[go: up one dir, main page]

JPS6042188B2 - Manufacturing method of silicon nitride molded body - Google Patents

Manufacturing method of silicon nitride molded body

Info

Publication number
JPS6042188B2
JPS6042188B2 JP57195278A JP19527882A JPS6042188B2 JP S6042188 B2 JPS6042188 B2 JP S6042188B2 JP 57195278 A JP57195278 A JP 57195278A JP 19527882 A JP19527882 A JP 19527882A JP S6042188 B2 JPS6042188 B2 JP S6042188B2
Authority
JP
Japan
Prior art keywords
temperature
molded body
oxidation
silicon nitride
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57195278A
Other languages
Japanese (ja)
Other versions
JPS5988372A (en
Inventor
保男 今村
郁男 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Denki Kagaku Kogyo KK filed Critical Nippon Steel Corp
Priority to JP57195278A priority Critical patent/JPS6042188B2/en
Publication of JPS5988372A publication Critical patent/JPS5988372A/en
Publication of JPS6042188B2 publication Critical patent/JPS6042188B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は耐酸化性に優れた窒化珪素成形体の製法、特に
800〜1000℃付近の温度においても耐酸化性に優
れた窒化珪素成形体の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon nitride molded body having excellent oxidation resistance, and particularly to a method for manufacturing a silicon nitride molded body having excellent oxidation resistance even at temperatures around 800 to 1000°C.

一般的に金属珪素を成形窒化する、いわゆる反応焼結窒
化珪素成形体(以下、「成形体」と称す)を製造する方
法は成形体の寸法及び精度が優れたものが得られ、複雑
な形状のものを容易に製作することができ、又その成形
体は熱膨張率が小さく、耐衝撃性に優れ、温度1400
℃まで強度が殆んど低下しない等の長所を有するので、
各種の部品、例えは眉動車、航空機、高温炉の炉材、精
密機械等の部品、等に適用することが試みられつつある
。しかし、成形体はその製造時に殆んど寸法変化を起こ
さないため、見掛気孔率が5〜30%のものしか得られ
ず、そのため耐酸化性に劣るという欠点があつた。
In general, the method of producing a so-called reaction sintered silicon nitride molded body (hereinafter referred to as a "formed body") by molding and nitriding metallic silicon produces a molded body with excellent dimensions and precision, and it is possible to produce a molded body with a complex shape. It can be easily produced, and the molded product has a small coefficient of thermal expansion, excellent impact resistance, and can withstand temperatures of 1400°C.
It has the advantage that the strength hardly decreases up to ℃,
Attempts are being made to apply the method to various parts, such as parts for eyebrow motors, aircraft, high-temperature furnace materials, and precision machinery. However, since the molded body undergoes almost no dimensional change during its manufacture, it has the disadvantage that an apparent porosity of only 5 to 30% can be obtained, resulting in poor oxidation resistance.

本発明者等は、その耐酸化性を向上させるためいろいろ
研究を行つた。
The present inventors conducted various studies to improve its oxidation resistance.

ます成形体の温度条件を40仄50仄600N700、
80仄900N100仄110仄及び1200℃と変え
、その酸化時間を100N300、及び100時間とし
、大気中で酸化し、その酸化後の重量増加率を調べた。
The temperature conditions of the molded body were 40 to 50 to 600N700,
The temperature was changed from 80°C to 900N100°C to 110°C and 1200°C, and the oxidation time was set to 100N300 and 100 hours, and oxidation was carried out in the air, and the weight increase rate after the oxidation was investigated.

その結果を第1図に示す。第1図から明らかな様に遊離
珪素の殆んど存在しないものであつても、特定の温度範
囲、すなわち温度800〜1050℃の範囲では、酸化
による重量増加が著しく大きい事が分つた。その重量増
加の経時変化は酸化開始から300時間までは1000
℃が最大の重量増加を示し、更に長時間酸化を続けると
900℃の方が重量増加が最大となり、酸化低温側に重
量増加のピークが移行する事が観察された。
The results are shown in FIG. As is clear from FIG. 1, even when there is almost no free silicon, the weight increase due to oxidation is significantly large in a specific temperature range, that is, in the temperature range of 800 to 1050°C. The weight increase over time is 1000 for 300 hours from the start of oxidation.
℃ showed the maximum weight increase, and if oxidation was continued for a longer time, the weight increase reached the maximum at 900℃, and it was observed that the peak of weight increase shifted to the oxidation low temperature side.

