[go: up one dir, main page]

JPS6043629A - Spectroscopy method and spectroscopic element - Google Patents

Spectroscopy method and spectroscopic element

Info

Publication number
JPS6043629A
JPS6043629A JP15178083A JP15178083A JPS6043629A JP S6043629 A JPS6043629 A JP S6043629A JP 15178083 A JP15178083 A JP 15178083A JP 15178083 A JP15178083 A JP 15178083A JP S6043629 A JPS6043629 A JP S6043629A
Authority
JP
Japan
Prior art keywords
diffraction grating
diffraction
incident
spectral distribution
spectroscopic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15178083A
Other languages
Japanese (ja)
Other versions
JPH0549965B2 (en
Inventor
Fumio Yamagishi
文雄 山岸
Shunji Kitagawa
俊二 北川
Kozo Yamazaki
行造 山崎
Shinya Hasegawa
信也 長谷川
Hiroyuki Ikeda
池田 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15178083A priority Critical patent/JPS6043629A/en
Publication of JPS6043629A publication Critical patent/JPS6043629A/en
Publication of JPH0549965B2 publication Critical patent/JPH0549965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To improve resolution by a simple method by arranging plural diffraction grating surfaces radially and in parallel to an axis, and bending an objective beam of spectral distribution and performing relative spectral distribution several times, and forming a spiral track. CONSTITUTION:Four diffraction grating plates 3a-3d having the same diffraction grating surfaces formed of a hologram are arranged radially at intervals of 90 deg., and the spaces between diffraction grating plates are charged with transparent media 5a-5d such as lens bond. When the diffraction grating of this constitution performs spectral distribution, an incident beam C as the objective beam of spectral distribution is projected slightly slantingly to a plene perpendicular to the axis Z of the arrangement of the diffraction grating plates 3a-3d so that a beam reflected by a mirror surface 4d is incident to the diffraction grating plate 3a at an angle of incidence of about 45 deg. and then the incidence beam C is refracted repeatedly to make three turns in the diffracting element, and diffracted by the diffraction grating plate 3d for the 12th time to obtain a projection beam Ca, which is reflected by a mirror surface 4a and guided out.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明は、分光に係り、特に、高分解能を要する分光方
法とそれに使用する分光素子に関す。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to spectroscopy, and particularly to a spectroscopic method requiring high resolution and a spectroscopic element used therein.

山) 技術の背景 分光は古くから知られている技術で、種々の分析手段等
として多く使用されているが、その対象となる波長の幅
は一般に広いのが通常である。一方、近年は、レーザー
光に関する技術が発展し、レーザー光の分光が必要にな
って来たが、レーザー光は波長幅が極めて狭いためその
分光に際しては分解能を高くする必要があり、しかも簡
便に出来ることが望まれている。
Background of the technology Spectroscopy is a technology that has been known for a long time and is widely used as a means of analysis, but the range of wavelengths it targets is generally wide. On the other hand, in recent years, technology related to laser light has developed, and it has become necessary to perform laser light spectroscopy.However, since laser light has an extremely narrow wavelength width, it is necessary to increase the resolution when performing spectroscopy. It is hoped that it will be possible.

fcl 従来技術と問題点 第1図は従来の分光素子による分光方法の−・実施例を
示した図、第2図は同じく他の実施例を示した図で、1
はプリズム、1aは入射面、1hは出射面、2は回折格
子板、2dは回折格子面、Δ・Bは入射ビーム、^aは
屈折ビーム、Ab−Baは出射ビームをそれぞれ示す。
fcl Prior Art and Problems Figure 1 is a diagram showing an example of a spectroscopic method using a conventional spectroscopic element, and Figure 2 is a diagram showing another example.
is a prism, 1a is an incident surface, 1h is an exit surface, 2 is a diffraction grating plate, 2d is a diffraction grating surface, Δ·B is an incident beam, ^a is a refracted beam, and Ab-Ba is an output beam.

