JPS6040453B2 - Method for producing polyethylene glycolic acid - Google Patents
Method for producing polyethylene glycolic acidInfo
- Publication number
- JPS6040453B2 JPS6040453B2 JP52053844A JP5384477A JPS6040453B2 JP S6040453 B2 JPS6040453 B2 JP S6040453B2 JP 52053844 A JP52053844 A JP 52053844A JP 5384477 A JP5384477 A JP 5384477A JP S6040453 B2 JPS6040453 B2 JP S6040453B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- platinum
- polyethylene glycol
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- -1 polyethylene glycolic acid Polymers 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 72
- 239000003054 catalyst Substances 0.000 claims description 69
- 229920001223 polyethylene glycol Polymers 0.000 claims description 47
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 45
- 239000002202 Polyethylene glycol Substances 0.000 claims description 42
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 22
- 229910052697 platinum Inorganic materials 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 claims description 7
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- 239000002253 acid Substances 0.000 description 23
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 19
- 239000000047 product Substances 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- 239000002994 raw material Substances 0.000 description 10
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 4
- DSVGQVZAZSZEEX-UHFFFAOYSA-N [C].[Pt] Chemical compound [C].[Pt] DSVGQVZAZSZEEX-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 235000010005 Catalpa ovata Nutrition 0.000 description 1
- 240000004528 Catalpa ovata Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 101100227721 Rattus norvegicus Frk gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Polyethers (AREA)
Description
【発明の詳細な説明】
本発明はポリエチレングリコールの両端にあるヒドロキ
シ基を改良された白金パラジウム触媒の存在下酸素また
は酸素含有ガスで酸化し、両端にカルボキシ基を有する
ポリエチレングリコ−ル酸を製造する方法に関するもの
である。Detailed Description of the Invention The present invention involves oxidizing the hydroxy groups at both ends of polyethylene glycol with oxygen or oxygen-containing gas in the presence of an improved platinum palladium catalyst to produce polyethylene glycol acid having carboxy groups at both ends. It's about how to do it.
ポリエチレングリコール酸は界面活性剤、キレート剤、
高分子化合物の改質剤などの原料として有用な物質であ
る。Polyethylene glycolic acid is a surfactant, chelating agent,
It is a useful material as a raw material for modifiers for polymer compounds.
従来ポリエチレングリコール酸を得る方法には次のよう
な方法がある。Conventionally, there are the following methods for obtaining polyethylene glycolic acid.
■ 袴開昭51−128909号公報によれば、白金族
触媒の存在下、2なし、し8個のポリエチレングリコー
ル単位を有するポリエチレングリコールをアルカリ物質
及び分子状酸素と反応させて反応液の解を常に5.0な
いし9.0の範囲に保ってポリグリコール酸塩を製造す
る方法があるが、この方法によるときはポリエチレング
リコール酸がアルカリ塩としては得られ、酸として得る
には中和、脱塩精製する必要がある。■According to Hakamakai Publication No. 51-128909, polyethylene glycol having 2 to 8 polyethylene glycol units is reacted with an alkaline substance and molecular oxygen in the presence of a platinum group catalyst to form a reaction solution. There is a method of producing polyglycolic acid salts by always maintaining the range of 5.0 to 9.0, but when using this method, polyethylene glycolic acid is obtained as an alkali salt, and to obtain it as an acid, it must be neutralized and decomposed. Salt needs to be purified.
またこの方法によるときは触媒を反応途中で追加するこ
とが好ましく、触媒の使用量が多く製造コストが高くな
る点がある。■ 米国特許第392蛾73号明細書によ
ればエチレングリコール単位が2なし、し3のポリエチ
レングリコールを白金触媒の存在下に酸素または酸素含
有ガスで酸化して相当するジカルボン酸を得る方法があ
るが、この方法において同号明細費はジェチレングリコ
ールは酸化されて収率■B5%で相当するジカルボン酸
が得られるが、トリエチレングリコールの場合はエーテ
ル結合の切断その他分解が起つて相当するジカルボン酸
の収率は79.2%であると述べており、相当するジカ
ルボン酸の収率が悪い。In addition, when using this method, it is preferable to add a catalyst during the reaction, and the amount of catalyst used is large, resulting in high production costs. According to US Pat. No. 392-73, there is a method for obtaining the corresponding dicarboxylic acid by oxidizing polyethylene glycol containing 2 or 3 ethylene glycol units with oxygen or an oxygen-containing gas in the presence of a platinum catalyst. However, in this method, diethylene glycol is oxidized and the corresponding dicarboxylic acid is obtained at a yield of 5%, but in the case of triethylene glycol, cleavage of the ether bond and other decomposition occur to produce the corresponding dicarboxylic acid. The acid yield is stated to be 79.2%, which is a poor yield of the corresponding dicarboxylic acid.
これらの事実はエチレングリコール単位が3以上のポリ
エチレングリコールはその酸化反応においてエーテル結
合の切断その他副反応が併発し易いことを示唆している
。■ 特関昭51−131824号公報によればジェチ
レングリコールを貴金属触媒の存在下pH3以下の強酸
性水溶液中で含酸素ガスにより酸化してジグリコール酸
を製造する方法があるが、この方法ではわざわざ酸を加
える必要がある。These facts suggest that polyethylene glycol having three or more ethylene glycol units is susceptible to cleavage of ether bonds and other side reactions during its oxidation reaction. According to Tokusei No. 51-131824, there is a method for producing diglycolic acid by oxidizing diethylene glycol with oxygen-containing gas in a strongly acidic aqueous solution with a pH of 3 or less in the presence of a noble metal catalyst. You need to add acid.