更に900℃、100時間以上大気中において酸化した
サンプルは、一部微細なりラックが発生した。この90
0℃での100時間までの酸化時間と曲げ強度の関係は
第3図に示す様に、20時間まではわずかに曲げ強さが
増加する。
Furthermore, some of the samples oxidized at 900° C. in the atmosphere for 100 hours or more developed fine racks. This 90
The relationship between oxidation time and bending strength up to 100 hours at 0°C is shown in Figure 3, where the bending strength slightly increases up to 20 hours.

これはSi3N4の気孔にSi0。が形成され、気孔率
を下げたためと考Jえる。30m間より徐々に曲げ強さ
は減少し、クラックの発生が観察された100時間では
曲げ強さのバラツキが大きくなる。
This is Si0 in the pores of Si3N4. This is thought to be due to the formation of porosity, which lowered the porosity. The bending strength gradually decreases after 30 m, and the variation in bending strength increases after 100 hours when cracks are observed.

このようなことは成形体の使用上、温度制限を受けるた
め好ましくなく、例えば、炉材であるセラミックファイ
バーをi係止するスタットボルトとして使用する場合、
スタットボルトは温度分布に対して垂直に使用されるの
で、脱落など種々トラブルの原因となる。本発明者等は
、更に酸化温度が800〜1050℃において異常に重
量増加する原因について検討した。一般的に、反応焼結
したままの成形体は酸素が約2%存在するが、その酸素
はSi2ON2となつているか、α−Si3N4中に固
溶しているか、β−サイアロン中に固溶しているか、又
はSiO2の形で存在するか、明らかではないが、いず
れかの形で存在しているものと思われる。このような成
形体を酸素存在下、温度700゜C以上で100時間酸
化したところ、その成形体にキレツを有するものは、い
ずれも酸素が4%以上含有するものであつた。この場合
、Si2ON2、及びSi3N4のそれぞれのα/βの
比率は殆んど変化はなく、又これを化学分析すると、窒
素は酸幸含有量の増加とは逆に減少している。又この試
験において、温度1000℃以上に酸化したものをX線
回折するとα−SiO2のピークが観察されるものがあ
つた。このα一SlO2のピークの見られるものはその
重量が増加しており、その重量増加は主として酸化によ
るものであると考えられる。この酸化における重量増加
は見掛気孔率が大きいもの程大きい重量増加を示す。
This is undesirable because it imposes temperature restrictions on the use of the molded body. For example, when used as a stud bolt for locking ceramic fiber, which is a furnace material,
Since stud bolts are used perpendicular to the temperature distribution, they can cause various problems such as falling off. The present inventors further investigated the cause of the abnormal weight increase at an oxidation temperature of 800 to 1050°C. In general, the reaction-sintered compact contains about 2% oxygen, but the oxygen is either in the form of Si2ON2, dissolved in α-Si3N4, or dissolved in β-SiAlON. It is not clear whether it exists in the form of SiO2 or SiO2, but it is thought that it exists in some form. When such molded bodies were oxidized in the presence of oxygen at a temperature of 700°C or higher for 100 hours, all of the molded bodies with cracks contained 4% or more of oxygen. In this case, the α/β ratios of Si2ON2 and Si3N4 hardly change, and chemical analysis shows that the nitrogen content decreases contrary to the increase in the acid content. Further, in this test, when X-ray diffraction was performed on the materials oxidized at a temperature of 1000 DEG C. or higher, a peak of .alpha.-SiO2 was observed in some products. The weight of the α-SlO2 peak is increased, and it is thought that the weight increase is mainly due to oxidation. The weight increase due to this oxidation increases as the apparent porosity increases.

