[go: up one dir, main page]

JPS6039652B2 - Method for producing lower oxygen-containing organic compounds - Google Patents

Method for producing lower oxygen-containing organic compounds

Info

Publication number
JPS6039652B2
JPS6039652B2 JP58042998A JP4299883A JPS6039652B2 JP S6039652 B2 JPS6039652 B2 JP S6039652B2 JP 58042998 A JP58042998 A JP 58042998A JP 4299883 A JP4299883 A JP 4299883A JP S6039652 B2 JPS6039652 B2 JP S6039652B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel
copper
reaction
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58042998A
Other languages
Japanese (ja)
Other versions
JPS59170023A (en
Inventor
秀昭 浜田
勝彦 若林
武彦 松崎
靖 桑原
康雄 高味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58042998A priority Critical patent/JPS6039652B2/en
Publication of JPS59170023A publication Critical patent/JPS59170023A/en
Publication of JPS6039652B2 publication Critical patent/JPS6039652B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、一酸化炭素と水素の混合ガス(以下合成ガス
と称する)を原料とする低級舎酸素有機化合物の製造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of low-grade oxygen organic compounds using a mixed gas of carbon monoxide and hydrogen (hereinafter referred to as synthesis gas) as a raw material.

酢酸や、メタノール、エタノール、プロパノール等の低
級含酸素有機化合物は価値ある工業製品であり、従来、
主として原油から製造されて釆た。
Lower oxygen-containing organic compounds such as acetic acid, methanol, ethanol, and propanol are valuable industrial products that have traditionally been
It is mainly produced from crude oil.

しかしながら、近年石油資源の枯渇ならびに原油由来の
ナフサの高騰を契機に石油以外の炭素資源から得られる
合成ガスを原料として、これらの石油化学の基幹原料を
製造する方法の開発が望まれている。合成ガスから含酸
素有機化合物を製造することについては多くの研究がな
されており、たとえばアンモニア合成用の鉄系触媒を用
い、8〜25気圧、190〜225℃の温度で合成ガス
を高い空間速度で反応させてアルコール類を得るジノー
ル(Sy血1)法や、多量のアルカリを添加した鉄触媒
を10〜30気圧、210〜180qo、SVIOO〜
50他r‐1で使用し、オキソ法と絹合せてアルコール
類を製造するオキシル(○奴1)法が古くから知られて
いる。また最近では酸化亜鉛/酸化鋼系触媒を用いるメ
タノール合成法が工業的にも実施されている。しかしな
がら、ジノール法やオキシル法では得られる生成物は鎖
長力む,〜C,8という広範囲のアルコールの混合物で
あって、選択性に乏しく、またメタノール合成法では生
成物はメタノールに限定され、価値の高いエタノールや
フ。。パノールは生成しないという欠点があった。また
以上述べた方法では酢酸等の有機酸の生成は認められて
いない。一方、最近ロジウム系触媒を用い、エタノール
、アセトアルデヒド、酢酸等のC2含酸素化合物を選択
的に合成する方法が検討されている。
However, in recent years, with the depletion of petroleum resources and the rising price of naphtha derived from crude oil, there has been a desire to develop a method for producing these petrochemical basic raw materials using synthetic gas obtained from carbon resources other than petroleum. Many studies have been conducted on the production of oxygenated organic compounds from synthesis gas. For example, using iron-based catalysts for ammonia synthesis, synthesis gas is heated at a high space velocity of 8 to 25 atm and a temperature of 190 to 225°C. The ginol (Sy blood 1) method to obtain alcohols by reacting with water, or the iron catalyst with a large amount of alkali added at 10 to 30 atm, 210 to 180 qo, SVIOO ~
The oxyl (○ko 1) method has been known for a long time, in which alcohols are produced by using 50 and other r-1 and combining it with the oxo method. Recently, a methanol synthesis method using a zinc oxide/steel oxide catalyst has also been implemented industrially. However, the products obtained by the dino method and the oxyl method are mixtures of alcohols with a wide range of chain lengths, up to C, 8, and have poor selectivity, and in the methanol synthesis method, the product is limited to methanol, which is valuable. high ethanol and fluoride. . The drawback was that panol was not produced. Furthermore, the above-described method does not allow generation of organic acids such as acetic acid. On the other hand, recently, a method of selectively synthesizing C2 oxygen-containing compounds such as ethanol, acetaldehyde, and acetic acid using a rhodium-based catalyst has been studied.