またこの公報は反応液のpHが3〜7の範囲で反応を行
うとき反応生成物はギ酸、シュウ酸、酢酸、グリコール
酸などの分解生成物であってジグリコール酸は全く生成
しないか、生成しても痕跡程度であると述べている。こ
のようにエチレングリコール単位の多けなったポリエチ
レングリコールを接触酸化して相当するジカルボン酸を
得ることは非常に難しく高度の技術を必要とし、これま
でにその技術は全く開示されていない。Additionally, this publication states that when the reaction is carried out in a pH range of 3 to 7, the reaction products are decomposition products of formic acid, oxalic acid, acetic acid, glycolic acid, etc., and diglycolic acid is not produced at all or is not produced at all. However, it is said that there are only traces. It is extremely difficult to obtain the corresponding dicarboxylic acid by catalytic oxidation of polyethylene glycol having a large number of ethylene glycol units as described above, and requires advanced technology, and no such technology has been disclosed to date.
分子量の比較的大きいポリエチレングリコールの末端の
ヒドロキシ基を酸化する場合、副反応としてエーテル結
合の切断が起り易いのは、最鎖になるにしたがってエー
テル結合の酸素とヒドロキシ基の酸素が競争的に触媒表
面に吸着するためと考えられ、エーテル結合を切断する
ことなくヒドロキシ基のみを選択的に酸化するためには
ェーナル結合の触媒への吸着力の弱い触媒を選定するこ
とが必要である。When oxidizing the terminal hydroxyl group of polyethylene glycol, which has a relatively large molecular weight, ether bond cleavage is likely to occur as a side reaction because the oxygen of the ether bond and the oxygen of the hydroxyl group competitively catalyze the process toward the end of the chain. This is thought to be due to adsorption on the surface, and in order to selectively oxidize only hydroxyl groups without breaking ether bonds, it is necessary to select a catalyst that has a weak adsorption power to the catalyst of ether bonds.
またヒドロキシ基の酸化に際し中間体としてアルデヒド
が生成するが、このアルデヒドを速かにかつ完全に酸化
する能力を有する触媒が反応時間及び生成物の純度を高
めるのに重要な因子となる。本発明者らはこのような見
地から、非アルカリ性溶液において平均分子量約180
なし、し約20,000のポリエチレングリコールを酸
素または酸素含有ガスで酸化し、相当する両端にカルボ
キシ基を有するポリェチレングIJコール酸を純度高く
かつ好収率で得る方法について鋭意研究したところ、酸
化反応に用いる触媒によって大きく影響されることを見
出し本発明を完成した。Furthermore, aldehydes are produced as intermediates during the oxidation of hydroxyl groups, and a catalyst having the ability to quickly and completely oxidize these aldehydes is an important factor in increasing the reaction time and the purity of the product. From this perspective, the present inventors determined that the average molecular weight was approximately 180 in a non-alkaline solution.
After intensive research into a method for obtaining polyethylene glycol having carboxyl groups at both ends with high purity and good yield by oxidizing about 20,000 polyethylene glycol with oxygen or an oxygen-containing gas, we found that the oxidation reaction The present invention was completed based on the discovery that this is greatly influenced by the catalyst used.
すなわち本発明は、非アルカリ性溶液中で後述するよう
な触媒金属として白金を王としこれにパラジウムを添加
した改良された白金パラジウム炭素触媒を用い、平均分
子量が約180ないし約20,000のポリエチレング
リコールをそのエーテル結合が切断されることなく酸化
して、両端にカルボキシ基を有するポリエチレングリコ
ール酸を製造する方法を提供するものある。That is, the present invention uses an improved platinum-palladium carbon catalyst in which platinum is the main catalyst metal and palladium is added thereto as a catalyst metal as described below in a non-alkaline solution, and polyethylene glycol having an average molecular weight of about 180 to about 20,000 is used. There is a method for producing polyethylene glycolic acid having carboxy groups at both ends by oxidizing the polyethylene glycolic acid without cleavage of its ether bonds.
本発明方法の一実施態様を示せば、反応ガス導入口、温
度計、圧力計、凝梓機を装備した反応容器中にポリエチ
レングリコール溶液と白金パラジウム炭素触媒を仕込み
ガス導入口から酸素あるいは酸素含有ガスを吹き込み常
圧または加圧下、反応温度40なし、し120qCで鯛
拝しながら反応させる。In one embodiment of the method of the present invention, a polyethylene glycol solution and a platinum-palladium carbon catalyst are charged into a reaction vessel equipped with a reaction gas inlet, a thermometer, a pressure gauge, and a condenser. Gas is blown into the mixture and the reaction is carried out under normal pressure or increased pressure at a reaction temperature of 40° C. and 120 qC under constant pressure.
反応が進行するにつれて酸素の吸収が進み、酸素の吸収
が止つた時反応を終了し、冷却した後反応生成物を取り
出し触媒を炉列すれば無色透明な反応液が得られる。こ
の反応によって両端にカルボキシ基を有するポリエチレ
ングリコール酸が純度良く定量的に得られる。本発明に
おいて非アルカリ性溶液中とは、反応当初酸又はアルカ
リを添加せず、また反応中アルカリを添加することなく
進行させるものである。As the reaction progresses, the absorption of oxygen progresses, and when the absorption of oxygen stops, the reaction is terminated, and after cooling, the reaction product is taken out and the catalyst is placed in the furnace to obtain a colorless and transparent reaction liquid. Through this reaction, polyethylene glycolic acid having carboxy groups at both ends can be obtained quantitatively with good purity. In the present invention, the term "in a non-alkaline solution" means that the reaction proceeds without adding an acid or alkali at the beginning of the reaction, and without adding an alkali during the reaction.
