[go: up one dir, main page]

JPS6040542A - Optical memory medium - Google Patents

Optical memory medium

Info

Publication number
JPS6040542A
JPS6040542A JP14670183A JP14670183A JPS6040542A JP S6040542 A JPS6040542 A JP S6040542A JP 14670183 A JP14670183 A JP 14670183A JP 14670183 A JP14670183 A JP 14670183A JP S6040542 A JPS6040542 A JP S6040542A
Authority
JP
Japan
Prior art keywords
film
layer
memory medium
optical memory
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14670183A
Other languages
Japanese (ja)
Inventor
Shuzo Fukunishi
福西 修三
Masami Miyagi
宮城 雅美
Norihiro Funakoshi
宣博 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14670183A priority Critical patent/JPS6040542A/en
Publication of JPS6040542A publication Critical patent/JPS6040542A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To obtain an optical memory medium which permits rewriting and reading out with high efficiency when a laser light beam is made incident to a photomagnetic film by forming the photomagnetic film which is made substantially thick to increase the effect of Krr rotation, a thin transparent material film and an extremely thin metallic film in this order on a base. CONSTITUTION:A photomagnetic film 22 consisting of, for example, Tb23Fe77 is formed to about 600Angstrom thickness on a transparent base body 1 consisting of glass, etc. and thereafter a thin transparent SiO2 film 23 and an extremely thin metallic film 24 of extremely thin Al, etc. are formed thereon. An optical memory medium which permits recording, reproducing and erasing of information when a laser light beam 6 is made incident thereto from the film 24 side is thus obtd. An equally good result is also obtd. by forming the film 32, the film 33 and the film 34 in this order on the base plate 1 and making the beam 6 of laser light 4 incident thereto from the plate 1 side. The films 22, 34 are thus made thick and the Kerr rotating angle is increased by the interfering effect of the films 23, 33 and the films 24, 32 to prevent oxidation deterioration of the films 22, 34, by which the optical memory medium having a long life and excellent recording and reproducing efficiency is obtd.

Description

【発明の詳細な説明】 (技術分骨) 本発明は、画像ファイル、文書ファイル、ディジタルデ
ータメモリ等の種々の用途に好適な書換え可能な光メモ
リ媒体に関し、特に、高能率で信号を読み出すだめの媒
体構成に関するものである。
Detailed Description of the Invention (Technical Substances) The present invention relates to a rewritable optical memory medium suitable for various uses such as image files, document files, and digital data memories, and in particular, to a rewritable optical memory medium suitable for various uses such as image files, document files, and digital data memories. It is related to media configuration.

(従来技術) 光磁気記録方式における情報の記録は、例えば、結晶質
のMnB1薄膜、非晶質のGdco薄膜、TbFe薄膜
等の記録媒体に集束レーザ光を照射して局所的に温度を
上昇させると同時に外部から磁界を印加1y 、その局
所領域の磁化を印加磁界の方向に向けることにより行な
われる。
(Prior art) Information is recorded using the magneto-optical recording method by irradiating a recording medium such as a crystalline MnB1 thin film, an amorphous Gdco thin film, or a TbFe thin film with a focused laser beam to locally raise the temperature. At the same time, a magnetic field is applied from the outside and the magnetization of the local area is directed in the direction of the applied magnetic field.

記録された磁化方向をレーザ光で読み出して情報の再生
を行うためには、光と磁気の相互作用である磁気カー効
果が用いられる。
The magnetic Kerr effect, which is an interaction between light and magnetism, is used to read out the recorded magnetization direction using a laser beam and reproduce information.

現在、見出されている光磁気材料のカー効果は、一般に
、小さく、カー回転角は、多くの場合、o30程度であ
り、比較的大きなカー回転角を有するMnB1でも10
に足らない。
The Kerr effect of magneto-optical materials currently discovered is generally small, with a Kerr rotation angle of about o30 in most cases, and even MnB1, which has a relatively large Kerr rotation angle, has a
Not enough.

そこで、このカー回転角を強調する(一般にカーエンハ
ンスメントと言われている)媒体構成が研究されている
Therefore, media configurations that emphasize this Kerr rotation angle (generally referred to as Kerr enhancement) are being researched.

従来のカーエンハンスメントのだめの光メモリ媒体の構
成例を第1図および第2図に示す。
An example of the structure of a conventional optical memory medium for car enhancement is shown in FIGS. 1 and 2.