たとえば、。ジウム触媒を用いるC2含酸素化合物の製
造法(特開昭51一80806)、ロジウム−鉄触媒を
用いるエタノールの製造法(特関昭51一80807)
、ロジウムーマンガソ触媒を用いるC2合酸素化合物の
製造法(特開昭52一14706)、ロジウム/ルテニ
ウム触媒を用いる酢酸の製造法(米国特許410145
び号)、ロジウム/ハロゲン/マグネシウム触媒を用い
るC2合酸素化合物の製造法(特開昭54一13850
4)、ロジウム/酸化ジルコニウム/シリカ触媒を用い
るエタノールの製造法(特開昭56一147730)な
どが知られているが、これらの方法ではロジウムという
高価でかつ産出量の少ない貴金属を用いるという欠点が
あり、従ってロジウムに代わる有用な低級含酸素有機化
合物を合成する触媒の開発が広く求められている。本発
明者らは、従来法に見られる前記のような問題点を解決
すべ〈、合成ガスから低級含酸素有機化合物を選択的に
合成する非ロジウム系触媒について鋭意研究を重ねた結
果、ニッケル触媒に対し、銅及び/又はモリブデンを添
加する時には、含酸素有機化合物の選択率が著しく高め
られることを見し・出し、本発明をなすに至った。
for example,. Method for producing C2 oxygen-containing compounds using a dium catalyst (Japanese Patent Application Laid-open No. 51-80806), method for producing ethanol using a rhodium-iron catalyst (Special Publication No. 51-80807)
, a method for producing a C2-oxygen compound using a rhodium-mangaso catalyst (Japanese Patent Application Laid-Open No. 52-14706), a method for producing acetic acid using a rhodium/ruthenium catalyst (US Pat. No. 4,101,45)
JP-A-54-13850, a method for producing a C2 oxygen compound using a rhodium/halogen/magnesium catalyst
4) A method for producing ethanol using a rhodium/zirconium oxide/silica catalyst (Japanese Unexamined Patent Publication No. 56-147730) is known, but these methods have the disadvantage of using rhodium, an expensive precious metal that is produced in small quantities. Therefore, there is a wide demand for the development of a catalyst for synthesizing a useful lower oxygen-containing organic compound to replace rhodium. In order to solve the above-mentioned problems found in conventional methods, the present inventors have conducted intensive research on non-rhodium-based catalysts for selectively synthesizing lower oxygen-containing organic compounds from synthesis gas. On the other hand, the present inventors have found that when copper and/or molybdenum is added, the selectivity of oxygen-containing organic compounds is significantly increased, and the present invention has been completed.

すなわち、本発明は、合成ガスから低級含酸素有機化合
物を製造する方法において、触媒として【aーニッケル
と、‘b’鋼及びモリブデンの中から選ばれる少なくと
も1種の金属を触媒活性金属成分として含む坦持触媒を
用いることを特徴とする方法である。低級含酸素有機化
合物の選択率が上記触媒によって著しく高められている
という事実は実に驚くべきことであり、予想できないこ
とであった。
That is, the present invention provides a method for producing a lower oxygen-containing organic compound from synthesis gas, in which the catalyst contains [a] nickel and 'b' at least one metal selected from steel and molybdenum as a catalytically active metal component. This method is characterized by using a supported catalyst. The fact that the selectivity of lower oxygen-containing organic compounds is significantly increased by the catalyst described above is truly surprising and unexpected.

なぜなら、ニッケルは一般にメタン合成触媒として、ま
た銅は通常メタノールのみを与える触媒として知られて
おり、モリブデンは合成ガスの反応には有効な触媒能を
示さないものと考えられていたからである。本発明にお
いて用いる触媒は、好ましくは、触媒担体をニッケル塩
と銅塩及び/又はモリブデン塩の溶液に含浸させ、つい
で乾燥することにより製造される。
This is because nickel is generally known as a catalyst for methane synthesis, copper as a catalyst that usually provides only methanol, and molybdenum was thought to have no effective catalytic ability for synthesis gas reactions. The catalyst used in the present invention is preferably produced by impregnating a catalyst carrier with a solution of a nickel salt, a copper salt and/or a molybdenum salt, and then drying the catalyst carrier.

その際それらの金属塩は同時あるいは順次に担持するこ
とができる。前記金属塩としては、全ての可溶性のニッ
ケル、銅及びモリブデンの塩、例えば、硝酸塩、ハoゲ
ン化物、有機酸塩、アンモニウム塩などが使用される。
上述の塩は適当な溶媒に溶解される。溶媒としては、例
えば、水、アンモニア水、硝酸等が適当である。また担
特の方法としては、含浸法以外に、イオン交換法や沈殿
法、混練法等も用いることができる。例えば、イオン交
換法の場合、担持金属は適当なアソミン鍔塩とし、この
溶液に担体を適当な時間浸潰してイオン交換を行い、つ
いで炉週、乾燥することによって触媒は製造される。担
体としては、種々の多孔性物質が用いられる。例えば、
シリカ、アルミナ、その他第ロー血族金属の酸化物が用
いられるが、シリカが最も好ましい。乾燥された触媒は
、次いで適当な還元剤、例えば水素により還元処理され
る。
In this case, these metal salts can be supported simultaneously or sequentially. As metal salts, all soluble nickel, copper and molybdenum salts are used, such as nitrates, halides, organic acid salts, ammonium salts, etc.
The salts mentioned above are dissolved in a suitable solvent. Suitable solvents include, for example, water, aqueous ammonia, and nitric acid. In addition to the impregnation method, an ion exchange method, a precipitation method, a kneading method, etc. can also be used as the supporting method. For example, in the case of the ion exchange method, the catalyst is produced by using a suitable asomine salt as the supported metal, immersing the carrier in this solution for an appropriate time to perform ion exchange, and then drying in an oven. Various porous materials can be used as the carrier. for example,
Silica, alumina, and other low group metal oxides may be used, with silica being most preferred. The dried catalyst is then reduced by a suitable reducing agent, such as hydrogen.

