させるために、各スタンドのパス
回数に不釣合がなく適正に分配されている。
■In order to maximize efficiency, the number of passes for each stand is distributed appropriately without any imbalance.

■被圧延材の温iN下とロールの消耗が少なく、かつ安
定した圧延作業を可能と1−る適正なパス回数と、延伸
の配分が行われている。
(1) Appropriate number of passes and stretching distribution are carried out to ensure stable rolling operation with less wear and tear on the rolls under warm conditions of the material to be rolled.

等を満足させる必要がある。そのためには圧延設備の制
約条件即ち圧延機台数、谷圧延似の配列とロールの胴長
、谷圧延機における許容圧延461重や許谷剣力および
ロール強反限昇などがら、圧延のために必要な孔型数と
パス回数を決定するに際し、同一孔型内での多パス(往
復)圧延の必要性が生じる。
It is necessary to satisfy the following. To achieve this, constraints on rolling equipment, such as the number of rolling mills, the arrangement similar to valley rolling, the roll body length, the allowable rolling weight of 461 in the valley rolling mill, the strength of the rolling force, and the increase in the roll strength limit, etc., must be established for rolling. When determining the required number of grooves and number of passes, it becomes necessary to perform multiple passes (reciprocating) rolling within the same groove.

同一孔型内を複数回往復させて圧延する方法は、周知の
ごとく分塊圧延工程、あるいは第2図、第3図の粗圧延
工程CB、D)に示″?1″具体例の゛ように、粗造形
孔型において採用されている。
The method of rolling by reciprocating within the same hole multiple times is, as is well known, the blooming process, or the rough rolling process CB, D) in Figures 2 and 3, as shown in the "?1" specific example. It is adopted in the rough forming hole mold.

この場合圧延材の圧延製置が高く、かつまた孔・型断面
が太き(単純な形状であることがら、ロール孔型内にお
いて圧延材のメタルフロー(塑件流動)が容易であるこ
と、さらには圧延された拐料の熱間断面・寸法に変動が
μりっても、後工程即ち中間圧延工程〜仕上圧延工程で
完全に修正され、最終製品の品質(形状・寸法・疵など
)に問題を生じることがない。
In this case, the rolling stock of the rolled material is high, and the hole/mold cross section is thick (because of the simple shape, metal flow (plastic flow) of the rolled material within the roll hole mold is easy; Furthermore, even if there is a slight variation in the hot cross section or dimensions of the rolled milled material, it will be completely corrected in the subsequent process, from the intermediate rolling process to the finishing rolling process, and the quality of the final product (shape, size, flaws, etc.) will be completely corrected. will not cause any problems.

U形鋼矢板の場合、仕上圧延工程は、継手郡Gを形成す
るための曲げ変形を主体にした歪形と造形を目的として
いるために、同一孔型内の複数回往復圧延は不可能で、
1孔型1・ξスとなる。
In the case of U-shaped steel sheet piles, the finish rolling process aims at distortion and shaping mainly through bending deformation to form the joint group G, so multiple reciprocating rolling in the same hole is impossible. ,
It is a 1-hole type 1·ξ space.

そこでU形鋼矢板の圧延に際し、使用素材断面の集約化
、および歩留・能率の向上、さらには大きな圧延負荷(
圧延イ’+!r正・圧延動カンを」νする広幅鏑矢板の
製造なpJ能と1−ろ方策として、限られた圧延様台数
において、各圧処懺に対する適正な孔型数とパス回・奴
の配分、および適正な負荷配分のために、租圧蛾工4〕
)のみでな(、中間圧延工程において、同一孔型内を複
数回往復させ圧延する方法の採用が必要となる。
Therefore, when rolling U-shaped steel sheet piles, it is necessary to consolidate the cross-section of the material used, improve yield and efficiency, and increase the rolling load (
Rolling i'+! As a measure for producing wide sheet piles that increase the number of rolling cans, the appropriate number of holes and the number of passes and number of passes should be distributed for each rolling can in a limited number of rolling machines. , and for proper load distribution,
) However, in the intermediate rolling process, it is necessary to adopt a method of rolling the same hole by reciprocating it multiple times.