第1図において、光学ガラスでなるプリズムJば波長に
より異なる屈折率を有するので、プリズム1に入射した
被分光ビームである入射ビームAは、入射面1aで屈折
分光し屈折ビームAaになり、更に出射面1bで屈折分
光して出射ビーム肺となって出射する。この出射ビーム
Abをプリズム1から離れたところで観測すれば、波長
による分布を知ることが出来る。そして、その分解能は
、主として、入射ビームAと出射ビームAbとがなず屈
折角の大きざと、プリズム1から前記観測をする位置ま
での距離の長さに支配されている。
In FIG. 1, since the prism J made of optical glass has a refractive index that differs depending on the wavelength, the incident beam A, which is the beam to be separated, which is incident on the prism 1, is refracted and separated at the entrance surface 1a to become the refracted beam Aa, and then The beam is refracted and separated at the output surface 1b and output as an output beam. By observing this emitted beam Ab at a distance from the prism 1, the distribution according to wavelength can be determined. The resolution is mainly controlled by the size of the refraction angle between the incident beam A and the outgoing beam Ab, and the length of the distance from the prism 1 to the observation position.

このように、プリズL1で分光を行う場合は、その方法
は簡便であるが、前記屈折角は60四程度であることと
、前記観測をする位置までの距離を無闇に長く出来ない
制限から、分解能を高く出来ない欠点がある。
In this way, when performing spectroscopy with the prism L1, the method is simple, but because the refraction angle is about 604 and there is a restriction that the distance to the observation position cannot be increased arbitrarily, The disadvantage is that the resolution cannot be increased.

第2図に示す実施例では第1図の場合のプリズムlの代
わりに回折格子板2を使用している。その回折格子面2
dにある回折格子は波長により回折角が異なるので、入
射ビームBは回折格子面間系で回折分光して出射ビーム
l(aとなり、第1図の場合と同様に観測出来る。回折
格子板2の場合は、回折角はその回折格子の格子間隔で
決まるが実用上から120度程度以下であって、プリズ
ム1の場合と同様に簡便な方法ではあるが、やはり分1
ηi能を高く出来ない欠点がある。
In the embodiment shown in FIG. 2, a diffraction grating plate 2 is used in place of the prism l in the case of FIG. The diffraction grating surface 2
Since the diffraction angle of the diffraction grating at d differs depending on the wavelength, the incident beam B is diffracted and separated by the diffraction grating interplanar system to become the output beam l(a), which can be observed in the same way as in the case of Fig. 1.Diffraction grating plate 2 In the case of , the diffraction angle is determined by the grating interval of the diffraction grating, but from a practical point of view it is about 120 degrees or less, and although it is a simple method as in the case of prism 1, it is still
There is a drawback that the ηi ability cannot be increased.

(dl 発明の目的 本発明の目的は上記従来の欠点に鑑み、従来と同様に簡
便な方法でありながら、分解能を高めることが可能な分
光方法とそれに使用する分光素子とを提供するにある。
(dl) Purpose of the Invention In view of the above-mentioned drawbacks of the conventional art, the purpose of the present invention is to provide a spectroscopic method that is as simple as the conventional method but can improve resolution, and a spectroscopic element used therein.

(8) 発明の構成 上記目的は、被分光ビームが同方向へ曲がる複数回の分
光を行わせ、該ビームの軌跡を螺旋状にすることを特徴
とする分光方法にし、複数の回折格子面が軸に対して平
行に且つ放射状に配設され、且つまた、該回折格子面は
、その任意の一つが、それを挟む両隣の回折格子面の一
方から入射した被分光ビームを回折させ、他方の回折格
子面へ曲りで出射する回折格子を有していることを特徴
とする分光素子によ、て達成される。
(8) Structure of the Invention The above object is to provide a spectroscopic method characterized by performing spectroscopy in which a beam to be separated is bent in the same direction a plurality of times, and making the locus of the beam spiral, in which a plurality of diffraction grating surfaces are The diffraction grating surfaces are arranged parallel to the axis and radially, and any one of the diffraction grating surfaces diffracts the beam to be separated which is incident from one of the adjacent diffraction grating surfaces on both sides, and diffracts the beam to be separated from the other one. This is achieved using a spectroscopic element characterized by having a diffraction grating that emits light by bending toward a diffraction grating surface.