その際還元温度は300〜600q○の間が適当である
。また、触媒を還元処理する前に、適当なガス、例えば
、空気などで焼成処理を行ってもよく、その際の温度は
300〜600午○の間が適当である。触媒中のニッケ
ル含量は非常に広い範囲で変化させることができ、例え
ば、迫持量1重量%から3の重量%の広い範囲にわたっ
て変化させることができる。本発明の方法で用いる触媒
においては、ニッケルに組み合わせる金属の選択とその
量が特に重要である。
In this case, the appropriate reduction temperature is between 300 and 600 q○. Further, before the catalyst is subjected to the reduction treatment, it may be calcined with a suitable gas such as air, and the temperature at that time is suitably between 300 and 600 pm. The nickel content in the catalyst can vary over a very wide range, for example from 1% to 3% by weight. In the catalyst used in the method of the present invention, the selection and amount of the metal combined with nickel is particularly important.

すなわちアルコール類と酢酸(及びェステル)を共に製
造する場合には、ニッケルに銅のみを組み合わせること
が有効であり、その際銅の添加量は、重量比で、ニッケ
ル1に対し、0.01〜1城庁まし〈は0.1〜5であ
る。銅が少な過ぎる場合には炭化水素が多く富。生し、
銅が多過ぎる場合には得られる生成物はほぼメタノール
単独となる。一方、アルコール類のみを専ら製造する場
合には、ニッケルにモリブデン単独あるいはモリブデン
と銅の両者を組み合わせることが有効である。モリブデ
ンの添加量は、重量比で、ニッケル1に対し、0.00
1〜10、好ましくは0.01〜5である。モリブデン
を加えた場合、反応活性およびアルコール類の選択性が
ともに上昇するという大きな効果が得られる。モリブデ
ンとともに、さらに銅を加えると、反応活性は低下する
が、炭化水素の副生が抑えられ、アルコール類の選択率
が上昇するという効果が得られる。この場合の銅の添加
量は、重量比で、ニッケル1に対し、0.01〜10、
好ましくは0.1〜5である。本発明の方法において用
いられる原料合成ガス中の一酸化炭素の水素に対する容
量比は広い範囲で変えることができ、20:1〜1:2
0の間、特に5:1〜1:5が好ましい。
That is, when producing alcohols and acetic acid (and esters) together, it is effective to combine only copper with nickel, and in this case, the amount of copper added is 0.01 to 1 part nickel by weight. 1 castle office is 0.1 to 5. If there is too little copper, there will be too much hydrocarbon richness. live,
If there is too much copper, the product obtained will be mostly methanol alone. On the other hand, when exclusively producing alcohols, it is effective to use nickel and molybdenum alone or in combination with molybdenum and copper. The amount of molybdenum added is 0.00 to 1 nickel by weight.
1-10, preferably 0.01-5. When molybdenum is added, a significant effect is obtained in that both the reaction activity and the selectivity for alcohols increase. When copper is further added together with molybdenum, the reaction activity decreases, but the effect of suppressing the by-product of hydrocarbons and increasing the selectivity of alcohols is obtained. In this case, the amount of copper added is 0.01 to 10 to 1 nickel in terms of weight ratio.
Preferably it is 0.1-5. The volumetric ratio of carbon monoxide to hydrogen in the raw synthesis gas used in the process of the invention can vary within a wide range, ranging from 20:1 to 1:2.
0, especially 5:1 to 1:5.