即ち本発明方法の実施にあたり原料の実施にあたり原料
のポリエチレングリコール溶液は、反応開始以前および
反応中になんらpHの調整を行う必要がなくそのまま反
応に供する。反応の進行につれてカルボン酸が生成しp
Hが次第に下っていくが、反応完結時点においてそのp
Hは、分子量によって異るが大略2なし、し4の範囲に
ある。また反応時間は原料および反応条件によって異る
が通常約5ないし1幼時間である。本発明においてポリ
エチレングリコールは一般に市販されているもので、そ
の平均分子量が約180ないし約20,000のものよ
りなる群から選ばれたポリエチレングリコールである。That is, when carrying out the method of the present invention, the raw material polyethylene glycol solution is directly subjected to the reaction without any need to adjust the pH before or during the reaction. As the reaction progresses, carboxylic acid is produced and p
H gradually decreases, but at the completion of the reaction, its p
H varies depending on the molecular weight, but is approximately in the range of 2 to 4. The reaction time varies depending on the raw materials and reaction conditions, but is usually about 5 to 1 hour. In the present invention, the polyethylene glycol is a commercially available polyethylene glycol selected from the group consisting of those having an average molecular weight of about 180 to about 20,000.
平均分子量が約180なし、し約20,000のポリエ
チレングリコールは、エチレングリコール単位が約4以
上約460以下のものである。このようなポリエチレン
グリコールは水溶液として反応に供することが好ましく
、その水溶液の濃度は反応温度での飽和熔解度以下であ
ればいずれの濃度でも差支えないが、通常好ましくは1
0なし、し5の重量パーセントである。本発明方法に用
いられる白金パラジウム炭素糠煤はその触媒金属として
白金およびパラジウムを必須成分とし、パラジウムを白
金に対し5ないし10の重量パーセント、好ましくは1
0ないし4の重量パーセント添加したものである。一方
、損体として用いる炭素はその紬孔容積が1.0なし、
し1.6ccノタを有する活性炭を用いる。担体に担持
する触媒金属の担持量は通常実施されているように約1
ないし1の重量パーセントであるが、その担持量は特に
限定されるものではない。本発明で用いられる触媒の調
整法はたとえば活性炭を水に懸濁させ、この懸濁液のp
Hを8以上とし、この中に塩化白金酸と塩化パラジウム
の混合水溶液を滴下し、途中pHが8以下となるときは
必要に応じてアルカリを追加しながら白金とパラジウム
を活性炭に完全に吸着させる。Polyethylene glycols having an average molecular weight of between about 180 and about 20,000 have ethylene glycol units of about 4 to about 460. Such polyethylene glycol is preferably used in the reaction as an aqueous solution, and the concentration of the aqueous solution can be any concentration as long as it is below the saturated solubility at the reaction temperature, but it is usually preferably 1.
0 and 5 weight percent. The platinum-palladium-carbon bran soot used in the method of the present invention contains platinum and palladium as essential components as catalyst metals, and palladium is contained in a proportion of 5 to 10 weight percent, preferably 1 percent by weight, based on platinum.
0 to 4 weight percent. On the other hand, the carbon used as a loss body has a pongee hole volume of 1.0,
Activated carbon having a diameter of 1.6 cc is used. The amount of catalyst metal supported on the carrier is approximately 1
The amount supported is not particularly limited. The method for preparing the catalyst used in the present invention is, for example, by suspending activated carbon in water and
Adjust H to 8 or higher, drop a mixed aqueous solution of chloroplatinic acid and palladium chloride into the solution, and if the pH drops to 8 or lower midway through, add alkali as necessary to completely adsorb platinum and palladium onto activated carbon. .
次いでホルマリン、ギ酸、ナトリウムボロハイドライド
などの還元剤を加えて活性炭上の塩化白金酸および塩化
パラジウムを還元した後充分水洗し、そのまままたは乾
燥して酸化反応に供する。このようにして得られた触媒
はX線回折でアモルファスなものである。Next, a reducing agent such as formalin, formic acid, or sodium borohydride is added to reduce the chloroplatinic acid and palladium chloride on the activated carbon, which is then thoroughly washed with water and subjected to an oxidation reaction as it is or after drying. The catalyst thus obtained is amorphous according to X-ray diffraction.
本発明方法において用いる触媒の使用量は所望する反応
速度、経済性などを考慮して決めればよいが通常原料に
対し5なし、し1の重量パーセントの範囲が適当である
。The amount of the catalyst to be used in the method of the present invention may be determined by considering the desired reaction rate, economic efficiency, etc., but a range of 5% to 1% by weight based on the usual raw materials is appropriate.
本発明方法で使用する酸化剤は酸素または酸素含有ガス
であり圧力は常圧ないし加圧で、酸素のみを用いるとき
は十分反応するが、空気を用いた場合は5なし、し20
k9/地の加圧下で反応させることが望ましい。The oxidizing agent used in the method of the present invention is oxygen or an oxygen-containing gas, and the pressure is normal pressure to increased pressure.When only oxygen is used, the reaction is sufficient, but when air is used, the reaction is sufficient.
It is preferable to carry out the reaction under pressure of k9/base.
本発明方法において反応温度は、反応速度のみならず酸
化反応の選択性に大きく影響を及ぼし、40なし・し1
20oo好ましくは50なし、し100qCで、この温
度より低いときは反応速度がおそく、高いときはエーテ
ル結合の切断が起り易い。In the method of the present invention, the reaction temperature greatly influences not only the reaction rate but also the selectivity of the oxidation reaction.
20 qC, preferably 50 to 100 qC; when the temperature is lower than this, the reaction rate is slow, and when it is higher, the ether bonds are likely to be cleaved.