U形鋼矢板を圧延するに際し、中間圧延工程において同
一孔型内を複数回往復させる場合、粗圧延工程の孔型断
面に比較し、その孔型断面は製品形状に近い断面配分と
、肉厚の減少が行われた形状で構成されるとともに、圧
延材の製置も低下するため、ロール孔型内において圧延
材のメタルフロー(塑性流動)が困繻であり、さらに圧
延された材料の熱間断面寸法に、もし変動が発生した場
合、後工程(仕上圧延工程)で修正されず最終製品の品
質(形状・寸法・疵など)不良を惹起する。
When rolling U-shaped steel sheet piles, when the same groove is reciprocated multiple times in the intermediate rolling process, the groove cross section has a cross-sectional distribution close to the product shape and a wall thickness, compared to the groove cross section in the rough rolling process. The metal flow (plastic flow) of the rolled material is difficult in the roll hole mold, and the heat of the rolled material is also reduced. If a variation occurs in the cross-sectional dimensions, it will not be corrected in the subsequent process (finish rolling process), resulting in poor quality (shape, dimensions, flaws, etc.) of the final product.

即ち中間圧タ止工程の孔型形状は、泥4図(イ)、(ロ
)に示した製品断面に対応して、第51図(イノ、(ロ
)にその例(右半分は省略図示)を示すごとく、上・丁
卯対称断面でかつ斜線部で示したウェブWと、フランジ
fの断面積は全体断面積の80係以上を占めており、同
一ロール孔型内で複数回往復通過させ圧延する場合、こ
のウェブWとフランジfの延伸釣合いが保たれねばなら
ない。
In other words, the hole shape of the intermediate pressure stopper process corresponds to the product cross section shown in Figures 4 (A) and (B), and an example is shown in Figure 51 (I) and (B) (the right half is omitted). ), the cross-sectional area of the web W and the flange f, which are symmetrical cross-sections and shaded areas, occupies more than 80 parts of the entire cross-sectional area, and the cross-sectional area of the web W and the flange f are symmetrical in cross-section. In the case of rolling, the stretching balance between the web W and the flange f must be maintained.

図中10.下水平ロール、11.下水平ロール、12、
竪ロールを示す。
10 in the figure. Lower horizontal roll, 11. lower horizontal roll, 12,
Indicates vertical roll.

しかし、第5図に示すごとき中間圧延工程における複雑
な非対称形状の孔型内を、複数回往復させ圧延する場合
、板圧延材のウェブとフランジ間において、適正な延伸
の釣合い条件を充分満足させることが困難であることか
ら圧延状態か不安定(圧延材の曲りや波打ち)となり、
継手部Gの寸法変動や作業率の低下、さらには変形エネ
ルギーロスにもとづく清貧動力が種火するなどの入点が
あった。
However, when rolling is performed by reciprocating multiple times in the complex asymmetrically shaped groove in the intermediate rolling process as shown in Fig. 5, it is necessary to fully satisfy the appropriate stretching balance conditions between the web and flange of the rolled plate material. Because it is difficult to do so, the rolled state becomes unstable (bent or wavy rolled material).
There were some points where the dimensions of the joint G changed, the work rate decreased, and even poor power caused by deformation energy loss started to ignite.

(発明の目的) 本発明は上記した欠点をdj !するためにブヱされた
もので、合理的造形作用によって、女定した圧延作業で
高品質(形状・寸法および疵)のU形鋼矢板を経済的に
製造1−る方法を提供するものである。
(Object of the Invention) The present invention solves the above-mentioned drawbacks. It was developed to provide a method for economically producing high-quality (shape, dimensions, and flaws) U-shaped steel sheet piles in a well-defined rolling process using a rational shaping process. be.

(発明の構成・作用) 即ち本発明は、主に中f’il圧延造形段階にて、・々
ス毎にロール圧下可変の用逆式圧延伝・、2M式圧延機
或はユニバーサル圧廷嵌)を、1かまたは複数台組合せ
て使用し、フランジ延伸とウェブ延伸が釣合う適正な条
件を具備した孔型を構成せしめ、圧延材を同一ロール孔
型内で複数回往復通過させ圧延を行なうことを特徴とす
る。
(Structure and operation of the invention) That is, the present invention mainly uses a reverse rolling mill, a 2M type rolling mill, or a universal rolling mill in which the roll reduction is variable for each step, mainly in the middle rolling shaping stage. ) are used in combination or in combination to form a groove with appropriate conditions for balancing flange stretching and web stretching, and rolling is performed by passing the rolled material back and forth multiple times within the same roll groove. It is characterized by

以下図面に従って本発明の方法について説明する。The method of the present invention will be explained below with reference to the drawings.