また原料合成ガスは、一酸化炭素と水素以外のガス、例
えば、窒素、アルゴン、ヘリウム等の不活性ガスや、二
酸化炭素、メタン等のガスを含んでいてもよい。反応温
度は、一般に、100〜400つ0好ましくは150〜
350qoの範囲である。反応圧は1〜300k9/仇
、好ましくは5〜200k9/c流である。反応実施の
ためには気相反応が好ましく、そのためには通常の固定
床流通式反応器を用いることができる。その際のガスの
空間速度は広い範囲で変えることができ、10〜100
00皿r‐1好ましくは50〜1000皿r‐1である
。本発明によれば、ニッケル、銅、モリブデンという安
価な金属から成る触媒を用いて、メタノール、エタノー
ル、nープロパノール、酢酸(ェステル)という価層あ
る製品を高い選択率で合成ガスから製造することができ
、これらの製品の製造法として実用性が高く、本発明は
石油資源の節約に大きく貢献できるものである。
The raw material synthesis gas may also contain gases other than carbon monoxide and hydrogen, such as inert gases such as nitrogen, argon, and helium, and gases such as carbon dioxide and methane. The reaction temperature is generally from 100 to 400, preferably from 150 to
It is in the range of 350 qo. The reaction pressure is 1 to 300 k9/c flow, preferably 5 to 200 k9/c flow. A gas phase reaction is preferred for carrying out the reaction, for which a conventional fixed bed flow reactor can be used. The space velocity of the gas at this time can be varied within a wide range, and can vary from 10 to 100.
00 dishes r-1, preferably 50 to 1000 dishes r-1. According to the present invention, valuable products such as methanol, ethanol, n-propanol, and acetic acid (ester) can be produced from synthesis gas with high selectivity using catalysts made of inexpensive metals such as nickel, copper, and molybdenum. The method of manufacturing these products is highly practical, and the present invention can greatly contribute to saving petroleum resources.

以下、本発明を実施列及び比較例により更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to examples and comparative examples.

なお、表中における用語の意味は下記の通りである。In addition, the meanings of the terms in the table are as follows.

C。C.

反応・率(%)=A午三×,o。A:供給した一酸化炭
成のモル数 B:回収した一酸化炭素のモル数 炭素効率(%)=C差暑Xloo C:当該生成物のモル数 D:当該生成物の炭素数 A、B:前記と同じ意味を有する。
Reaction/rate (%)=A 小三×,o. A: Number of moles of carbon monoxide supplied B: Number of moles of carbon monoxide recovered Carbon efficiency (%) = C difference Xloo C: Number of moles of the product D: Number of carbon atoms of the product A, B :Has the same meaning as above.

また、以下において示す各符号は次のことを意味する。Further, each symbol shown below means the following.

Me。日,.,,.,メタノール、Et。日,.,…エ
タノール、nP(3日,.....nーフ。ロ/ぐノー
ル、AC○Me・...・・酢酸メチル、AcOEt・
…・・酢酸エチル、CH4…・・・メタン、C2十・・
・・・・C2以上の炭化水素、C02・・・・・・二酸
化炭素。実施例 1 硝酸ニッケル(Nj(N03)2・服20)2.97夕
、硝酸鋼(Cu(N03)2・が20)0.57夕を蒸
留水に溶かして18の【定客とし、この溶液をダビソン
グレード57のシリカゲル(12〜20メッシュ)15
のこ含浸させて1時間放置後、ェバポレーターを用いて
減圧下、80つ0で1時間、1100Cで1時間乾燥さ
せた。
Me. Day,. ,,. , methanol, Et. Day,. ,...Ethanol, nP (3 days,...n-fu. Ro/Gnol, AC○Me...Methyl acetate, AcOEt.
...Ethyl acetate, CH4...Methane, C20...
...C2 or higher hydrocarbons, C02...carbon dioxide. Example 1 Dissolve nickel nitrate (Nj (N03) 2, clothes 20) 2.97 mm and nitric acid steel (Cu (N03) 2, 20) 0.57 mm in distilled water to make 18 regular customers. Pour the solution into Davison grade 57 silica gel (12-20 mesh) 15
After impregnating the saw and leaving it for 1 hour, it was dried using an evaporator under reduced pressure at 80°C for 1 hour and at 1100C for 1 hour.