改良された白金パラジウム炭素触媒を用いた本発明方法
は、従来の白金炭素触媒を用いたときと比較して反応時
間が短かくかつ酸化反応の選択性が向上しエーテル結合
の切断やカルボキシル基の分解が起らず、さらに反応中
間体のアルデヒドが残存することがないので反応液また
はその濃縮中に着色を起し製品の品質を低下させること
がない。The method of the present invention using an improved platinum-palladium-carbon catalyst has a shorter reaction time and improved selectivity of the oxidation reaction than when using a conventional platinum-carbon catalyst, resulting in less cleavage of ether bonds and less carboxyl groups. Since no decomposition occurs and no aldehyde, which is a reaction intermediate, remains, no coloring occurs in the reaction solution or during its concentration, thereby reducing the quality of the product.
このように本発明方法で用いる触媒がポ.リェチレング
リコールの酸化に好滴であることの理由は明らかでない
が、エーテル結合の触媒面への吸着が弱く、かつアルデ
ヒドからカルボン酸への酸化が速かに進行することによ
るものと考えられるもさらに驚くべきことに本発明方法
においては前記の特徴の外に触媒活性の持続性が長くほ
とんど半永久的である。In this way, the catalyst used in the method of the present invention has a The reason why it is a good droplet for the oxidation of reethylene glycol is not clear, but it is thought that it is because the adsorption of ether bonds to the catalyst surface is weak and the oxidation of aldehyde to carboxylic acid progresses rapidly. Furthermore, surprisingly, in addition to the above-mentioned characteristics, in the method of the present invention, the duration of the catalyst activity is long and almost semi-permanent.
すなわち後述する実施例で示すごとく反覆繰返し使用す
る際、なんら活性を賦活させるなどの操作を行わずその
まま繰返し使用しても活性低下が認められない。したが
って触媒のブロダクティビティが非常に高く高価な貴金
属触媒を使用するにもかかわらず生成物に対し触媒の占
めるコストを低減させることができる。本発明方法は非
アルカリ性溶液中で行うので反応生成物として遊離のカ
ルボン酸が直接得られるので反応液から触媒を炉別する
と無色透明の溶液が得られ、そのまままたは濃縮しなん
ら精製することなく製品とすることができる。That is, when the product is used repeatedly as shown in the Examples described later, no decrease in activity is observed even if the product is used repeatedly as it is without performing any operation such as activating the activity. Therefore, the cost of the catalyst relative to the product can be reduced despite the use of an expensive noble metal catalyst with very high catalytic productivity. Since the method of the present invention is carried out in a non-alkaline solution, the free carboxylic acid is directly obtained as a reaction product, so when the catalyst is separated from the reaction solution, a colorless and transparent solution is obtained, and the product can be used as it is or without any concentration or purification. It can be done.
従って本発明方法は工業的実施が容易であり非常にすぐ
れた方法であると認められる。以下実施例について詳細
に説明する。Therefore, the method of the present invention is easy to implement industrially and is recognized as a very excellent method. Examples will be described in detail below.
実施例 1
白金5.0夕およびパラジウム1.5夕を王水20の上
に溶解し、残存する酸を蒸発乾面して得た塩化白金酸お
よび塩化パラジウムを5%塩酸水溶液100必中に溶解
した。Example 1 5.0 mm of platinum and 1.5 mm of palladium were dissolved in 20 mm of aqua regia, and the remaining acid was evaporated to dryness.The obtained chloroplatinic acid and palladium chloride were dissolved in 100 mm of a 5% aqueous hydrochloric acid solution. did.
市販活性炭(紬孔容積1.5cc/夕)95夕を1/4
規定炭酸ナトリウム水溶液IZ中に懸濁させ(この懸濁
液のpHは約11.0)、この中へ前記塩化白金酸およ
び塩化パラジウム水溶液の全童を婿拝しながら10分間
で滴下した後室温で1時間、さらに80十5℃に加湿し
て2時間鷹梓を継続し活性炭に塩化白金酸および塩化パ
ラジウムを完全に吸着させた。次いで総%ホルマリン水
溶液10叫を加えて1時間80±5℃に保って還元した
後炉過水洗後乾燥して白金パラジウム炭素触媒を得た。
この触媒のX線回折図はアモルファスであった。この触
媒20.0夕と市販ポリエチレングリコール(PEG6
00岬、三洋化成■製)200夕を含む水溶液500泌
とをガス導入口および出口、温度計、圧力計を装備した
電磁譲導縄梓式1.5そオートクレープ中に加えた。こ
のオートクレープ中に加圧空気を導入して圧力を10k
9/仇とし鷹拝しながら90±5℃に保って反応させた
。反応が進行するに従つて酸素ガスの吸収がみられ反応
開始から8時間後に反応を終了した。オートクレープを
令却した後反応生成物を取出し触媒を炉別し無色透明な
対34の反応液を得、この全量を濃縮乾燥して白金固体
200夕を得た。このものの一部を採取し酸価、ヒドロ
キシル価、融点およびゥベロード粘度計による分子量の
測定を行った結果、酸価13.4、ヒドロキシル価0、
融点57〜60℃、分子量7,500の値を得た。原料
のPEG000Oを同機の分析を行ったところヒドロキ
シル価137、融点57〜60℃、分子量7,300の
値であり原料のジカルポン酸への転化率は100%、選
択率はほぼ100%でポリエチレングリコールのエーテ
ル結合は切断されることなく、両端の水酸基はカルボン
酸に変換されたことが認められた。実施例 2
実施例1で得た白金パラジウム炭素触媒20.0夕と市
販ポリエチレングリコール(PEG300三洋化成■製
)200夕を含む水溶液500泌を用いて、反応ガス導
入口から加圧空気を導入しオ−トクレープ内を10k9
/仇に保ちながら反応ガス出口から0.3夕/肋で空気
を流出させる他は実施例1に準じて反応したところ脇時
間で反応を終了した。Commercially available activated carbon (pongee hole volume 1.5cc/night) 1/4 of 95mm
It was suspended in a normal sodium carbonate aqueous solution IZ (the pH of this suspension was about 11.0), and the above-mentioned chloroplatinic acid and palladium chloride aqueous solution was added dropwise into the solution over a period of 10 minutes, and the temperature was then lowered to room temperature. The mixture was further humidified at 80.degree. C. for 1 hour and heated for 2 hours to completely adsorb chloroplatinic acid and palladium chloride onto the activated carbon. Next, 10% aqueous formalin solution was added thereto and the mixture was reduced by keeping at 80±5° C. for 1 hour, followed by washing with water in a furnace and drying to obtain a platinum-palladium carbon catalyst.