第6図は、第1図に示す圧延工程において、当該方法が
実施される場合で、継手部の爪が2本で構成されるU形
銅矢板の圧延状態を示し、第7図および第8図は、同様
にして継手部の爪か1本で構成されるU形鋼矢板の圧延
状態を示す。
Figure 6 shows the rolling state of a U-shaped copper sheet pile consisting of two claws at the joint when the method is carried out in the rolling process shown in Figure 1; The figure similarly shows the rolling state of a U-shaped steel sheet pile consisting of one claw at the joint.

第1図に示1−粗圧延工程のBDミルにおいては、従来
方法と同じく、第6図に示づ一ロール孔W (Kal−
8、Kal−9、Kal−10)および第7図と第8図
に示すロール孔型(Kal−9、Kal−10、Kal
−11)が配置され、前工徨から送られて米だブルーム
葉材mを粗圧延造形し、次の中間圧延工程に移送する。
In the BD mill in the 1-rough rolling process shown in Fig. 1, one roll hole W (Kal-
8, Kal-9, Kal-10) and the roll hole type shown in FIGS. 7 and 8 (Kal-9, Kal-10, Kal-10)
-11) is arranged, and the rice bloom leaf material m sent from the previous mill is roughly rolled and shaped, and then transferred to the next intermediate rolling process.

引き続き第1図に示す中間圧延第1工程のM1ミルにお
いては、第6図に示すロール孔型(Kal−7、Kal
−6)および第7図と第8図に示すロール孔型(Kal
−8、Kal−7、Kal−6)が配置され、粗圧延工
程から送られて米た板圧延材の中間圧延造形(前段)を
行なう。この工程において、第6図の中に(イ)で示し
たKpl−7か本発明方法の適用ロール孔型配置例であ
る。
Subsequently, in the M1 mill of the first step of intermediate rolling shown in FIG.
-6) and the roll hole type (Kal
-8, Kal-7, Kal-6) are arranged, and are sent from the rough rolling process to perform intermediate rolling shaping (first stage) of the rice plate rolled material. In this step, Kpl-7 shown in (a) in FIG. 6 is an example of roll hole pattern arrangement to which the method of the present invention is applied.

次いで第1図に示1−中間圧延第2工程のU−Eミルに
おいて、第6図、第7図およu−扼s図にそれぞれ(ロ
)、(ハ)およびに)で示したロール孔型(Ka 1−
5、Kal−4)も本発明方法の適用ロール孔型配置例
であり、中間圧処第1工程で層形された被圧延材の中間
圧延造形(後段)を行なう。
Next, in the U-E mill of the 1-intermediate rolling second step shown in FIG. Pore type (Ka 1-
5, Kal-4) is also an example of roll hole arrangement to which the method of the present invention is applied, and performs intermediate rolling shaping (second stage) of the rolled material layered in the first intermediate rolling step.

最後に第1図に示す仕七圧姑工程の1・1又はFl、F
2、F3ミルにおいて、従来方法と同じ(、第6図、第
7図および第8図に示すロール孔型(Kal−3、Ka
 1−2、f(al−1)によって1士上は圧延造形が
行われ、U形鋼矢板のオj々lトij frJt、品と
して完成した形状・寸法となる。
Finally, 1.1 or Fl, F of the seven pressing process shown in Figure 1.
2. In the F3 mill, the same as the conventional method (, roll hole type (Kal-3, Ka
1-2, f(al-1) is used to perform rolling shaping, resulting in the completed shape and dimensions of the U-shaped steel sheet pile.