本分光素子においては、被分光ビームが前記軸に対して
佃斜をもって入射されると、該ビームは該分光素子内に
おいて前記複数の回折格子面で順次回折を繰り返し2な
がら螺旋状に進め、それを、所望の回数(0回)の回折
の後出射ビームとして引き出−1ぽ、該出射ビームの分
光の度合は1回の分光のIIIJ) n倍に拡大されて
いるので、分解能を大幅にAめることが可能である。
In this spectroscopic element, when the beam to be separated is incident at an angle with respect to the axis, the beam repeats sequential order diffraction on the plurality of diffraction grating surfaces within the spectroscopic element and advances in a spiral shape. is extracted as an outgoing beam after diffraction a desired number of times (0 times), and the degree of spectralization of the outgoing beam is magnified n times that of one spectral, so the resolution can be greatly improved. A is possible.

また、本発明によれば、前記分光素子の回折1&子面は
、ホログラムであることが望ましい。それは、他の回折
格子面と比較して回折効率(出射光量/入射光量)が1
liliいからである。
Further, according to the present invention, it is preferable that the first and second diffraction surfaces of the spectroscopic element are holograms. It has a diffraction efficiency (outgoing light amount/incoming light amount) of 1 compared to other diffraction grating surfaces.
It's because it's ugly.

更に、前記複数の回折格子面間は透明媒質で充填されて
いることが望ましい。それは、 ・般に回折格子面ば透
明板の表面に形成されており、該透明板の表面反射が入
射ビームのロスとなって出射ビームの光量を低lよさせ
、前記回折格子面が複数の場合その影響が大きくなるの
を、前記透明媒質の充填により該反射ロスを減少させる
ことか出来るからである。
Furthermore, it is desirable that the spaces between the surfaces of the plurality of diffraction gratings be filled with a transparent medium. Generally, the diffraction grating surface is formed on the surface of a transparent plate, and the surface reflection of the transparent plate causes a loss of the incident beam and reduces the light intensity of the output beam. This is because the reflection loss can be reduced by filling the transparent medium, which has a large effect in this case.

ffl 発明の実施例 以ト木介、明の実施例を図により説明する。ffl Embodiments of the invention The embodiments of Kisuke and Akira will now be described with reference to the drawings.

第3図は本発明の分光素子の 実施例によイノ分光方法
の・実施例を示した斜視図(a)と平面図(b)、第4
図・第5図・第6図はそれぞれ分光素子の他の実施例を
示した図で、3a・3b・3C・3d&J回折格子板、
4a ・4bはミラー面、5a〜5d・6a〜6dは透
明媒質、7は接合月、8は回折格子板、Cは入射ビーム
、Caは出射ビーム、Zは軸をそれぞれ7にず。
FIG. 3 is a perspective view (a) and a plan view (b) showing an example of the ino-spectroscopy method using an example of the spectroscopic element of the present invention;
Figures 5 and 6 respectively show other embodiments of the spectroscopic element, including 3a, 3b, 3C, 3d & J diffraction grating plates,
4a and 4b are mirror surfaces, 5a to 5d and 6a to 6d are transparent media, 7 is a junction moon, 8 is a diffraction grating plate, C is an incident beam, Ca is an output beam, and Z is an axis set to 7, respectively.