The X-ray diffraction pattern of this catalyst was amorphous. This catalyst was mixed with commercially available polyethylene glycol (PEG6).
500 volumes of an aqueous solution containing 200 volumes (manufactured by Sanyo Chemical Co., Ltd., Cape 00) were added to an electromagnetic transfer rope Azusa type 1.5 autoclave equipped with a gas inlet and outlet, a thermometer, and a pressure gauge. Pressurized air is introduced into this autoclave to increase the pressure to 10k.
9/ The reaction was carried out while maintaining the temperature at 90±5°C while worshiping the enemy. As the reaction progressed, absorption of oxygen gas was observed, and the reaction was completed 8 hours after the start of the reaction. After the autoclave was quenched, the reaction product was taken out and the catalyst was separated from the furnace to obtain a colorless and transparent reaction solution.The entire amount was concentrated and dried to obtain 200 g of solid platinum. A portion of this material was sampled and measured for acid value, hydroxyl value, melting point, and molecular weight using a Uberod viscometer. As a result, the acid value was 13.4, the hydroxyl value was 0,
A melting point of 57-60°C and a molecular weight of 7,500 were obtained. When the raw material PEG000O was analyzed using the same machine, it had a hydroxyl value of 137, a melting point of 57-60°C, and a molecular weight of 7,300.The conversion rate to dicarboxylic acid of the raw material was 100%, and the selectivity was almost 100%, indicating that it was polyethylene glycol. It was observed that the ether bond of was not broken and the hydroxyl groups at both ends were converted to carboxylic acid. Example 2 Using 500 g of an aqueous solution containing 20 g of the platinum palladium carbon catalyst obtained in Example 1 and 200 g of commercially available polyethylene glycol (PEG300 manufactured by Sanyo Chemical), pressurized air was introduced from the reaction gas inlet. 10k9 inside the autoclave
The reaction was carried out in the same manner as in Example 1, except that air was allowed to flow out from the reaction gas outlet at 0.3 m/h while maintaining the temperature at 0.3 m/m, and the reaction was completed within a short time.
反応生成物を取り出し触媒を炉昇りし無色透明なpH2
.4の反応液を得た。この全量を濃縮乾燥して無色透明
の粘鋼な液体216夕を得た。このものの化学分析値は
酸価33入 ヒドロキシル価0、分子量は335であっ
た。またこのものの一部をジアゾメタンでェステル化し
ガスク。マトグラフイーにより分析した結果、分解生成
物であるグリコール酸およびジグリコール酸は検出され
なかった。なお原料はヒドロキシル価369分子量31
5であり両端にカルボキシル基を有するジカルボン酸の
収率は定量的であった。この結果から本発明方法はポリ
エチレングリコールのエーテル結合を切断させることな
くポリエチレングリコールの両端の水酸基を選択的にジ
カルボン酸に変換できることが認められた。実施例 3
実施例1で得た白金パラジウム炭素触媒20.0夕とポ
リエチレングリコール(PEG6,00肥)200夕を
含む水溶液1,000の‘とを瀦梓機、温度計、酸素含
有ガス吹込み口、およびpH電極を装備した2.5〆反
応容器中に加えた。The reaction product is taken out and the catalyst is heated to a colorless and transparent pH 2.
.. A reaction solution of No. 4 was obtained. The entire amount was concentrated and dried to obtain a colorless and transparent viscous liquid. The chemical analysis values for this product were an acid value of 33, a hydroxyl value of 0, and a molecular weight of 335. Also, some of this material is esterified with diazomethane to produce gask. As a result of analysis by matography, glycolic acid and diglycolic acid, which are decomposition products, were not detected. The raw material has a hydroxyl value of 369 and a molecular weight of 31.
5 and the yield of the dicarboxylic acid having carboxyl groups at both ends was quantitative. From this result, it was confirmed that the method of the present invention can selectively convert the hydroxyl groups at both ends of polyethylene glycol into dicarboxylic acid without cutting the ether bonds of polyethylene glycol. Example 3 1,000 g of an aqueous solution containing 20.0 g of the platinum palladium carbon catalyst obtained in Example 1 and 200 g of polyethylene glycol (PEG 6.00) was heated using a strainer, thermometer, and oxygen-containing gas injection. The mixture was added to a 2.5 liter reaction vessel equipped with a cap and a pH electrode.
この水溶液を縄拝しながら90±5℃に保って酸素ガス
を0.2そ/minで導入した。反応開始時のpHは6
.8であり反応が進行するに従ってpHが下がり1幼時
間後に冊が3.4になり反応を終了した。反応液から触
媒を炉別し無色透明な反応液を得た。この全量を濃縮乾
燥して白色固体199夕を得た。このものは酸価13,
1、ヒドロキシル価0.1、融点57〜6ぴ○、分子量
7,400で原料の転化率は約99%であった。実施例
4白金50夕を含む塩化白金酸およびパラジウム0.