上記のなかでU形銅矢板の中間圧延]−程において、パ
ス毎にロール圧下可変の可逆式圧延機M1、またはU−
Eの2台を組合せて使用するに際し、本発明方法になる
適用ロール孔型例を示したが、本発明の目的はもともと
被圧延材を同一ロール孔型内にて複数回往仮通材し、か
つ通材毎に圧下を加えるに際し、ウェブとフランジの延
伸が釣合う適正な条件を具備することを可能とするロー
ル孔型の構成方法であり、第9図を用いて詳細に説明す
るっ 第9図はU形銅矢做の中間圧延工程において、既述した
本発明が適用されるロール孔型(イ)、(ロ)、(ハ)
およびに)の各ロール孔型の全曲面積のうち、80%以
上の断面積を占有するウェブWとフランジfの孔型構成
部分(右半分は省略図示)を模式図として示したもので
、本発明の基本原理を具体的に説明するためのものであ
る。
In the above process, during the intermediate rolling of U-shaped copper sheet piles, a reversible rolling mill M1 with variable roll reduction for each pass or a U-
An example of the roll hole shape to which the method of the present invention can be applied is shown when two machines of E are used in combination, but the purpose of the present invention was originally to pass the rolled material multiple times in the same roll hole shape. , and is a construction method of the roll hole type that makes it possible to provide appropriate conditions in which the elongation of the web and the flange are balanced when applying rolling reduction for each thread, and will be explained in detail using FIG. Figure 9 shows the roll hole shapes (A), (B), and (C) to which the present invention described above is applied in the intermediate rolling process of U-shaped copper arrows.
This is a schematic diagram showing the hole forming portions of the web W and flange f (the right half is omitted), which occupies more than 80% of the cross-sectional area of the total curved area of each roll hole. This is for specifically explaining the basic principle of the invention.

第9図中に、本発明になるロール孔型構成の方法を算出
するために必要な数11Mを記号で示し、まずその定義
と他の算定未杆設定のための記号の定義を説明する。
In FIG. 9, the number 11M necessary for calculating the method of the roll hole type structure according to the present invention is shown as a symbol, and first, its definition and the definitions of other symbols for setting calculations yet to be determined will be explained.

λW ウェブの厚み延伸 λf、フランジの厚み延伸 Bw ウェブの中心幅 Bfl 、 Sf2 フランジの中心幅Sw、ウェブの
断面積 Sf、フランジの断面積 tw、ウェブの厚み tf フランジのj卓み(フランジ厚みか幅方向に変化
する場@はフラ ッジ中心11昂の中央部の )¥み) Δtw:同一孔型内往伎圧延−のウェブ厚み方向圧下量 Δtf、同一孔型内往仮圧延時のフランジ厚み方向圧下
量 c−c:ロール孔型の垂直中心線 x−x:ロール軸心に平行な水半緋 y−y:ロール軸心に対づ−る垂直縁 θW:ウエブ中尼−>がと水半危りにXのな丁角反θf
:フランジ中心線と垂111u崖y3’のなす角度θ:
ウエプ中心線とフランジ中心線のなす角度H1同一孔型
内往復圧延時の垂直方向ロール変位量 α・:フランジとウェブの延伸比率、フランジとウェブ
の厚み比tf/ tw 、断面積比Sf/Sw、幅比(
Sf/lf)/(Sw/1w)によって決まる定数で、
096〜1.08の範囲フランジおよびウェブの延伸は ウェブとフラッジの延伸が釣合う条件はλf−α・λW
 ・・・・ ・・・・(3)fil、(2)および(3
)式より したがって、まずウェブの延伸を吠定し、Δtwの1直
を設定すると、フランジの圧下量Δtfは次式の値とな
る。
λW Web thickness extension λf, flange thickness extension Bw Web center width Bfl, Sf2 Flange center width Sw, web cross-sectional area Sf, flange cross-sectional area tw, web thickness tf Flange j thickness (flange thickness) When changing in the width direction, Δtw: Reduction amount Δtf in the web thickness direction during forward rolling in the same hole, in the flange thickness direction during pre-rolling in the same hole. Reduction amount c-c: Vertical center line of roll hole type Half-dangerous X angle anti-θf
: Angle θ between the flange center line and the vertical 111u cliff y3':
Angle H1 between web center line and flange center line Vertical roll displacement amount α during reciprocating rolling in the same hole mold: Flange to web stretching ratio, flange to web thickness ratio tf/tw, cross-sectional area ratio Sf/Sw , width ratio (
A constant determined by Sf/lf)/(Sw/1w),
The stretching of the flange and web is in the range of 096 to 1.08.The conditions for balancing the stretching of the web and fludge are λf-α・λW
・・・・・・・・・(3) fil, (2) and (3
) According to the equation, if the stretching of the web is first determined and one shift of Δtw is set, the amount of reduction Δtf of the flange becomes the value of the following equation.