第1図の構成は、基体lの上に、光磁気膜λ(例えばM
nB1膜)および干渉層3(例えばSiO膜)がこの順
序に積層されているものである。
In the configuration shown in FIG. 1, a magneto-optical film λ (for example, M
nB1 film) and an interference layer 3 (for example, a SiO film) are laminated in this order.

レーザ光lをレンズjにより集束させて得た集束レーザ
党名を干渉層3に入射させると、とのレーザ光6が光磁
気膜コと干渉層3との境界面で反射する機会は、干渉層
3がない場合に比べて多くなるだめ、かかる媒体から出
射する光の偏光面の回転角が増大する。
When a focused laser beam obtained by focusing the laser beam l by a lens j is made incident on the interference layer 3, the chance that the laser beam 6 is reflected at the interface between the magneto-optical film and the interference layer 3 is due to interference. As the layer 3 increases compared to the case without it, the angle of rotation of the plane of polarization of the light emitted from such a medium increases.

かかる構成において、エンノ・ンスメン) 効果全極大
にせl−める要因としては、干渉層の膜厚と干渉層の屈
折率の大きさがある。
In such a configuration, factors that can maximize the total effect include the thickness of the interference layer and the refractive index of the interference layer.

第2図に示す構成は、基体lの上に極薄(100Å以下
)の光磁気膜//(例えばTbFe膜)、透明薄膜lλ
(例えばSiO膜)および金属膜/3(例えばAu膜)
がこの順序に積層されているものである。
The configuration shown in FIG.
(e.g. SiO film) and metal film/3 (e.g. Au film)
are stacked in this order.

レーザ光磁をレンズjにより集束させて得た集束レーザ
光6が光磁気膜//を透過して(この際にファラデイ効
果(でより偏光面が回転する)、透明薄膜12にとじ込
められ、透明薄膜/2と光磁気膜//との境界面でのカ
ー効果と光磁気膜//を通過する際のファラデイ効果と
が重畳され、かかる媒体から出射する反射光の偏光面の
回転角は増大される。
A focused laser beam 6 obtained by focusing laser optomagnetic light with a lens j passes through the magneto-optical film (at this time, due to the Faraday effect (the plane of polarization rotates), it is confined in the transparent thin film 12, The Kerr effect at the interface between the transparent thin film /2 and the magneto-optical film // and the Faraday effect when passing through the magneto-optical film // are superimposed, and the rotation angle of the plane of polarization of the reflected light emitted from the medium is Increased.

第1図に示しだ構成では、前述の如く、干渉層λの屈折
率が大きいことがエンハンスメント効果をより大きくす
るために必要なことであるが、高屈折率(好丑しくけ3
以上)の薄膜を形成することは困難であり、大抵の場合
には、SiO膜(屈折率2)が用いられている。
In the configuration shown in FIG. 1, as mentioned above, it is necessary for the interference layer λ to have a large refractive index in order to further increase the enhancement effect.
It is difficult to form a thin film of the above), and in most cases, a SiO film (refractive index of 2) is used.

また、第2図の構成では、光磁気膜l/が極めて薄いた
め、酸化による劣化のために媒体を作成してから約10
日後に情報の記録・再生機能が消失してしまうという欠
点があった。さらに加えて、光磁気膜//が極めて薄い
ことに起因して、ピンホールを生じやすく、これがため
、情報の欠陥、すなわちドロップアウトが多く、エラー
率が高いという欠点があった。
In addition, in the configuration shown in FIG. 2, the magneto-optical film l/ is extremely thin, so it deteriorates due to oxidation.
The drawback was that the information recording and reproducing functions were lost after a few days. In addition, since the magneto-optical film// is extremely thin, pinholes are likely to occur, resulting in many information defects, ie, dropouts, and a high error rate.

(目 的) 本発明は、これら従来の光磁気媒体の欠点に鑑みてなさ
れたものであり、その目的は、十分に厚い光磁気膜と、
透明膜と極薄の金属膜を組合せだ干渉層とにより構成さ
れ、大きなカーエンノ・ンスメント効果を有し、高能率
で信号を再生し、かつ安全性に優れた書換え可能な光メ
モリ媒体を提供することにある。
(Purpose) The present invention was made in view of the drawbacks of these conventional magneto-optical media, and its purpose is to provide a sufficiently thick magneto-optical film,
To provide a rewritable optical memory medium which is composed of a transparent film and an interference layer that is a combination of an ultra-thin metal film, has a large car-enhancement effect, reproduces signals with high efficiency, and has excellent safety. It is in.