5夕を含む塩化パラジウムの混合水溶液を用いて実施例
1に準じて白金パラジウム炭素触媒を得た。This aqueous solution was maintained at 90±5° C. while being stirred, and oxygen gas was introduced at a rate of 0.2 so/min. The pH at the start of the reaction is 6
.. As the reaction progressed, the pH decreased to 3.4 after 1 hour, and the reaction was completed. The catalyst was removed from the reaction solution to obtain a colorless and transparent reaction solution. The whole amount was concentrated and dried to obtain 199 g of white solid. This thing has an acid value of 13,
1. The hydroxyl value was 0.1, the melting point was 57-6 pi, the molecular weight was 7,400, and the conversion rate of the raw material was about 99%. Example 4 Chloroplatinic acid containing 50% platinum and 0% palladium.
A platinum-palladium carbon catalyst was obtained in accordance with Example 1 using a mixed aqueous solution of palladium chloride containing 50% chloride.
このものはX線回折ではアモルファスであった。この触
媒20.0夕を用いて実施例1に準じてポリエチレング
リコール(PEG6,00岬)200夕を酸化したとこ
ろ、8時間で反応を終了した。反応液から触媒を炉別し
無色透明なpH3.2の反応液を得た。この全量を濃縮
乾燥したところ白色の固体201夕を得た。このものは
酸価12.8、ヒドロキシル価0、融点57〜5ぴ○、
分子量7,450、で原料の転イb軸ま100%であっ
た。実施例 5
白金パラジウム炭素触媒を調製するに際し、実施例1に
おける還元剤のホルマリンをナトリウムポロノ・ィドラ
ィド3.0夕を含む水溶液30の‘にかえて白金パラジ
ウム炭素触媒を得た。This material was found to be amorphous by X-ray diffraction. Using 20.0 mm of this catalyst, 200 mm of polyethylene glycol (PEG 6,00) was oxidized according to Example 1, and the reaction was completed in 8 hours. The catalyst was removed from the reaction solution to obtain a colorless and transparent reaction solution with a pH of 3.2. The entire amount was concentrated and dried to obtain 201 white solids. This product has an acid value of 12.8, a hydroxyl value of 0, a melting point of 57 to 5 pi○,
The molecular weight was 7,450, and the rolling b-axis of the raw material was 100%. Example 5 In preparing a platinum palladium carbon catalyst, a platinum palladium carbon catalyst was obtained by replacing formalin, the reducing agent in Example 1, with an aqueous solution 30% containing 3.0 g of sodium poronohydride.
こ触媒のX線回折図はアモルファスであった。この触媒
20夕を用いて実施例1に準じてポリエチレングリコー
ル(PEG6,00岬)200夕を酸化したところ8時
間で反応を終了した。The X-ray diffraction pattern of this catalyst was amorphous. Using 20 grams of this catalyst, 200 grams of polyethylene glycol (PEG 6,00 Misaki) was oxidized in the same manner as in Example 1, and the reaction was completed in 8 hours.
反応液から触媒を炉別し無色透明なPH3.1の反応液
を得た。この全量を濃縮乾燥したところ白色の固体19
9夕を得た。このものは酸価13.0、ヒドロキシル価
0.1、融点57〜60qo、分子量7,450でポリ
エチレングリコールの転化率は約99%であった。実施
例 6実施例1で反応終了後反応生成物から炉別して得
た触媒をそまま用いて実施例1に準じ2回目の反応に使
用した。The catalyst was removed from the reaction solution in a furnace to obtain a colorless and transparent reaction solution with a pH of 3.1. When this whole amount was concentrated and dried, a white solid 19
I got 9 nights. This product had an acid value of 13.0, a hydroxyl value of 0.1, a melting point of 57 to 60 qo, a molecular weight of 7,450, and a conversion rate of polyethylene glycol of about 99%. Example 6 The catalyst obtained by separating the reaction product from the reaction product in Example 1 after completion of the reaction was used as it was in the second reaction according to Example 1.
さらに3回目じ汎盗も同様に5M団反復使用して反応さ
せ触媒の耐久性試験を行い第1表の結果を得た。第1表
この結果から本発明方法は触媒の繰返し使用が50回以
上可能で、50回目でも反応時間が延びず触媒の耐久性
に優れかつ得られるジカルボン酸は高純度であり、経済
性の高い方法であることが認められた。Furthermore, in the third round, the 5M group was used repeatedly and the reaction was carried out to test the durability of the catalyst, and the results shown in Table 1 were obtained. Table 1 From the results, the method of the present invention allows the catalyst to be used repeatedly 50 times or more, and even after the 50th use, the reaction time does not increase, the catalyst has excellent durability, and the resulting dicarboxylic acid has high purity and is highly economical. It was recognized that this is a method.
比較例 1
市販5%白金炭素触媒(X線回折による白金の平均粒子
径は173A)20.0夕およびポリエチレングリコー
ル(PEG6,000P)200夕を用いて実施例1に
準じて反応させ8時間で反応を中止した。Comparative Example 1 A reaction was carried out according to Example 1 using a commercially available 5% platinum carbon catalyst (the average particle diameter of platinum according to X-ray diffraction is 173 A) at 20.0 mm and polyethylene glycol (PEG6,000P) at 200 mm for 8 hours. The reaction was stopped.
反応液から触媒を炉別し無色透明な反応液を得た。この
全量を濃縮乾燥したところ微黄色の固体200夕を得た
。このものは酸価18.0ヒドロキシル価6.2、融点
53〜5600、分子量5,800であった。この白金
炭素触媒はポリエチレングリコールのエーテル結合を切
断しやすいうえ実施例1と同一時間で未反応物が多量に
あり反応に長時間を要することが認められた。比較例
2
比較例1の白金炭素触媒20.0夕およびポリエチレン
グリコール(PEG300)200夕を用いて実施例2
に準じてポリエチレングリコールを酸価し、1幼時間で
反応を止めた。The catalyst was removed from the reaction solution to obtain a colorless and transparent reaction solution. When the whole amount was concentrated and dried, 200 g of a pale yellow solid was obtained. This product had an acid value of 18.0, a hydroxyl value of 6.2, a melting point of 53-5600, and a molecular weight of 5,800. It was found that this platinum-carbon catalyst easily breaks the ether bond of polyethylene glycol, and that a large amount of unreacted substances remained in the same period as in Example 1, requiring a long time for the reaction. Comparative example
2 Example 2 was prepared using 20.0 kg of the platinum carbon catalyst of Comparative Example 1 and 200 kg of polyethylene glycol (PEG300).