第3図に示す回折素子は、ポ1コグラムでなり同一の回
折格子面を備えた四枚の回折格子板3a〜3dが図示の
如<90度間隔で放射状に配設され、その間が例えばレ
ンズボンドの如き透明媒質5d〜5dで充填されている
。ここで、前記回折格子面の回折格子は、例えば、図f
b1図示のように、回折格子板3aから3bに略45度
の入射角で入射したビームは回折格子板3bの回折格子
面で回折し回折格子板3Cに向げて略45度の出射角で
出射するような回折格子になっている。更に、透明媒質
5a5b・5Cは回折格子板38〜3dの全面を売場し
ているが、透明媒質5dの充填は図(a)に示すように
回折格子板3d・3aの血の上部および下部を残してお
り、その残された回折格子板3dの上部の面と38の下
部の面にビームを反射させるためのミラー面4d・4a
がそれぞれ形成されている。
The diffraction element shown in FIG. 3 is a polygon, and four diffraction grating plates 3a to 3d having the same diffraction grating surface are arranged radially at intervals of <90 degrees as shown in the figure, and there is a lens between them, for example. It is filled with transparent media 5d to 5d such as bond. Here, the diffraction grating on the diffraction grating surface is, for example, as shown in FIG.
As shown in b1, the beam incident on the diffraction grating plates 3a to 3b at an incident angle of approximately 45 degrees is diffracted by the diffraction grating surface of the diffraction grating plate 3b, and is directed toward the diffraction grating plate 3C at an outgoing angle of approximately 45 degrees. It is a diffraction grating that emits light. Furthermore, although the transparent media 5a5b and 5C are sold on the entire surfaces of the diffraction grating plates 38 to 3d, filling of the transparent medium 5d is carried out on the upper and lower parts of the diffraction grating plates 3d and 3a, as shown in Figure (a). mirror surfaces 4d and 4a for reflecting the beam on the upper surface of the remaining diffraction grating plate 3d and the lower surface of 38.
are formed respectively.

この構成でなる回折素子を使用して分光を行うには、第
3図に丞ずように、回折格子板3a〜3d配設の軸Zに
垂直な面に対して名゛王傾斜させ、且つミラー面4dで
反射したビームが回折格子板3aに略45度の入射角で
入射するように、被分光ビームである入射ビームCを投
射してやればよい。入射ビームCは回折格子板3aで最
初の回折をし、以下3b・30〜と回折を繰り返し、図
示の例ではこの回折素子の中を3回転して12回目の回
折を3dで行って出射ビームCaとなり、ミラー面4a
で反射して引き出される。この場合、回折効率のよいホ
ログラムを回折格子板38〜3dにし、且つその表面反
射を抑制する透明媒Wj 5 a〜5dの充填がなされ
ているのて、出射ビームCaは12回の回折にもがかわ
らず充分な光量を有している。従って、この出射ビーム
Caは、その分光の度合が1回の分光の略12倍になっ
ており、その光量も充分であるので、例えば、レーザー
光の如く波長幅の小さな光であってもその分布を容易に
観測することが可能になる。
In order to perform spectroscopy using a diffraction element with this configuration, as shown in FIG. The incident beam C, which is the beam to be separated, may be projected so that the beam reflected by the mirror surface 4d is incident on the diffraction grating plate 3a at an incident angle of approximately 45 degrees. The incident beam C undergoes the first diffraction on the diffraction grating plate 3a, and then repeats the diffraction as 3b, 30, etc. In the illustrated example, it rotates through this diffraction element three times, performs the 12th diffraction at 3d, and becomes an output beam. becomes Ca, and the mirror surface 4a
It is reflected and pulled out. In this case, since the holograms with high diffraction efficiency are used as the diffraction grating plates 38 to 3d, and the transparent medium Wj5a to 5d is filled to suppress surface reflection, the output beam Ca is diffracted 12 times. It still has a sufficient amount of light. Therefore, the degree of spectral separation of this output beam Ca is approximately 12 times that of one spectral beam, and the amount of light is also sufficient. It becomes possible to easily observe the distribution.

以下回折素子の他の実施例を列記するが、何れの場合も
分光の原理ならびに方法は上記と変わらない。
Other embodiments of the diffraction element will be listed below, but in any case, the principle and method of spectroscopy are the same as above.

第4図は第3図の場合の透明媒質5d〜5dを充填しな
いもので、回折格子板38〜3dの面反射が第3図の場
合より大きいため、回折可能回数は第3図の場合より制
限される。
In Fig. 4, the transparent media 5d to 5d in the case of Fig. 3 are not filled, and the surface reflection of the diffraction grating plates 38 to 3d is larger than in the case in Fig. 3, so the number of possible diffractions is greater than in the case in Fig. 3. limited.