これを空気流中500ooで3時間焼成処理したのち、
水素気流中400oCで3時間還元処理して、ニッケル
4%、銅1%の担持触媒を調製した。次に、この調製し
た触媒を13の‘とり、高圧流通式反応器に充てんし、
合成ガス(一酸化炭素/水素=0.5)を6Nそ′Hr
の流速で流して(SV:46かr‐1)、反応温度28
0oo、反応圧20k9/めで反応させた。この場合、
反応ガスはガス状のままガスサンプラーを通して直接ガ
スクロマトグラフに導入し、生成物の定性定量分析を行
った。その結果を表一1に示した。なお、この表に示し
た値は反応開始後1幼時間以上経過して定常活性となっ
たところでの値である。またェステルではないフリーの
酢酸も数%程度の炭素効率で生成しているが、厳密な値
は測定できなかったたため表には示していない(表−2
〜表−4についても同じ)。実施例2〜5、比較例1〜
2実施例1と同様の操作で、ニッケルと銅の合計担持量
を5%とし、それぞれの比率を変えた種々の担持量のも
のを調製し、この触媒を用いて実施例1と同様に反応を
行った結果を表−1に示した。
After firing this in an air stream at 500 oo for 3 hours,
A supported catalyst containing 4% nickel and 1% copper was prepared by reduction treatment at 400oC in a hydrogen stream for 3 hours. Next, the prepared catalyst was taken in Step 13 and filled into a high pressure flow reactor.
Synthesis gas (carbon monoxide/hydrogen = 0.5) was heated to 6N/Hr.
(SV: 46 or r-1), and the reaction temperature was 28.
The reaction was carried out at a reaction pressure of 20 k9/m. in this case,
The reaction gas was directly introduced into a gas chromatograph through a gas sampler in a gaseous state to perform qualitative and quantitative analysis of the products. The results are shown in Table 1. It should be noted that the values shown in this table are the values at which steady activity was reached after one hour or more had elapsed from the start of the reaction. Free acetic acid, which is not an ester, is also produced with a carbon efficiency of several percent, but it is not shown in the table because the exact value could not be measured (Table 2
~The same applies to Table 4). Examples 2-5, Comparative Examples 1-
2 Using the same procedure as in Example 1, the total supported amount of nickel and copper was set at 5%, and various supported amounts were prepared by changing the ratio of each. Using this catalyst, reactions were carried out in the same manner as in Example 1. The results are shown in Table 1.

また比較のために、ニッケル単独(比較例1)、銅単独
(比較例2)の担持触媒を用いた反応結果もあわせて表
一1に示した、この結果からわかるように、ニッケル単
独では、ほとんど生成物か炭化水素であり、また銅単独
ではほとんどメタノールのみであるのに対し、ニッケル
−銅の2成分系では、エタノール、n−プロパノール、
酢酸メチル、酢酸エチル等のC2以上の含酸素有機化合
物の選択率が高くなることがわかる。表−1 実施例 6〜7 実施例1で調製した触媒を用い、実施例1と同機にして
反応温度26000で反応させた結果を実施例6、反応
温度30000で反応させた結果を実施例7として表−
2に示す。
For comparison, the reaction results using supported catalysts of nickel alone (Comparative Example 1) and copper alone (Comparative Example 2) are also shown in Table 1. As can be seen from these results, nickel alone does not Most of the products are hydrocarbons, and copper alone is almost exclusively methanol, whereas in the binary nickel-copper system, ethanol, n-propanol,
It can be seen that the selectivity of C2 or higher oxygen-containing organic compounds such as methyl acetate and ethyl acetate is increased. Table-1 Examples 6 to 7 Using the catalyst prepared in Example 1, using the same machine as Example 1, the results were reacted at a reaction temperature of 26,000, Example 6, and the results of reaction at a reaction temperature of 30,000 were shown in Example 7. Table as -
Shown in 2.

2800○で反応を行った実施例1の結果も表−2に示
した。
The results of Example 1 in which the reaction was carried out at 2800° are also shown in Table-2.

この結果から、酢酸ェステルの選択率は低温ほど良好で
あることがわかる。実施例 8〜10 実施例1と同様の操作でニッケル8%、銅2%の担持触
媒を、水素還元温度を種々変えて調製し、この触媒を用
い、実施例1と同様にして反応を行った結果を表−3に
示す。
This result shows that the selectivity of acetate ester is better at lower temperatures. Examples 8 to 10 Supported catalysts containing 8% nickel and 2% copper were prepared in the same manner as in Example 1 at various hydrogen reduction temperatures, and reactions were carried out in the same manner as in Example 1 using this catalyst. The results are shown in Table 3.

表−2 表−3 実施例 11 ニッケルと銅の担持量をそれぞれ5%、2.5%にした
ほかは実施例1と同様の方法で触媒を調製し、得られた
触媒を用いて、空間速度924r‐1で反応を行った。
Table 2 Table 3 Example 11 A catalyst was prepared in the same manner as in Example 1 except that the supported amounts of nickel and copper were 5% and 2.5%, respectively. The reaction was carried out at a rate of 924r-1.

その結果を表−4に示した。実施例 12調製時に50
0ooで空気焼成を行わないことを除いて実施例11と
同じ方法で触媒を調製し、得られた触媒を用いて反応を
行った。
The results are shown in Table-4. Example 12 50 at the time of preparation
A catalyst was prepared in the same manner as in Example 11 except that air calcination was not performed at 0oo, and a reaction was performed using the obtained catalyst.

その結果を表−4に示した。実施例 13 硝酸ニッケルをニッケル迫持重5%になるようにはかり
とり、実施例1のように水溶液としたのちシリカ担体に
含浸、乾燥し、500℃で3時間空気焼成処理を行った
The results are shown in Table-4. Example 13 Nickel nitrate was weighed to give a weight of 5% nickel, made into an aqueous solution as in Example 1, impregnated into a silica carrier, dried, and air-calcined at 500° C. for 3 hours.