(発明の構成) かかる目的を達成するために、本発明では、磁気光学材
料から成る第7層、透明材料から成る第(1) 2層、および金属材料から成り膜厚が70〜200人で
ある第3層をこの順序に配置し、前記第1層にレーザ光
を入射可能となして情報の記録、再生および消去を行う
ように構成する。
(Structure of the Invention) In order to achieve this object, the present invention includes a seventh layer made of a magneto-optical material, a second (1) layer made of a transparent material, and a layer made of a metal material with a film thickness of 70 to 200 layers. A certain third layer is arranged in this order, and the structure is such that a laser beam can be incident on the first layer to record, reproduce, and erase information.

本発明の好適例では、平坦に加工された基体上に、前記
第7層、前記第一層および前記第3層をこの順序に配置
し、前記第3層側から前記第1層にレーザ光を入射可能
とする。
In a preferred embodiment of the present invention, the seventh layer, the first layer, and the third layer are arranged in this order on a flat substrate, and a laser beam is applied to the first layer from the third layer side. can be input.

本発明の他の好適例では、平坦に加工された透明基体上
に、前記第3層、前記第2層および前記第1層をこの順
序に配置し、前記透明基体側から前記第1層にレーザ光
を入射可能とする。
In another preferred embodiment of the present invention, the third layer, the second layer, and the first layer are arranged in this order on a flattened transparent substrate, and the first layer is arranged from the transparent substrate side to the first layer. Allows laser light to enter.

ここで、前記レーザ光の入射される側の表面上に透明材
料から成る保護層を配置することができる0 (実施例) 以下に図面を参照して本発明の詳細な説明する。
Here, a protective layer made of a transparent material may be disposed on the surface on the side where the laser beam is incident. (Example) The present invention will be described in detail below with reference to the drawings.

第3図は本発明光メモリ媒体の第1の実施例を示す図で
あり、ここで、/は直径Δので厚み/、2闘の平坦に加
工されたガラス基体、nは磁気光学(ぶ) 材料、例えばTb2.Fe、、から成る光磁気膜、Bは
透明材料、例えば5j−0から成る透明薄膜、2IIは
金属材料、例えばAlから成る極薄の金属膜である。
FIG. 3 is a diagram showing the first embodiment of the optical memory medium of the present invention, where / is the diameter Δ, the thickness is /, the glass substrate processed to be flat is 2 mm, and n is the magneto-optical material. , for example Tb2. B is a transparent thin film made of a transparent material such as 5j-0, and 2II is an extremely thin metal film made of a metal material such as Al.

光磁気膜nであるTb −Fe膜は、複合ターゲットを
用いた高周波マグネトロン・スパッタリング法で作製し
、その膜厚は約100人とした。引続き、真空蒸着法に
より透明薄膜nとしてのSin膜および極薄金属膜2グ
としての1膜を積層し、ここで膜厚は各々330人およ
び30λとした。
The Tb-Fe film, which is the magneto-optical film n, was fabricated by a high frequency magnetron sputtering method using a composite target, and the film thickness was approximately 100 mm. Subsequently, a Sin film as the transparent thin film n and one film as the ultra-thin metal film 2 were laminated by vacuum evaporation, with film thicknesses of 330 mm and 30 λ, respectively.

カー回転角のエンハンスメント効果を決める主要因は、
透明薄膜nの膜厚である。透明薄膜nとしてのSin膜
の膜厚、330人を決定するにあたり、Sin膜の膜厚
を変え、カー回転角を測定した結果を、極薄金属膜2グ
としてのAl膜がある場合とf/膜がない場合とを比較
して第7図に示す。ここで、測定光は極薄金属膜2グ側
から入射させ測定した。
The main factors that determine the enhancement effect of the car rotation angle are:
This is the thickness of the transparent thin film n. In determining the film thickness of the Sin film as the transparent thin film n, 330 people, the film thickness of the Sin film was changed and the Kerr rotation angle was measured. A comparison with the case without the membrane is shown in FIG. Here, the measurement light was made incident from the ultra-thin metal film 2 side.