又未反応のSiが残留しているとその酸化における重量
増加は一段とはげしさを増す。これは未反応のSiが酸
素と反応しSiO2となるためでSiが完全にSiO2
になつたとすると2.1倍の重量増加と2.3倍もの体
積膨張を起こし、強度劣化の原因となるのは明白である
。又、遊鄭1が全く存在しない成形体であつても、次式
により重量が増加するものと思われ、又.その理論上の
体積膨張は約86%であるので、クラックの発生は膨張
によるものと推定される。式 Sj3N4+302→
3Si02+2N2一方、この酸化試験においても、成
形体中に酸素が増加しているにも拘らず、温度1100
〜1300゜C!て加熱処理したものはその重量の増加
やキレツが殆んど見当らないという驚くべき結果も得ら
れた。第2図に本発明による加熱処理品の酸化温度と重
量増加率の関係を、第3図に900℃における酸く化時
間と曲け強さの関係を示す。
Furthermore, if unreacted Si remains, the weight increase due to oxidation becomes even more severe. This is because unreacted Si reacts with oxygen and becomes SiO2, and Si is completely converted to SiO2.
If it becomes larger, the weight will increase by 2.1 times and the volume will expand by 2.3 times, which obviously causes strength deterioration. Furthermore, even in the case of a molded body in which there is no Yuzheng 1 at all, it is thought that the weight will increase according to the following formula, and. Since its theoretical volumetric expansion is about 86%, it is presumed that cracks occur due to expansion. Formula Sj3N4+302→
3Si02+2N2 On the other hand, even in this oxidation test, despite the increase in oxygen in the compact, the temperature was 1100
~1300°C! The surprising result was that there was almost no increase in weight or cracks in the heat-treated products. FIG. 2 shows the relationship between oxidation temperature and weight increase rate of the heat-treated product according to the present invention, and FIG. 3 shows the relationship between oxidation time and bending strength at 900°C.

本発明はこれらの知見に基いて完成したもので、従来か
ら知られている成形体を大気中で温度1100〜130
0℃で加熱処理することにより、、温度800〜105
0℃で100C@間以上連続使用しても重量の増加やク
ラックの発生の殆んど認められない耐酸化性の窒化珪素
成形体の製法を提供しようとするものである。
The present invention was completed based on these findings, and the conventionally known molded product was heated in the atmosphere at a temperature of 1100 to 130°C.
By heat treatment at 0℃, the temperature is 800~105
The object of the present invention is to provide a method for producing an oxidation-resistant silicon nitride molded article that shows almost no increase in weight or generation of cracks even after continuous use for 100 C@ or more at 0.degree.

すなわち、本発明は、金属珪素に窒素を反応焼結させた
成形体を酸素含有ガスの存在下、温度1100〜130
0℃で加熱処理することを特徴とする。
That is, in the present invention, a molded product obtained by reacting and sintering metallic silicon with nitrogen is heated at a temperature of 1100 to 130°C in the presence of an oxygen-containing gas.
It is characterized by heat treatment at 0°C.

以下、更に本発明の詳細な説明する。本発明は、例えば
スタットボルトや炉材等の成”形体を温度800〜10
50℃の範囲において、長期使用を可能となるように改
良した窒化珪素成形体の製法であつて、その解決の手段
として、酸素含有ガス雰囲気下温度1100〜1300
℃にて加熱処理し、その成形体表面に薄いガラス質膜を
形成させることにより酸素と窒化珪素との反応が抑制さ
れる。
The present invention will be further explained in detail below. In the present invention, for example, molded bodies such as stud bolts and furnace materials are heated to a temperature of 800 to 100.
This is an improved method for producing a silicon nitride molded body that can be used for a long period of time in the range of 50°C.
The reaction between oxygen and silicon nitride is suppressed by heat treatment at .degree. C. and forming a thin glassy film on the surface of the compact.

従つて、酸化速度が急激に低下する。本発明は、加熱処
理温度を1100〜1300℃、好ましくは1150〜
1250℃とすることが重要であつて、1100℃未満
ではその窒化珪素成形体の酸化防止効果は少ない。
Therefore, the oxidation rate decreases rapidly. In the present invention, the heat treatment temperature is 1100-1300°C, preferably 1150-1300°C.
It is important to set the temperature to 1250°C; below 1100°C, the silicon nitride molded body has little oxidation prevention effect.