これを銅担持量が2.5%になるようにはかりとった硝
酸鋼の0.2hol/そアンモニア水溶液中に浸し、一
昼夜放置して銅をイオン交換担持したのち、炉過、乾燥
し、500ooで3時間空気焼成した後、400℃で3
時間水素還元を実施例1と同様に行って触媒を調製した
。この触媒を用いて実施例11と同様にして反応を行っ
た結果を表−4に示した。実施例 14 硝酸ニッケルをニッケル担持量5%になるようにはかり
とり、実施例1のように水溶液としたのち、シリカ担体
に含浸乾燥し、500℃で3時間空気焼成処理を行った
This was immersed in an ammonia aqueous solution of 0.2 hol of nitric acid steel weighed so that the amount of copper supported was 2.5%, left overnight to support the copper through ion exchange, and then passed through an oven and dried. After baking in the air for 3 hours at 400℃,
A catalyst was prepared by performing hydrogen reduction for a period of time in the same manner as in Example 1. Using this catalyst, a reaction was carried out in the same manner as in Example 11, and the results are shown in Table 4. Example 14 Nickel nitrate was weighed so that the amount of nickel supported was 5%, made into an aqueous solution as in Example 1, impregnated into a silica carrier, dried, and air-calcined at 500° C. for 3 hours.

これに、銅担持量が2.5%になるようにはかりとった
硝酸鋼水溶液を含浸させ、乾燥し、500ooで3時間
空気焼成を行ったのち、400qoで水素還元処理して
、ニッケルと銅の二段担持触媒を調製した。この触媒を
用いて実施例11と同様にして反応を行った結果を表−
4に示した。実施例 15 硝酸ニッケルをニッケル担持量5%になるようにはかり
とり、実施例1のように水溶液としたのち、シリカ担体
に含浸乾燥し、500℃で空気焼成処理した後、400
00で水素還元処理を行い、ニッケル担持触媒を調製し
た。
This was impregnated with a nitric acid steel aqueous solution weighed so that the amount of copper supported was 2.5%, dried, air fired at 500 oo for 3 hours, and hydrogen reduction treated at 400 qo to remove nickel and copper. A two-stage supported catalyst was prepared. The results of a reaction carried out in the same manner as in Example 11 using this catalyst are shown below.
4. Example 15 Weighed nickel nitrate so that the amount of nickel supported was 5%, made it into an aqueous solution as in Example 1, impregnated it onto a silica carrier, dried it, and air-calcined it at 500°C.
Hydrogen reduction treatment was performed using 00 to prepare a nickel-supported catalyst.

これに銅担持量が2.5%になるようにはかりとった硝
酸鋼水溶液を含浸させ、乾燥後、300ooで3時間水
素還元処理をして、ニッケル、銅の二段担持触媒を調製
した。この触媒を用いて実施例11と同様にして反応を
行った結果を表−4に示す。表−4 実施例 16 硝酸ニッケル(Ni(N03)2・細20)2.97夕
、モリブデン酸ア・ンモニウム((NH4)6Mo70
24・4比○)0.14夕を蒸留水に溶かし18M定容
とし、この溶液をダビソングレード57シリカゲル(1
2〜20メッシュ)15のこ舎浸させて1時間放置後、
ェバポレーターを用いて8000で1時間、11000
で1時間乾燥させた。
This was impregnated with a nitric acid steel aqueous solution weighed so that the amount of copper supported was 2.5%, and after drying, hydrogen reduction treatment was performed at 300 oo for 3 hours to prepare a two-stage supported catalyst of nickel and copper. Table 4 shows the results of a reaction carried out in the same manner as in Example 11 using this catalyst. Table-4 Example 16 Nickel nitrate (Ni(N03)2・20) 2.97 hours, ammonium molybdate ((NH4)6Mo70)
Dissolve 0.14% of 24.4 ratio ○) in distilled water to make a constant volume of 18M, and add this solution to Davison Grade 57 silica gel (1
2 to 20 mesh) After soaking in 15 pieces of sawdust and leaving it for 1 hour,
Using an evaporator at 8,000 for 1 hour, at 11,000
It was dried for 1 hour.