Polyethylene glycol was acidified according to the method, and the reaction was stopped after 1 hour.
反応液から触媒を炉別し無色透明な反応液を得た。この
全量を濃縮乾燥したところわずかに黄褐色に着色した粘
鋼の液体218夕を得た。このものは酸価350 ヒド
ロキシル価31.2、分子量210であった。ガスクロ
マトグラフィ−により分解生成物であるグリコール酸お
よびジグリコール酸を定量した結果それぞれ8.3%、
2.2%であった。The catalyst was removed from the reaction solution to obtain a colorless and transparent reaction solution. When the entire amount was concentrated and dried, a slightly yellowish brown colored viscous steel liquid 218 was obtained. This product had an acid value of 350, a hydroxyl value of 31.2, and a molecular weight of 210. As a result of quantifying the decomposition products glycolic acid and diglycolic acid by gas chromatography, they were 8.3% each.
It was 2.2%.
このことから白金単独の触媒はポリェチレングIJコー
ルのエーテル結合を切断しやすいものと判断された。比
較例 3白金パラジウム炭素触媒を得るに際して、水1
そ中に実施例1に使用した活性炭を懸濁しアルカリを加
えることなく他は実施例1に準じて触媒を調製した。From this, it was determined that a catalyst consisting of platinum alone would easily cleave the ether bonds of polyethylene IJ col. Comparative Example 3 When obtaining a platinum palladium carbon catalyst, water 1
A catalyst was prepared in the same manner as in Example 1 except that the activated carbon used in Example 1 was suspended therein and no alkali was added.
この際塩化白金酸と塩化パラジウムの混合液の滴下を終
了したときの懸濁液のpHは1以下であった。この触媒
のX線回折による平均粒子径は80Aであった。この触
媒20.0夕とポリエチレングリコール(6,000P
)200夕を用いて実施例1に準じて反応させ、8時間
で反応を止めた。At this time, the pH of the suspension was 1 or less when the dropwise addition of the mixed solution of chloroplatinic acid and palladium chloride was completed. The average particle diameter of this catalyst was 80A as determined by X-ray diffraction. This catalyst 20.0% and polyethylene glycol (6,000P
) The reaction was carried out according to Example 1 using 200 hours, and the reaction was stopped in 8 hours.
反応液から触媒を炉別し無色透明な反応液を得、この全
量を濃縮乾燥して微黄色の固体200夕を得た。このも
のは酸価15.5、ヒドロキシル価3.6、融点56〜
59qo、分子量6,500でありポリエチレングリコ
ールのエーテル結合が切断されていることが認められた
。実施例 4
白金パラジウム炭素触媒を得るに際して実施例1におけ
る活性炭を細孔容積0.7cc/夕の活性炭を用いて以
下実施例1に準じて触媒を調節した。The catalyst was separated from the reaction solution by a furnace to obtain a colorless and transparent reaction solution, and the entire amount was concentrated and dried to obtain 200% of a pale yellow solid. This product has an acid value of 15.5, a hydroxyl value of 3.6, and a melting point of 56~
It was found that the polyethylene glycol had a molecular weight of 59 qo and a molecular weight of 6,500, and that the ether bond of polyethylene glycol had been broken. Example 4 To obtain a platinum-palladium carbon catalyst, a catalyst was prepared according to Example 1 using activated carbon having a pore volume of 0.7 cc/day.
この触媒のX線回折による平均粒子経は40△であつた
。この触媒20.0夕とポリエチレングリコール(PE
Gん 00血)200夕を用いて実施例1に準じてポリ
エチレングリコールを酸化し8時間で反応を止めた。This catalyst had an average particle diameter of 40△ as determined by X-ray diffraction. This catalyst 20.0% and polyethylene glycol (PE
According to Example 1, polyethylene glycol was oxidized using 200 g of 200 ml of polyethylene glycol, and the reaction was stopped in 8 hours.
反応液から触媒を炉別し無色透明な反応液を得、この全
量を濃縮乾燥し白色固体1鯛夕を得た。このものは酸価
9.5、ヒドロキシル価3.8、融点57〜60℃、分
子量7,350で原料の転化率は約70%であった。比
較例 5
市販5%パラジウム炭素触媒20.0夕を用いて実施例
1に準じてポリエチレングリコール(PEG6,00岬
)200夕を酸化し8時間で反応を止めた。The catalyst was separated from the reaction solution by a furnace to obtain a colorless and transparent reaction solution, and the entire amount was concentrated and dried to obtain 1 white solid sea bream. This product had an acid value of 9.5, a hydroxyl value of 3.8, a melting point of 57 to 60°C, a molecular weight of 7,350, and a conversion rate of the raw material of about 70%. Comparative Example 5 Polyethylene glycol (PEG 6,00 Misaki) was oxidized in the same manner as in Example 1 using 20.0 kg of a commercially available 5% palladium on carbon catalyst, and the reaction was stopped in 8 hours.