ここで、ウェブの圧下量Δtwと、ウェブの中心称がロ
ール軸心に平行な水X′f−敵x−xのなす傾き角θw
0′)関係から、垂直方向ロール変位量11が定まる。
Here, the amount of reduction Δtw of the web and the angle of inclination θw formed by
0'), the vertical roll displacement amount 11 is determined.

同様にフランジの圧下量Δtfと、フランジの中心線が
ロール軸心に対する垂直腺y、 −yのなづ−傾き角θ
fの関係から、垂直方向ロール袈位量Hが定まる。即ち H−ΔtW/CO5θW H=Δt f /sinθf この垂直方向ロール変位社Hの値は、同一ロール内に構
成された孔型内におけるすべての部分で、当然同じ値と
なる。したがって次の関係式が成り立つ。
Similarly, the reduction amount Δtf of the flange and the vertical axis y of the flange with respect to the roll axis, the slope of -y - the inclination angle θ
The vertical roll length H is determined from the relationship f. That is, H-ΔtW/CO5θWH H=Δtf/sinθf The value of this vertical roll displacement H is naturally the same value in all parts of the groove formed in the same roll. Therefore, the following relational expression holds.

(4)式と(5)式より (6)式の右辺の各記号の値は、ロール孔型設計時に定
めることができる既知の数値であり定数となる。
From equations (4) and (5), the values of the symbols on the right side of equation (6) are known numerical values that can be determined at the time of designing the roll hole mold, and are constants.

又ウェブとフランジのな1−角θも、ロール孔型設計時
に当該適用孔型の前・彼の孔型形状との関係から定めら
れる数値であり、θWとθfの関係は次式の如くなる。
Also, the angle θ between the web and the flange is a value determined from the relationship with the previous hole shape of the applicable hole when designing the roll hole, and the relationship between θW and θf is as follows: .

θf−θw+(θ−90°) ・ ・ ・・(8)(6
)、(7)および(8)式より 以上の如き(7)、(8)および(9)式によって、類
111j学的に本発明の目的とづ−るウェブとフランジ
の延伸が釣合う条件を具備したロール孔型の基本構成が
決定される。
θf−θw+(θ−90°) ・ ・ ・ (8) (6
), (7) and (8) The above equations (7), (8) and (9) provide the conditions under which the stretching of the web and flange, which is the object of the present invention, is balanced in terms of class 111j. The basic configuration of the roll hole type with the following is determined.

実施例 本発明を実圧延工程に適用し、本発明の目的を確かめえ
た実例として、第7図−θのKa 1−5相当部分のロ
ール孔型において、ウェブとフランジの延伸釣合を保つ
ロール孔型の基本)l’r’j成決定方法の具体例を示
す。
EXAMPLE As an example in which the present invention was applied to an actual rolling process and the purpose of the present invention was confirmed, a roll maintaining the stretching balance of the web and the flange in the roll hole shape of the portion corresponding to Ka 1-5 of Fig. 7-θ was used. A specific example of the method for determining the l'r'j formation (Basics of hole shape) is shown below.

同一孔型内において、3回往仮圧延を行なうKa 1−
5の3パス目のウェブ゛4tw、フランジI’1−tf
、ウェブとフランジのなす角1y)θ、およびフランジ
とウェブの延伸比率αの谷値は、製造1−る成品の断面
・寸法にもとづき、まず仕上圧延工程のKa l−1を
設計し、順次適正なウェブとフランジおよび継手部の延
伸と、そのバランス、積形のための曲げ加工を考慮して
Ka 1−2、Kal−3、Ka 1.−4の順に設計
されたのち決定される。
Ka 1- where forward rolling is performed three times in the same hole mold.
5, 3rd pass web ゛4tw, flange I'1-tf
, the angle 1y) θ between the web and the flange, and the valley value of the stretching ratio α between the flange and the web are determined by first designing Ka l-1 in the finish rolling process based on the cross section and dimensions of the finished product in manufacturing 1-1, and then sequentially Ka 1-2, Kal-3, Ka 1. -4 and then determined.