例えば、温度1000℃で加熱処理すると表面に酸化が
起こり重量増加はするが薄いガラス質膜が形成されない
ため酸化防止効果はほとんどない。又、1300℃をこ
えると、その窒化珪素成形体の酸化防止効果は1300
′Cとほぼ同等であるが、その窒化珪素成形体の外側表
面に形成される皮膜の厚さは大きくなり寸法がくるい、
精密なはめ合いを必要とする場合に好ましくない。
For example, heat treatment at a temperature of 1000° C. causes oxidation on the surface and increases the weight, but since a thin glassy film is not formed, there is almost no oxidation prevention effect. Furthermore, when the temperature exceeds 1300°C, the oxidation prevention effect of the silicon nitride molded body decreases to 1300°C.
Although it is almost the same as 'C, the thickness of the film formed on the outer surface of the silicon nitride molded body is larger and the dimensions are larger.
Not preferred when precise fitting is required.

酸素含有ガスは酸素濃度が低い程熱処理に長時間を要し
、通常酸素含有量が1容量%以上の濃度のものであれば
良く、酸素と不活性ガス、アルゴン又は窒素との混合ガ
ス又は空気が用いられ、特に空気が好ましい。
The lower the oxygen concentration, the longer the heat treatment will take for the oxygen-containing gas, so it is usually sufficient that the oxygen content is 1% by volume or more, and it may be a mixed gas of oxygen and an inert gas, argon or nitrogen, or air. is used, with air being particularly preferred.

又、加熱時間は被処理物、加熱温度等により異るが通常
1紛〜5時間、好ましくは3紛〜3時間であり、加熱速
度は比較的急速加熱が好ましく、1100゜Cの高温雰
囲気中に直接入れてもよい。
The heating time varies depending on the object to be treated, the heating temperature, etc., but is usually 1 powder to 5 hours, preferably 3 powders to 3 hours, and the heating rate is preferably relatively rapid heating in a high temperature atmosphere of 1100 ° C. You can also put it directly into the

成形体は内部の気孔が連続気泡からなつているために加
熱処理を受けるとガラス質の薄膜が窒化珪素成形体の表
面及び内部にも形成される。又、成形体は高純度のもの
が好ましいが、遊離のSiが1重量%以下であるような
窒化の不十分なものであつても、本発明の条件で加熱処
理すれば耐酸化性が改良される。次に、本発明に用いる
成形体について説明するが、これは従来から知られてい
る方法により得られたものが使用される。
Since the internal pores of the molded body are open cells, a glassy thin film is formed on the surface and inside of the silicon nitride molded body when subjected to heat treatment. In addition, although it is preferable that the molded product be of high purity, even if it is poorly nitrided, such as having free Si of 1% by weight or less, the oxidation resistance will be improved if it is heat-treated under the conditions of the present invention. be done. Next, the molded body used in the present invention will be explained, and the molded body obtained by a conventionally known method is used.

その一例を示すと、平均粒径2μ以下の金属珪素粉末に
有機結合剤を添加し、成形機により成形する。
As an example, an organic binder is added to metal silicon powder having an average particle size of 2 μm or less, and the mixture is molded using a molding machine.

この場合、有機結合剤としてスチレン樹脂等のような熱
可塑性樹脂、又はメチルセルローズやポリビニルアルコ
ール等のような水溶性樹脂等を配合する。又、必要に応
じて各種の成形助剤を加えることもできる。その配合割
合は、重量で金属珪素粉末1(1)部、スチレン樹脂3
〜頷部、ステアリン酸0.5〜15部、ブチルベンジル
フタレート0.5〜15部があげられるが、これに限ら
れるものではない。
In this case, a thermoplastic resin such as styrene resin or a water-soluble resin such as methyl cellulose or polyvinyl alcohol is blended as an organic binder. Moreover, various molding aids can be added as necessary. The mixing ratio is 1 (1) part by weight of metal silicon powder, 3 parts of styrene resin.
Examples include, but are not limited to, 0.5 to 15 parts of stearic acid, and 0.5 to 15 parts of butylbenzyl phthalate.

次にこれらを成形するが、公知の成形法、例えば押出、
射出、ブレス、スリップキャスト等の成形法が用いられ
る。
Next, these are molded using known molding methods such as extrusion,
Molding methods such as injection, press, and slip casting are used.