Claims (1)
金属触媒の存在下酸素または酸素含有ガスで接触酸化し
て両端にカルボキシ基を有するポリエチレングリコール
を得るに際し、白金属触媒として白金およびパラジウム
の水溶性塩をpH8以上の水溶液中で細孔容積1.0な
いし1.6cc/gを有する活性炭に吸着させた後、ホ
ルマリン、蟻酸またはナトリウムポロハイドライドから
選ばれた還元剤で還元して得た白金パラジウム炭素触媒
を用いるこを特徴とするポリエチレングリコール酸の製
造方法。 2 ポリエチレングリコールの平均分子量が約180な
いし約20000からなる群から選ばれたポリエチレン
グリコールである特許請求の範囲第1項記載の製造方法
。 3 白金パラジウム炭素触媒の白金とパラジウムの割合
が白金に対しパラジウムが5ないし100重量パーセン
トである特許請求の範囲第1項記載の製造方法。 4 反応温度が40ないし120℃である特許請求の範
囲第1項記載の製造方法。[Scope of Claims] 1. When polyethylene glycol is catalytically oxidized with oxygen or oxygen-containing gas in the presence of a platinum metal catalyst in a non-alkaline solution to obtain polyethylene glycol having carboxyl groups at both ends, platinum and palladium are used as the platinum metal catalyst. The water-soluble salt is adsorbed on activated carbon having a pore volume of 1.0 to 1.6 cc/g in an aqueous solution with a pH of 8 or higher, and then reduced with a reducing agent selected from formalin, formic acid or sodium polyhydride. A method for producing polyethylene glycolic acid, characterized by using a platinum palladium carbon catalyst. 2. The manufacturing method according to claim 1, wherein the polyethylene glycol has an average molecular weight of about 180 to about 20,000. 3. The manufacturing method according to claim 1, wherein the ratio of platinum to palladium in the platinum palladium carbon catalyst is 5 to 100 weight percent of palladium to platinum. 4. The manufacturing method according to claim 1, wherein the reaction temperature is 40 to 120°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52053844A JPS6040453B2 (en) | 1977-05-11 | 1977-05-11 | Method for producing polyethylene glycolic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52053844A JPS6040453B2 (en) | 1977-05-11 | 1977-05-11 | Method for producing polyethylene glycolic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53141219A JPS53141219A (en) | 1978-12-08 |
JPS6040453B2 true JPS6040453B2 (en) | 1985-09-11 |
Family
ID=12954078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52053844A Expired JPS6040453B2 (en) | 1977-05-11 | 1977-05-11 | Method for producing polyethylene glycolic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6040453B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8104025A (en) * | 1981-08-29 | 1983-03-16 | Stamicarbon | PROCESS FOR THE PREPARATION OF ETHERCARBOXYLATES. |
JPS63211251A (en) * | 1987-02-27 | 1988-09-02 | Kawaken Fine Chem Co Ltd | Production of polyethylene glycolic acid |
JP2552513B2 (en) * | 1987-12-04 | 1996-11-13 | 川研ファインケミカル株式会社 | Method for oxidizing (poly) oxyethylene alkyl ether compound |
EP0799263B1 (en) * | 1994-12-21 | 1999-08-25 | Shell Internationale Researchmaatschappij B.V. | Novel epoxy-functional polyethers |
JP6199197B2 (en) * | 2014-02-07 | 2017-09-20 | 花王株式会社 | Process for producing polyoxyalkylene alkyl ether carboxylate |
KR20190132376A (en) * | 2017-03-21 | 2019-11-27 | 바스프 에스이 | How to prepare anti-corrosive ingredients for cryoprotectants |
-
1977
- 1977-05-11 JP JP52053844A patent/JPS6040453B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53141219A (en) | 1978-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1103272A (en) | Process for producing carboxylic esters | |
US6559093B2 (en) | Process for catalytic ammonia production-preparation and recovery of ammonia synthesis catalyst | |
JP5121089B2 (en) | Vinyl acetate catalyst containing metallic palladium, copper and gold and method for producing the same | |
AU753815B2 (en) | Vinyl acetate catalyst comprising metallic palladium and gold prepared with potassium aurate | |
JP2716534B2 (en) | Method for producing gluconic acid or its alkali metal salt | |
JP2002508703A (en) | Vinyl acetate catalyst containing palladium and gold deposited on copper-containing carrier | |
JP2002516748A (en) | Vinyl acetate catalyst containing metal palladium, copper and gold and method for producing the same | |
JPS6040453B2 (en) | Method for producing polyethylene glycolic acid | |
KR20010031500A (en) | Vinyl acetate catalyst comprising metallic palladium and gold, and cupric acetate | |
JP4588848B2 (en) | Process for producing pentanediol from alkoxydihydropyran | |
CA1070708A (en) | Process for oxidation of monosaccharides | |
EP1023259A1 (en) | Process for the oxidation of di-, tri-, oligo- and polysaccharides into polyhydroxycarboxylic acids | |
US4242525A (en) | Process for producing salts of pyruvic acid | |
EP1067114B1 (en) | Method of preparing amino-, imino- and nitrilocarbonxylic acids and silver-promoted copper catalyst for use in said method | |
JPH10265435A (en) | Production of carboxylic acid ester | |
JPS6039063B2 (en) | Method for producing hydroxyacetic acid | |
JP3748588B2 (en) | Method for producing glycolic acid | |
JP3313993B2 (en) | Method for producing carboxylic acid ester | |
JPH08151346A (en) | Production of ketomalonic acid | |
JPS6041656B2 (en) | Method for oxidizing (poly)oxyethylene ether compounds | |
JPS6010016B2 (en) | Method for producing hydroxyacetic acid | |
JPS6221789B2 (en) | ||
US5171884A (en) | Preparation process for glyoxylic acid by catalytic oxidation of glyoxal in an aqueous medium in the presence of catalytic quantities of platinum | |
JPH0696569B2 (en) | Method for producing 2-furancarboxylic acid | |
US5504262A (en) | Direct catalytic conversion of methane to ethanol |