該実施例の場合、Kal−5の3パス目のd−ル孔1i
1構成決定に必安な初期設定数値は、tw−18、Om
m、 tf−11,1nrm、θ二88°、α=102
であった。
In the case of this embodiment, the d-hole hole 1i of the third pass of Kal-5
The initial setting values that are essential for determining the 1 configuration are tw-18, Om
m, tf-11,1nrm, θ288°, α=102
Met.

次にKa l−1〜Ka l−4までを設計した手j−
と同じく、まずKal−5の3/ξス目に対づ−ろウェ
ブ゛の圧下量Δtwの値(Kal−5の2)ξス目のウ
ェブ厚と3パス目のウェブ厚との差)が最初に決定され
る。この場合ウェブの圧下量の値は、負荷(圧延圧力、
圧延動力、およびロール強度等)を考慮し、かつ全孔型
適材時の全・ξスに対する負荷配分のなかで適正な値が
決定される。該実施例の場合 :う7 Δtw=3.7韮 (λW二1−1−−−−1.206
)ここで(7)式より (9)式より θW”35.9゜ (8)式より θf=35.9°+(88°−90°)=33.9゜(
5)式より、Ka l−5の2パス目から3パス目に対
するフランジの圧下量は、 このようにして、まずロール孔型の・円格として重要な
ウェブとフランジのlセI成を決定したあと、他の継手
部なとの形状を構成し4=卯づ一イ、ことによって、完
成された孔型形状となる。
Next, the method that designed Ka l-1 to Ka l-4 is j-
Similarly, first, the value of the reduction amount Δtw of the roller web for the 3/ξth pass of Kal-5 (difference between the web thickness of the 2)ξth pass of Kal-5 and the web thickness of the third pass) is determined first. In this case, the value of the web reduction amount is the load (rolling pressure,
An appropriate value is determined in consideration of the rolling power, roll strength, etc., and the load distribution for the total and ξ spaces when the full-hole type is suitable. In the case of this example:
) Here, from equation (7), from equation (9), θW''35.9° From equation (8), θf = 35.9° + (88° - 90°) = 33.9° (
From formula 5), the amount of reduction of the flange from the second pass to the third pass of Ka l-5 is determined in this way: First, determine the I configuration of the web and flange, which is important for the roll hole type and circular case. After that, the shape of the other joint parts is constructed, and the shape of the hole is completed.

(発明の効果) 1以上説明したように、本発明になるU劇画矢板の圧延
方法として、主に中間圧延造形工程において、同一ロー
ル孔屋内にて被圧延材を複数回圧延するに際し、フラン
ジ延伸とウェブ延伸が、適正な釣合いを保つ条件を具備
したロール孔型構成方法は、少量多品種の形銅生産に使
用される素材断面の集約化、最大限の歩留りの碓・ml
と能率の向上、さらには大きな圧延負荷を要する広幅鋼
矢板の製造などのために、限られた圧延機の配置と台数
の制約のなかで、より適正なロール孔型と、パス回数の
配分および負荷配分を可能とし、U型鋼矢板を経済的に
効率良く製造する効果を得ることができる。
(Effects of the Invention) As explained above, in the method for rolling U comic sheet piles according to the present invention, when rolling the material to be rolled multiple times in the same roll hole mainly in the intermediate rolling shaping process, flange stretching is performed. The roll hole configuration method, which has the conditions to maintain a proper balance between web stretching and web stretching, is used to centralize the cross-section of the material used in the production of a wide variety of shaped copper in small quantities, and to maximize the yield of milliliter.
In order to improve production efficiency and manufacture wide steel sheet piles that require a large rolling load, we have developed a more appropriate roll hole shape, distribution of the number of passes, and It is possible to distribute the load and obtain the effect of manufacturing U-shaped steel sheet piles economically and efficiently.