第9図から明らか々ように、Al膜(50人)を装荷し
た場合(曲線A)、カー回転角は、膜厚約310人のS
in膜の場合に極大値コ、〆を示し、Al膜を装荷しな
い場合(曲線B)、すなわち第1図に示した従来の構成
に比べ、極大値ンJ、約へS倍大きいという結果が得ら
れた。
As is clear from Fig. 9, when an Al film (50 people) is loaded (curve A), the Kerr rotation angle is
In the case of the aluminum film, the maximum value is shown as 〆, and when no Al film is loaded (curve B), compared to the conventional configuration shown in Fig. 1, the maximum value is approximately ≈S times larger. Obtained.

本発明の構成における五!極薄金属膜2グは、半透明で
あることが要求される。すなわち、入射光としての集束
レーザ光6がA/極薄金属膜2グを透過し、透明薄膜n
を経て、光磁気膜nに到達した後、透明薄膜n内を多重
繰返し反射するととにより、カー回転角がエンハンスメ
ントされるようにすることが必要である。
Five in the configuration of the present invention! The ultra-thin metal film 2 is required to be semitransparent. That is, the focused laser beam 6 as the incident light passes through the ultra-thin metal film A/2 and passes through the transparent thin film n.
After reaching the magneto-optical film n, it is necessary to enhance the Kerr rotation angle by multiple and repeated reflections within the transparent thin film n.

従って、AI極薄金属膜2ゲの膜厚としては、/θ〜、
200人が好壕しく、この範囲外の膜厚では、エンハン
スメント効果は減少する。−上述した第1の実施例では
、Al膜を用いたが、AI以外の金属膜、例えばAg 
、 Au 、 Ou 、 Orなどの場合にも以−トと
同様のことがあてはまる。
Therefore, the film thickness of the two AI ultra-thin metal films is /θ~,
200 is preferred; film thicknesses outside this range reduce the enhancement effect. - In the first embodiment described above, an Al film was used, but metal films other than AI, such as Ag
, Au, Ou, Or, etc., the same thing as above applies.

また、光磁気膜であるTb −Fe膜の膜厚は、透過性
がない程度の膜厚にすることが必要であり、しかも、酸
による劣化を防ぐために、膜厚としてSOOÅ以上に定
めるのが好ましい。
Furthermore, the thickness of the Tb-Fe film, which is a magneto-optical film, needs to be so thick that it is not transparent.Moreover, in order to prevent deterioration due to acid, the film thickness should be set at SOOÅ or more. preferable.

以上の第1の実施例に示しだ光デイスク媒体について、
レーザダイオードを用いた情報記録再生試験装置により
、再生S/N 、および再生S/Mの経時変化を評価し
た結果、S/Nと1〜てIIコdBを得た。
Regarding the optical disk medium shown in the first embodiment above,
As a result of evaluating the reproduction S/N and reproduction S/M over time using an information recording/reproduction test device using a laser diode, the S/N was 1 to II codB.

これは、従来の構成の場合に比べて約7 (iBのE、
/N向上になる。さらにまだ、このS/N値は上述の第
1の実施例の媒体を製作した後に90日を経過した時点
でも、劣化は全く認められず、第2図に示した従来の媒
体よりも安定性に優れていることが確認された。
This is about 7 (E of iB,
/N will improve. Furthermore, this S/N value shows no deterioration at all even after 90 days have passed since the medium of the first embodiment described above was produced, and is more stable than the conventional medium shown in FIG. It was confirmed that it is excellent.

本発明の第2の実施例を第5図に示す。ここで、/けデ
ィスク状のガラス基体でおり、直径3θいで厚さ八、2
門とした。32はガラス基体/上に配置したA)による
極薄金属膜であり、その厚さは30人とした。33は極
薄金属膜32上に配置したSin、、透明薄膜であり、
約200人の膜厚としだ。3グは透明膜33−Fに配置
した光磁気薄膜としてのGd、、、Oo、、膜であり、
その膜厚は100人とした。以上の3層膜を同一スパッ
タリング装置において連続してガラス基体/上に積層し
て形成した。
A second embodiment of the invention is shown in FIG. Here, it is a disk-shaped glass substrate with a diameter of 3θ and a thickness of 8.2 mm.
It was a gate. 32 is a glass substrate/an ultra-thin metal film according to A) placed on top, and its thickness was 30. 33 is a transparent thin film of Sin disposed on the ultra-thin metal film 32;
Approximately 200 people participated. 3G is a Gd,..., Oo, film as a magneto-optical thin film disposed on the transparent film 33-F;
The thickness of the film was 100 people. The above three-layer films were successively laminated and formed on a glass substrate in the same sputtering apparatus.