次いでこれを加熱し、前記結合剤等の有機化合物を除去
し、加熱炉で反応焼結させる。
Next, this is heated to remove organic compounds such as the binder, and then reacted and sintered in a heating furnace.

このようにして得られた成形体を前記の方法により高温
て酸素含有ガス雰囲気下処理すればよい。
The molded body thus obtained may be treated at high temperature in an oxygen-containing gas atmosphere by the method described above.

以上の構成よりなる本発明の方法により製造された窒化
珪素成形体は従来の成形体に比較して高温加熱条件下で
使用する際に重量増加率は減少し一方曲げ強さの低下が
防止される。
The silicon nitride molded body produced by the method of the present invention having the above structure has a reduced weight increase rate when used under high temperature heating conditions, while preventing a decrease in bending strength, compared to conventional molded bodies. Ru.

したがつて、該窒化珪素成形体は高温において使用され
る各種の部品材料として用いられ、例えば温度800〜
1050℃程度の高温炉における断熱性のセラミック繊
維の取付具であるスタットボルトとして用いると、従来
使用されているセラミック製支持具に比較して長期間の
使用に耐え得る利点がある。実施例1〜5及び比較例1
〜4重量で平均粒径2μ以下に粉砕した金属珪素粉末1
00部、スチレン樹脂13部、ステアリン酸3.0部、
ブチルベンジルフタレート5.4部の割合に配合し、こ
れを射出成形機により107WEφ×10077!17
!Lのスタットボルトを成形した。
Therefore, the silicon nitride molded body is used as a material for various parts used at high temperatures, for example, at temperatures of 800 to 800℃.
When used as a stud bolt, which is a heat-insulating ceramic fiber fixture in a high-temperature furnace of about 1050° C., it has the advantage of being durable over a long period of time compared to conventionally used ceramic supports. Examples 1 to 5 and Comparative Example 1
Metallic silicon powder 1 crushed to an average particle size of 2μ or less by weight of ~4
00 parts, styrene resin 13 parts, stearic acid 3.0 parts,
Butylbenzyl phthalate was mixed in a proportion of 5.4 parts, and this was molded into 107WEφ×10077!17 by injection molding machine.
! A L stud bolt was molded.

次いでこれをクラック、ふくれ等を発生しないように調
整しながら1〜10′ClHrの昇温速度で350℃ま
で加熱し、有機物酸を揮発させ、その90%以上除去し
た後、窒素雰囲気中で1450℃まで昇温させ、4時間
焼結した。
Next, this was heated to 350°C at a temperature increase rate of 1 to 10'ClHr while adjusting to prevent cracks, blisters, etc., to volatilize the organic acid, and after removing more than 90% of it, it was heated to 1450°C in a nitrogen atmosphere. The temperature was raised to ℃ and sintered for 4 hours.

その焼結体の物性を測定した結果、常温曲げ強さ220
0k91Cfi1見掛気孔率13%であつた。
As a result of measuring the physical properties of the sintered body, the bending strength at room temperature was 220.
0k91Cfi1 had an apparent porosity of 13%.

又、化)学分析によれば、酸素2重量%であつた。これ
を電気炉に入れ、大気中で第1表に示す加熱処理条件で
処理した。その加熱処理後の物性を同第1表に示す。次
に上記加熱処理後の窒化珪素成形体を温度5900℃で
30時間及び100叫間酸化し、酸化後の物性を測定し
た結果を第2表に示す。
Also, according to chemical analysis, the content of oxygen was 2% by weight. This was placed in an electric furnace and treated in the atmosphere under the heat treatment conditions shown in Table 1. The physical properties after the heat treatment are shown in Table 1. Next, the silicon nitride molded body after the above heat treatment was oxidized at a temperature of 5900° C. for 30 hours and 100 hours, and the physical properties after oxidation were measured. Table 2 shows the results.

又、比較例1及び実施例5の1200℃で4時間L熱処
理して得られた焼結体を400、5001600700
、80へ900、1000、1100、1200℃の各
温度1100130へ100(ロ)間酸化した結果を第
3表にaす。
In addition, the sintered bodies obtained by heat treatment at 1200°C for 4 hours in Comparative Example 1 and Example 5 were
, 80 to 900, 1,000, 1,100, and 1,200° C. for 100 (b) at each temperature of 1,100,130° C. are shown in Table 3a.