第5図は第3図の場合の透明媒質5a〜5dを光学ガラ
スでなる6a〜6dにしたもので、この場合は回折格子
板38〜3dとの間を例えはレンズボン1゛等の接合材
7で接合するとよい。
FIG. 5 shows an example in which the transparent media 5a to 5d in FIG. It is best to join at 7.

第6図は三枚の回折格子板8で構成した例で、該構成の
形態は第3図・第4図・第5図の何れであってもよい。
FIG. 6 shows an example of a configuration with three diffraction grating plates 8, and the configuration may be in any of the configurations shown in FIGS. 3, 4, and 5.

但し、回折の角度が異なるため回折格子の格子間隔を変
える必要がある。
However, since the angle of diffraction is different, it is necessary to change the grating spacing of the diffraction grating.

なお、本発明の構成による回折素子は、同一のもので使
用出来る波長の幅が広くないので、観δIIIする入射
ビームの波長に合った回折素子を用葱する必要があるが
、構造が簡単であるので大きな負担にならず、むしろ分
光方法の簡便さの利点の方が大きい。
Note that the diffraction elements configured according to the present invention cannot be used in a wide range of wavelengths even if they are the same, so it is necessary to use a diffraction element that matches the wavelength of the incident beam to be considered. Therefore, it is not a big burden, and the simplicity of the spectroscopic method is actually a great advantage.

(g) 発明の効果 以−]二に説明したように、本発明による構成によれば
、従来と同様に簡便な方法でありながら、分解能を直め
ることか可能な分光方法とそれに使用する分光素子とを
提供することが出来、例えば、レーザー光の如く波広幅
の小さな光であってもその分布を容易に観測することを
可能にさせる効果がある。
(g) Effects of the Invention -] As explained in 2, the configuration of the present invention provides a spectroscopic method that is as simple as the conventional method but allows the resolution to be modified, and a spectroscopy method used therein. For example, the present invention has the effect of making it possible to easily observe the distribution of light even in the case of light having a small wave width such as laser light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光素子による分光方法の 実施例を示
した図、第2図は同しく他の実施例を示した図、第3図
は本発明の分光素子の一実施例による分光方法の 実施
例を示した斜視図ta+と平面図(bl、第4図・第5
図・第6図はそれぞれ分光素子の他の実施例を示した図
である。 図面においζ、1はプリズム、laは入射面、■bは出
射面、2・3a〜3d・8ば回折格子板、2aは回折格
子面、4d・4bはミラー面、5a −5d ・6a 
〜6dは透明媒質、7は接合材、A−B−Cは入射ビー
ム、Aaば屈折ビーム、Ab−Ba−Caは出射ビーム
、Zは軸をそれぞれ示す。 11・、・・、勺 v−1図1 牛2可
Fig. 1 is a diagram showing an embodiment of a spectroscopic method using a conventional spectroscopic element, Fig. 2 is a diagram showing another embodiment, and Fig. 3 is a diagram showing a spectroscopic method using an embodiment of the spectroscopic element of the present invention. A perspective view ta+ and a plan view (BL, Figures 4 and 5) showing the embodiment of
FIG. 6 is a diagram showing other embodiments of the spectroscopic element. In the drawing, ζ, 1 is a prism, la is an incident surface, ■b is an exit surface, 2, 3a to 3d, and 8 are diffraction grating plates, 2a is a diffraction grating surface, 4d and 4b are mirror surfaces, 5a - 5d and 6a
6d is a transparent medium, 7 is a bonding material, A-B-C is an incident beam, Aa is a refracted beam, Ab-Ba-Ca is an outgoing beam, and Z is an axis. 11..., 勺 v-1 Figure 1 Cow 2 possible

Claims (4)