このようにして得た光デイスク媒体について、(9) 第lの実施例の場合と同様に、レーザダイオードを用い
た情報記録再生試験装置によりS/Nを測定した。ただ
し、この場合、レーザ光6を基体/の側より入射させた
。本例では、S/Nとして110 dBの値が得られた
。S/’Hの経時変化についても、第1の実施例の場合
と同様に、ディスク媒体を製作した後、90日を経過し
た時点でも劣化は全く認められなかった。
Regarding the optical disc medium thus obtained, (9) S/N was measured using an information recording/reproducing test device using a laser diode, as in the case of the first embodiment. However, in this case, the laser beam 6 was made incident from the substrate side. In this example, a S/N value of 110 dB was obtained. As for the change in S/'H over time, no deterioration was observed even 90 days after the disk medium was manufactured, as in the case of the first example.

また、以上に示した第1および第2の実施例の媒体の受
光表面上に、透明材料、例えば紫外線硬化性のアクリル
樹脂を塗布して硬化する方法により、30μm11の透
明な保護膜を形成することにより、指紋付着等によるS
/N低下を防止する構造とすることもできる。
In addition, a transparent protective film of 30 μm 11 is formed on the light-receiving surface of the medium of the first and second embodiments described above by coating and curing a transparent material, such as an ultraviolet-curable acrylic resin. Due to this, S due to fingerprints etc.
It is also possible to adopt a structure that prevents a decrease in /N.

(効 果) 以上説明したように、本発明によれば、十分に厚い光磁
気膜に対して極薄金属膜と透明膜とからなる干渉層を積
層して光デイスク媒体を形成することにより、磁気光学
カー回転角が増大され、かつその効果は従来のものに比
べて大きく、その結(/θ) 果、S/Nを向上させることができるという利点がある
。さらにまた、光磁気膜の膜厚が十分に厚いので、酸化
劣化によるS/Nの経時低下が大幅に改善されるという
実用的な利点がある。
(Effects) As explained above, according to the present invention, by forming an optical disk medium by laminating an interference layer consisting of an ultra-thin metal film and a transparent film on a sufficiently thick magneto-optical film, The magneto-optical Kerr rotation angle is increased and its effect is greater than that of the conventional one, and as a result (/θ) there is an advantage that the S/N can be improved. Furthermore, since the film thickness of the magneto-optical film is sufficiently thick, there is a practical advantage that the deterioration of S/N over time due to oxidative deterioration is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の光メモリ媒体の構造の一例
を示す断面図、 第3図は本発明光メモリ媒体の第1の実施例を示す断面
図、 第9図は本発明の詳細な説明するための、磁気光学カー
効果エンハンスメントの実験結果を示す特性曲線図、 第3図は本発明光メモリ媒体の第λの実施例を示す断面
図である。 /・・・基体、 コ・・・光磁気膜、 3・・・干渉層、 ダ・・・レーザ光、 S・・・レンズ、 6・・・集束レーザ光、 l/・・・光磁気膜、 /2・・・透明薄膜、 /3・・・金属膜、 n・・・光磁気膜(第1層)、 B・・・透明薄膜(第2層)、 21・・・極薄金属膜(第3層)、 32・・・極薄金属膜(第7層)、 33・・・透明膜(第2層)、 3Il・・・光磁気膜(第31帰)。 特許出願人 日本電信電話公社 第1図 第2図 第3図 一一へ−71 第4図 SiO悶(J、+m)
1 and 2 are cross-sectional views showing an example of the structure of a conventional optical memory medium, FIG. 3 is a cross-sectional view showing a first embodiment of the optical memory medium of the present invention, and FIG. 9 is a detailed explanation of the present invention. FIG. 3 is a cross-sectional view showing the λth embodiment of the optical memory medium of the present invention. /...Substrate, C...Magneto-optical film, 3...Interference layer, D...Laser light, S...Lens, 6...Focused laser light, l/...Magneto-optical film , /2...Transparent thin film, /3...Metal film, n...Magneto-optical film (first layer), B...Transparent thin film (second layer), 21...Ultra-thin metal film (3rd layer), 32... Ultra-thin metal film (7th layer), 33... Transparent film (2nd layer), 3Il... Magneto-optical film (31st layer). Patent Applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 2 Figure 3 Go to 11-71 Figure 4 SiO (J, +m)