これを空気気流中50000で3時間焼成処理したのち
、水素気流中40000で3時間還元処理して、ニッケ
ル4%、モリブデン0.5%の担持触媒を調製した。こ
の調製した触媒をi3の【とり、高圧流通式反応器に充
てんし、合成ガス(一酸化炭素/水素=0.5)を6N
そ/hrの流速で流して(SV=46沙r‐1)、反応
温度22000、反応圧20kg/めで反応させた。そ
の結果を表−5に示す。実施例17〜19、比較例3 実施例16と同様の操作でニッケルとモリブデンを種々
の割合で担持させたものを調製し、この触媒を用いて実
施例16と同様にして反応を行った結果を表−5に示し
た。
This was calcined in an air stream at 50,000 Celsius for 3 hours, and then reduced in a hydrogen stream at 40,000 Celsius for 3 hours to prepare a supported catalyst containing 4% nickel and 0.5% molybdenum. This prepared catalyst was taken from i3 and charged into a high-pressure flow reactor, and 6N of synthesis gas (carbon monoxide/hydrogen = 0.5) was added to the reactor.
The reaction was carried out at a flow rate of 1/hr (SV=46 s/hr), a reaction temperature of 22,000, and a reaction pressure of 20 kg/hr. The results are shown in Table-5. Examples 17 to 19, Comparative Example 3 A catalyst in which nickel and molybdenum were supported in various ratios was prepared in the same manner as in Example 16, and a reaction was carried out in the same manner as in Example 16 using this catalyst. are shown in Table-5.

また、比較例3としてモリブデン単独触媒の反応結果も
表−5に示した。
Table 5 also shows the reaction results using molybdenum as a single catalyst as Comparative Example 3.

この表−5には、前述したニッケル単独触媒を用いた比
較例1の結果もあわせて示した。ニッケル単独触媒では
、生成物の大部分が炭化水素であるが、モリブデンを添
加すると、メタノール、エタノール、n−ブロパノール
等のアルコールに対する選択性が大幅に向上し、また反
応活性も高くなることがわかる。一方モリブデン単独で
は生成物の大部分は炭化水素と二酸化炭素であった。表
−5 実施例 20 硝酸ニッケル2.97夕、硝酸銅0.57夕、モリブデ
ン酸アンモニウム0.14夕を蒸留水に溶かして18の
【定客とし、この溶液をダビソングレード57シリカゲ
ル(12〜20メッシュ)15のこ舎浸させて1時間放
置後、ェバポレーターを用いて80ooで1時間、11
000で1時間乾燥させた。
Table 5 also shows the results of Comparative Example 1 using the aforementioned nickel-only catalyst. With a nickel-only catalyst, most of the products are hydrocarbons, but when molybdenum is added, the selectivity to alcohols such as methanol, ethanol, and n-propanol is greatly improved, and the reaction activity is also increased. . On the other hand, when using molybdenum alone, most of the products were hydrocarbons and carbon dioxide. Table 5 Example 20 2.97 ml of nickel nitrate, 0.57 ml of copper nitrate, and 0.14 ml of ammonium molybdate were dissolved in distilled water to make 18 [regular solution], and this solution was mixed with Davison grade 57 silica gel (12- 20 mesh) 15 sawdust soaked and left for 1 hour, then soaked at 80oo for 1 hour using an evaporator, 11
000 for 1 hour.

これを空気気流中500℃で3時間焼成処理したのち、
水素気流中400℃で3時間還元処理して、ニッケル4
%、銅1%、モリブデン0.5%のシリカ担持触媒を調
製した。この触媒を用いて反応温度24000、反応圧
20kg/地、空間速度924hr‐1で反応を行った
結果を表−6に示した。この表−6に示した結果から、
アルコール類が選択性良く生成することがわかる。実施
例 21〜25実施例20の触媒を用いて種々の温度、
空間速度で実施例20と同様にして、反応を行った結果
を表一6に示した。
After firing this in an air stream at 500℃ for 3 hours,
Nickel 4
%, 1% copper, and 0.5% molybdenum. Table 6 shows the results of a reaction using this catalyst at a reaction temperature of 24,000, a reaction pressure of 20 kg/earth, and a space velocity of 924 hr-1. From the results shown in Table 6,
It can be seen that alcohols are produced with good selectivity. Examples 21-25 Using the catalyst of Example 20, various temperatures,
The reaction was carried out in the same manner as in Example 20 at the space velocity, and the results are shown in Table 16.

表−6 実施例 26〜29 実施例20と同様の方法により、ニッケル、銅、モリブ
デンの種々の相持量のものを調製し、反応温度2600
0、空間速度462hr−1で反応を行った。
Table 6 Examples 26 to 29 Various amounts of nickel, copper, and molybdenum were prepared by the same method as in Example 20, and the reaction temperature was 2600.
0, and the reaction was carried out at a space velocity of 462 hr-1.

その結果を表−7に示した。実施例 30〜31 調製時に50000で空気焼成を行わないことを除いて
実施例20と同じ方法で触媒を調製し、反応温度260
00で反応を行った。
The results are shown in Table-7. Examples 30-31 Catalysts were prepared in the same manner as in Example 20, except that air calcination was not performed at 50,000 ℃ during preparation, and the reaction temperature was 260 ℃.
The reaction was carried out at 0.00.