【特許請求の範囲】[Claims] (1)被分光ビームが同方向へ曲がる複数回の分光を行
わせ、該ビームの1lilH跡を螺旋状にすることを特
徴とする分光方法。
(1) A spectroscopy method characterized by performing spectroscopy multiple times in which the beam to be separated is bent in the same direction, and making the 1li1H trace of the beam into a spiral shape.
(2)複数の回折格子面が軸に対して平行に且つ放射状
に配設され、且つまた、該回折格子面は、その任漕:の
一つが、それを挟む両隣の回折格子面の一力から入射し
た被分光ビームを回折させ、他力の回折格子面へ四〇で
出射する回折格子を有し゛(いることを特徴吉する分光
素子。
(2) A plurality of diffraction grating surfaces are arranged parallel to the axis and radially, and one of the diffraction grating surfaces has a single force of the diffraction grating surfaces on both sides of it. A spectroscopic element characterized by having a diffraction grating that diffracts a beam to be separated which is incident on the beam and outputs the beam to the diffraction grating surface of external force.
(3)前記回+J4子面は、ホログラム了あることを特
徴とする特許請求の範囲第(2)項記載の分光素子。
(3) The spectroscopic element according to claim (2), wherein the +J4 minor surface is a hologram.
(4)前記配設におい°(、前記複数の回折格子面間は
透明媒質で充填され°(いることを特徴とする特許請求
の範囲第(2)項記載の分光素子。
(4) The spectroscopic element according to claim (2), wherein in the arrangement, spaces between the surfaces of the plurality of diffraction gratings are filled with a transparent medium.
JP15178083A 1983-08-20 1983-08-20 Spectroscopy method and spectroscopic element Granted JPS6043629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178083A JPS6043629A (en) 1983-08-20 1983-08-20 Spectroscopy method and spectroscopic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178083A JPS6043629A (en) 1983-08-20 1983-08-20 Spectroscopy method and spectroscopic element

Publications (2)

Publication Number Publication Date
JPS6043629A true JPS6043629A (en) 1985-03-08
JPH0549965B2 JPH0549965B2 (en) 1993-07-27

Family

ID=15526134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178083A Granted JPS6043629A (en) 1983-08-20 1983-08-20 Spectroscopy method and spectroscopic element

Country Status (1)

Country Link
JP (1) JPS6043629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356223A (en) * 2001-05-31 2002-12-10 Itoki Crebio Corp Conveying mechanism and automated storage and retrieval warehouse provided with this

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100847A (en) * 1977-02-15 1978-09-02 Nippon Selfoc Co Ltd Light wave length spectrometer with prism
JPS53106060A (en) * 1977-02-26 1978-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical brenching filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100847A (en) * 1977-02-15 1978-09-02 Nippon Selfoc Co Ltd Light wave length spectrometer with prism
JPS53106060A (en) * 1977-02-26 1978-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical brenching filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356223A (en) * 2001-05-31 2002-12-10 Itoki Crebio Corp Conveying mechanism and automated storage and retrieval warehouse provided with this

Also Published As

Publication number Publication date
JPH0549965B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US4671603A (en) Optical filters and multiplexing-demultiplexing devices using the same
JP2889608B2 (en) Diffraction grating
US4701005A (en) Light beam combining method and apparatus
EP0213726B1 (en) Holographic multiplexer/demultiplexer and its manufacturing method
US4863224A (en) Solar concentrator and manufacturing method therefor
US4836634A (en) Wavelength multiplexer/demultiplexer using optical fibers
US7006266B2 (en) Optical switching devices
JPS58186718A (en) Light wavelength processing device
EP0746783A1 (en) Holographic optical devices
US6788849B1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
KR20020079499A (en) Optical device, and wavelength multiplexing optical recording head
JPS6043629A (en) Spectroscopy method and spectroscopic element
CN113433622A (en) High light efficiency grating waveguide element
RU2199769C2 (en) Process recording holographic diffraction grating
SU1103049A1 (en) Method of manufacturing light radiation concentrator by means of holographic technique
US8786853B2 (en) Monochromator having a tunable grating
JP2001059773A (en) Conical diffraction grazing incidence spectrometer and diffraction grating for the spectrometer
US6621633B2 (en) System and method for increasing the diffraction efficiency of holograms
JPS60184217A (en) Optical demultiplexer
EP1228388A1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
JPH0677331B2 (en) Light head
RU2069382C1 (en) Multipath optical system
SU1756852A1 (en) Multiplexer
JP2894309B2 (en) X-ray microbeam generation method and generation apparatus
JP2002304760A (en) Wavelength multiplex optical recording head