各実施例で得たスタットボルトを炉壁にセラミック繊維
成形体を取り付ける際に使用した。
The stud bolts obtained in each example were used to attach the ceramic fiber molded body to the furnace wall.

その結果900℃で6ケ月間使用したところ脱落もなく
使用できた。以上の結果から明らかな様に本発明品は第
1〜3表に示すように加熱温度1100〜1300℃で
加熱処理することにより温度800〜1050℃での耐
酸化性が改良されていることがわかる。
As a result, after being used at 900°C for 6 months, it could be used without falling off. As is clear from the above results, the oxidation resistance of the product of the present invention at a temperature of 800 to 1050°C is improved by heat treatment at a heating temperature of 1100 to 1300°C as shown in Tables 1 to 3. Recognize.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来品の酸化温度と酸化による重量増加率との
関係を示すグラフ、第2図は本発明による加熱処理品の
酸化温度と酸化による重量増加率との関係を示すグラフ
、第3図は本発明による加熱処理品と従来品の900℃
における酸化時間と曲げ強さとの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between oxidation temperature and weight increase rate due to oxidation of conventional products, FIG. 2 is a graph showing the relationship between oxidation temperature and weight increase rate due to oxidation of heat-treated products according to the present invention, and FIG. The figure shows the heat-treated product according to the present invention and the conventional product at 900°C.
It is a graph showing the relationship between oxidation time and bending strength in .

Claims (1)

【特許請求の範囲】[Claims] 1 金属珪素に窒素を反応焼結させた成形体を酸素含有
ガス雰囲気下、温度1100〜1300℃で加熱処理す
ることを特徴とする耐酸化性に優れた窒化珪素成形体の
製法。
1. A method for producing a silicon nitride molded body with excellent oxidation resistance, which comprises heating a molded body obtained by reacting and sintering metallic silicon with nitrogen at a temperature of 1100 to 1300°C in an oxygen-containing gas atmosphere.
JP57195278A 1982-11-09 1982-11-09 Manufacturing method of silicon nitride molded body Expired JPS6042188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195278A JPS6042188B2 (en) 1982-11-09 1982-11-09 Manufacturing method of silicon nitride molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195278A JPS6042188B2 (en) 1982-11-09 1982-11-09 Manufacturing method of silicon nitride molded body

Publications (2)

Publication Number Publication Date
JPS5988372A JPS5988372A (en) 1984-05-22
JPS6042188B2 true JPS6042188B2 (en) 1985-09-20

Family

ID=16338496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195278A Expired JPS6042188B2 (en) 1982-11-09 1982-11-09 Manufacturing method of silicon nitride molded body

Country Status (1)

Country Link
JP (1) JPS6042188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515809Y2 (en) * 1987-11-13 1993-04-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171282A (en) * 1984-02-10 1985-09-04 黒崎窯業株式会社 Manufacture of si3n4-sic ceramic sintered body
JPS62197356A (en) * 1986-02-25 1987-09-01 日本碍子株式会社 Manufacture of silicon nitride sintered body
JPS6472965A (en) * 1987-09-16 1989-03-17 Tokai Konetsu Kogyo Kk Production of oxidation-resistant silicon carbide sintered body
JP2670222B2 (en) * 1993-02-02 1997-10-29 日本碍子株式会社 Silicon nitride sintered body and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515809Y2 (en) * 1987-11-13 1993-04-26

Also Published As

Publication number Publication date
JPS5988372A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US4351787A (en) Process for sintering reaction bonded silicon nitride
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPS6152108B2 (en)
JPS6138149B2 (en)
US4499192A (en) Silicon nitride sintered products having high corrosion resistance and process for production thereof
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
JP2786719B2 (en) Method for producing rare earth oxide sintered body
US5545362A (en) Production method of sintered silicon nitride
JPS6212663A (en) Method of sintering b4c base fine body
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JP2696734B2 (en) Manufacturing method of silicon nitride sintered body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPS6337073B2 (en)
JP2706304B2 (en) Method for producing silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JPH0568428B2 (en)
JPH0559074B2 (en)
JPH06100371A (en) Production of sintered silicon nitride
JPH0585506B2 (en)