その結果を表−8に示した。実施例 32〜33 実施例1の方法で、ニッケル4%、銅1%の恒持触媒を
調製した。
The results are shown in Table-8. Examples 32 to 33 Using the method of Example 1, a permanent catalyst containing 4% nickel and 1% copper was prepared.

これにモリブデン酸アンモニウム0.14夕の水溶液を
含浸し、ェバポレ−夕一で8000で1時間、1100
0で1時間乾燥した。その後水素気流中で40000で
3時間還元処理を行い、モリブデン/ニッケル−銅の二
段担持触媒を調製した。これを用いて26000で反応
を行った結果を表−8に示した。ニッケル、銅、モリブ
デンの担特万法を変えても良好なアルコール選択性か得
られることがわかる。表−7 表−8
This was impregnated with an aqueous solution of ammonium molybdate of 0.14 μm, and heated to 1100° C. for 1 hour at 8,000° C. using an evaporator.
It was dried at 0 for 1 hour. Thereafter, a reduction treatment was performed at 40,000 ℃ for 3 hours in a hydrogen stream to prepare a two-stage supported molybdenum/nickel-copper catalyst. Using this, a reaction was carried out at 26,000, and the results are shown in Table 8. It can be seen that good alcohol selectivity can be obtained even if the specific support method for nickel, copper, and molybdenum is changed. Table-7 Table-8

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素と水素から低級含酸素化合物を製造する
方法において、触媒として、(a)ニツケルと、(b)
銅及びモリブデンの中から選ばれる少なくとも1種の金
属を触媒活性金属成分として含む担持触媒を用いること
を特徴とする低級含酸素有機化合物の製造方法。
1. In a method for producing lower oxygen-containing compounds from carbon monoxide and hydrogen, (a) nickel and (b)
A method for producing a lower oxygen-containing organic compound, which comprises using a supported catalyst containing at least one metal selected from copper and molybdenum as a catalytically active metal component.
JP58042998A 1983-03-15 1983-03-15 Method for producing lower oxygen-containing organic compounds Expired JPS6039652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042998A JPS6039652B2 (en) 1983-03-15 1983-03-15 Method for producing lower oxygen-containing organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042998A JPS6039652B2 (en) 1983-03-15 1983-03-15 Method for producing lower oxygen-containing organic compounds

Publications (2)

Publication Number Publication Date
JPS59170023A JPS59170023A (en) 1984-09-26
JPS6039652B2 true JPS6039652B2 (en) 1985-09-06

Family

ID=12651683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042998A Expired JPS6039652B2 (en) 1983-03-15 1983-03-15 Method for producing lower oxygen-containing organic compounds

Country Status (1)

Country Link
JP (1) JPS6039652B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831060A (en) * 1984-07-30 1989-05-16 The Dow Chemical Company Mixed alcohols production from syngas
US4882360A (en) * 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
US4752622A (en) * 1984-07-30 1988-06-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
US4762858A (en) * 1985-09-16 1988-08-09 The Dow Chemical Company Syngas conversion to oxygenates by reduced yttrium/lanthanide/actinide-modified catalyst
CN104069881B (en) * 2014-07-03 2016-02-03 西南化工研究设计院有限公司 A kind of auxiliary agent for copper system mixed alcohol catalyst and utilize this auxiliary agent to prepare the method for multiplex catalyst

Also Published As

Publication number Publication date
JPS59170023A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JPS6339634A (en) Conversion of synthetic gas using ror-activated catalyst
JPH0336571B2 (en)
JP2001031602A (en) Process and catalyst for producing CO2-oxygenate from synthesis gas
EP0031244B1 (en) Process for producing methanol from synthesis gas with palladium-calcium catalysts
JPH075485B2 (en) Process for the production of methane with thioresistant catalysts and catalyst for the implementation of this process
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds
US4393144A (en) Method for producing methanol
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JPH09168740A (en) Carbon dioxide reforming catalyst and reforming method using the same
JPH08176034A (en) Method of synthesizing methanol
CN1061320C (en) Nickel based catalyst for prepn. of synthetic gas by methane direct oxidation
JPS6341892B2 (en)
JPS6144847B2 (en)
Permyakov et al. Catalytic conversion of isoelectronic CO and N2 molecules in the presence of hydrogen
JPS6233215B2 (en)
JPH0371417B2 (en)
JPS6119608B2 (en)
JPH0136448B2 (en)
JPS6125690B2 (en)
JPS6152128B2 (en)
KR20250037393A (en) Carbon dioxide direct hydrogenation catalyst, method for preparing thereof and method for preparing hydrocarbon compound using the same
JPS5932181B2 (en) Catalyst for hydrocarbon synthesis from a mixed gas of carbon monoxide and hydrogen
JPS6238336B2 (en)
JPS63412B2 (en)
JPS62250948A (en) Catalyst for steam reforming of methanol