【図面の簡単な説明】 第1図、第2図および第3図は、ユニバーサル圧延法を
U形鋼矢板の製造に適用した具体例ケ示し、第1図はそ
の工程図、第2図は継手部の爪が2本で構成されるU形
鋼矢板の谷ロール孔型例をパススケジュール説明図、第
3図は継手部の爪か1本で構成されるU形鋼矢板の各ロ
ール孔型例をパススケジュール説明図、第4図(イ)は
継手部の爪が2本で構成されるU形銅矢板の製品断面・
形状の模式図、第4図(ロ)は継手部の爪が1本で11
i)成されるU形X[11・i矢板の製品世r面・形状
の模式図、第5図(イ)は継手部の爪が2本て構成され
るU形鋼矢板を製造づ−る圧延工程のうち、中間圧延工
程Q、、)ロール孔型形状の模式図、第5図(ロ)は継
手部の爪が1本で構成されるU形鋼矢板を製造づ−る圧
延工程のうち、中間圧延工程のロール孔型形状の模式図
、第6図、第7図および第8図は本発明方法か実施適用
されろロール孔型の部位を示づ一パススケジュールの説
明図、第9図は本発明になるロール孔型の輛威力法を具
体的に説明1″るための模式図である。 (Kal) :ロール孔型 (B、D) ニブレークダウンミル (IVil):中間圧延第1工程用ロール圧下1」変の
可逆式圧延機 (U)、中間圧延第2工程用ユニバーサルミルで2Hi
ミルとしても使用される圧延他ζ (E)、中間圧延錆・、2工程用エツジヤ−ミル(F)
:仕上圧延工程用圧延機 W:ウェブ f フランジ G:継手部 tw ウェブ厚み tf:フランジ厚み 第7回 第2図 〈イ) Y !口 (ロ) 第51 $q閉
[Brief explanation of the drawings] Figures 1, 2, and 3 show a specific example of applying the universal rolling method to the production of U-shaped steel sheet piles. Figure 1 is a process diagram, and Figure 2 is a process diagram. An explanatory diagram of the pass schedule for an example of the valley roll hole type of a U-shaped steel sheet pile that has two claws at the joint. Figure 3 shows each roll hole of a U-shaped steel sheet pile that has one claw at the joint. The model example is an explanatory diagram of the pass schedule.
The schematic diagram of the shape, Figure 4 (b), shows 11 claws in the joint.
i) A schematic diagram of the product surface and shape of the U-shaped Among the rolling processes, the intermediate rolling process Q, , ) is a schematic diagram of the roll hole shape, and Figure 5 (b) is the rolling process for producing a U-shaped steel sheet pile consisting of one pawl at the joint. 6, 7 and 8 are explanatory diagrams of a one-pass schedule showing the parts of the roll groove to which the method of the present invention is applied; FIG. 9 is a schematic diagram for specifically explaining the roll-hole type milling force method according to the present invention. (Kal): Roll-hole type (B, D) Knife breakdown mill (IVil): A reversible rolling mill (U) with a roll reduction of 1" for the first intermediate rolling process, and a 2Hi universal mill for the second intermediate rolling process.
Rolling etc. ζ (E) also used as a mill, intermediate rolling rust, 2-process edger mill (F)
: Rolling mill for finishing rolling process W: Web f Flange G: Joint part tw Web thickness tf: Flange thickness No. 7 Fig. 2 <A) Y! Mouth (b) No. 51 $q closed

Claims (1)

【特許請求の範囲】[Claims] 圧延系材を粗造形しビームブランクを形成する粗圧延工
程、中間刃ロエ体を形成する中間圧延工程および所定の
成品形状寸法に加工偕形する仕上圧延工程からなる形相
の圧延工程において、土に中間圧延工程を対象に、パス
毎にロール圧下可変の可逆式圧延・欲を、1台あるいは
連続の袂飲台用い、フランジ延伸とウェブ延伸の釣合い
が保たれるごとくロール孔型を構成せしめ、同一ロール
孔型中にて被圧延月な複数回往仮圧延すること乞特徴と
するU形=、lI矢板の圧延方法。
In the shape rolling process, which consists of a rough rolling process in which the rolled material is roughly shaped to form a beam blank, an intermediate rolling process in which the intermediate blade loe body is formed, and a finishing rolling process in which the rolled material is processed and shaped into a predetermined product shape and size, soil is Targeting the intermediate rolling process, a reversible rolling machine with variable roll reduction for each pass is used, using one or a series of rolling mills, and the roll hole shape is configured so that the balance between flange stretching and web stretching is maintained. A method for rolling U-shaped sheet piles, which is characterized by performing back-and-forth rolling multiple times in the same roll hole die.
JP15248883A 1983-08-23 1983-08-23 Rolling method for U-shaped steel sheet piles Pending JPS6044101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15248883A JPS6044101A (en) 1983-08-23 1983-08-23 Rolling method for U-shaped steel sheet piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15248883A JPS6044101A (en) 1983-08-23 1983-08-23 Rolling method for U-shaped steel sheet piles