Claims (1)

【特許請求の範囲】 旬 磁気光学材料から成る第1層、透明材料から成る第
2層、および金属材料から成り膜厚が10−200Aで
ある第3層をこの順序に配置し、前記第1層にレーザ光
を入射可能となして情報の記録、再生および消去を行う
ようにしたことを特徴とする光メモリ媒体。 2、特許請求の範囲第1項記載の光メモリ媒体において
、平坦に加工された基体上に、前記第1層、前記第一層
および前記第3層をこの順序に配置し、前記第3層側か
ら前記第1層にレーザ光を入射可能としたことを特徴と
する光メモリ媒体。 5)特許請求の範囲第1項記載の光メモリ媒体において
、平坦に加工された透明基体上に、前記第3層、前記第
2層および前記第1層をこのj@序に配置し、前記透明
基体側から前記酊/層にレーザ光を入射可能としたこと
を特徴とする光磁化り媒体。 4)特許請求の範囲第1項ないし第5項のいずれかの項
に記載の元メモリ媒体において、前記レーザ光の入射さ
れる側の表面」二に透明材料から成る保護層を配置した
ことを特徴とする光メモリ媒体。
[Scope of Claims] A first layer made of a magneto-optical material, a second layer made of a transparent material, and a third layer made of a metal material and having a film thickness of 10-200A are arranged in this order, An optical memory medium characterized in that a laser beam can be incident on a layer to record, reproduce, and erase information. 2. In the optical memory medium according to claim 1, the first layer, the first layer, and the third layer are arranged in this order on a flat substrate, and the third layer side An optical memory medium, wherein a laser beam can be incident on the first layer. 5) In the optical memory medium according to claim 1, the third layer, the second layer, and the first layer are arranged in this order on a flat transparent substrate, and the transparent A photomagnetic medium, characterized in that a laser beam can be incident on the layer/layer from the substrate side. 4) In the original memory medium according to any one of claims 1 to 5, a protective layer made of a transparent material is disposed on the surface on the side where the laser beam is incident. Features of optical memory media.
JP14670183A 1983-08-12 1983-08-12 Optical memory medium Pending JPS6040542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14670183A JPS6040542A (en) 1983-08-12 1983-08-12 Optical memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14670183A JPS6040542A (en) 1983-08-12 1983-08-12 Optical memory medium

Publications (1)

Publication Number Publication Date
JPS6040542A true JPS6040542A (en) 1985-03-02

Family

ID=15413595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14670183A Pending JPS6040542A (en) 1983-08-12 1983-08-12 Optical memory medium

Country Status (1)

Country Link
JP (1) JPS6040542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134604A (en) * 1990-01-11 1992-07-28 Matsushita Electric Industrial Co., Ltd. Combination optical data medium with multiple data surfaces and cassette therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134604A (en) * 1990-01-11 1992-07-28 Matsushita Electric Industrial Co., Ltd. Combination optical data medium with multiple data surfaces and cassette therefor

Similar Documents

Publication Publication Date Title
GB2081537A (en) Magneto-optic memory element
JPH02240845A (en) Magneto-optical disk
US6697323B1 (en) Optical recording medium and method of manufacturing including smoothing treatment
US6667088B2 (en) Optical recording medium
JPS63285738A (en) Magneto-optical recording medium
JPS6040542A (en) Optical memory medium
JPH04353641A (en) Optomagnetic recording single plate optical disk
JPS6122455A (en) Magnetooptic recording medium
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JPS6122454A (en) Photomagnetic recording medium
JPS627611B2 (en)
JPS61269248A (en) Photomagnetic disk
JP2562219B2 (en) Magneto-optical disk
JP2740814B2 (en) Magneto-optical recording medium
JPS5956241A (en) Photomagnetic recording medium
JPH0462140B2 (en)
JPH03102658A (en) Optical memory element
JPS6332748A (en) Information recording medium
JPH103702A (en) Magneto-optical recording medium and its reproducing method
JPS61242356A (en) Photomagnetic disk
JPH0442736B2 (en)
JPH04355234A (en) Magneto-optical recording medium
JPS6120244A (en) Magnetic recording medium
JPS58118047A (en) Photomagnetic recording medium
JPS60209947A (en) Optomagnetic recording medium