Publications (1)

Publication Number Publication Date
JPS6044101A true JPS6044101A (en) 1985-03-09

Family

ID=15541571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15248883A Pending JPS6044101A (en) 1983-08-23 1983-08-23 Rolling method for U-shaped steel sheet piles

Country Status (1)

Country Link
JP (1) JPS6044101A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289634A (en) * 1987-05-22 1989-11-21 Chiron Werke Gmbh & Co Kg Gripping pawl for tool of machine tool
US4888865A (en) * 1987-03-16 1989-12-26 Honda Giken Kogyo Kabushiki Kaisha Machine tool
JP2019038014A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Method for manufacturing steel sheet pile having flange
JP2019042806A (en) * 2017-09-06 2019-03-22 新日鐵住金株式会社 Hat-shaped steel sheet pile manufacturing method and rolling machine
EP3549687A4 (en) * 2017-01-27 2020-07-22 Nippon Steel Corporation METHOD FOR PRODUCING A STEEL PILLAR PILLAR
JP2020196045A (en) * 2019-05-30 2020-12-10 Jfeスチール株式会社 Rolling method of steel sheet pile and rolling equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888865A (en) * 1987-03-16 1989-12-26 Honda Giken Kogyo Kabushiki Kaisha Machine tool
JPH01289634A (en) * 1987-05-22 1989-11-21 Chiron Werke Gmbh & Co Kg Gripping pawl for tool of machine tool
EP3549687A4 (en) * 2017-01-27 2020-07-22 Nippon Steel Corporation METHOD FOR PRODUCING A STEEL PILLAR PILLAR
JP2019038014A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Method for manufacturing steel sheet pile having flange
JP2019042806A (en) * 2017-09-06 2019-03-22 新日鐵住金株式会社 Hat-shaped steel sheet pile manufacturing method and rolling machine
JP2020196045A (en) * 2019-05-30 2020-12-10 Jfeスチール株式会社 Rolling method of steel sheet pile and rolling equipment

Similar Documents

Publication Publication Date Title
CN100467147C (en) Method for rolling large-size square steel by single machine frame without groove
CN103831297B (en) Laterally local thickening plate band and preparation method thereof
JPS6044101A (en) Rolling method for U-shaped steel sheet piles
CN106269910B (en) A kind of hot rolled H-shaped bending control method
JPS59133902A (en) Hot rolling method of h-beam
CN202087575U (en) Profile steel rolling production line
CN109707987A (en) New type section joist deformed steel and its production method and process units
JP2504409B2 (en) Manufacturing method for H-section steel
CN209622457U (en) New type section joist deformed steel and its process units
JP3065877B2 (en) Rough rolling method for H-shaped steel slab
JP2019510638A (en) Rolling roll and rolling system including the same
JP2577660B2 (en) Hot rolling method for channel steel
US4393679A (en) Method for producing blank for wide flange beam
JPS62101302A (en) Rolling method of section steel
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JP3339466B2 (en) H-section steel and its rolling method
JP2004098102A (en) Flat steel manufacturing method and equipment
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
JP6703306B2 (en) Method for manufacturing H-section steel
JPH07124602A (en) Rolling method for rough steel slab for Z type steel sheet pile
JPS61119302A (en) Hot rough rolling method of billet for h-beam
RU2409434C1 (en) Method of producing rolled sheet at reversing thick-sheet mill
JP2012071346A (en) Method of manufacturing h-section steel and h-section steel manufacturing equipment
JP2681536B2 (en) Channel rolling mill row
JPS6056401A (en) Manufacture of h-beam of large sheet-thickness ratio and its simulant